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Abstract—One of the most mature quantum information
techniques nowadays is Quantum Key Distribution (QKD) in
which two legitimate parties make use of a protocol to create
a symmetric private key using a quantum channel. The quantum
channel is not secure, since there may be an eavesdropper
intercepting and re-sending the quantum states that are sent
through it. One of the main problems in using QKD protocols
is the existence of noise which can make difficult the task of
eavesdropping checking. Considering these issues, this paper
presents a QKD protocol over a collective amplitude damping
quantum channel that makes use of decoherence-free subspaces
and subsystems. The QKD protocol proposed is noiseless despite
the errors existing in the quantum channel. Moreover, it makes
the probability of the eavesdropper’s retrieve the secret message
negligible asymptotically. Besides, the probability of eavesdropper
detection is stable during the whole communication which eases
the eavesdropping checking procedures.

Keywords—Quantum Key Distribution; One-Time Pad;
Decoherence-Free Subspaces and Subsystems.

I. INTRODUCTION

The principles of Quantum Mechanics provide novel ways
for quantum information transmission and processing, such
as Quantum Computation and Quantum Communication. Re-
garding Quantum Communication, in particular, some intrinsic
properties of Quantum Mechanics enable features that do not
have a counterpart in Classical Communication, such as: (i) a
qubit does not have not a definite value until the moment after
it is read; (ii) every measurement in a qubit may disturb it;
(iii) arbitrary states of qubits cannot be copied; (iv) qubits can
be entangled; among others [1]. Thanks to these Quantum Me-
chanics principles, in certain scenarios, unconditional security
can be achieved in information conveying through quantum
channels.

The Quantum Key Distribution (QKD) [2]–[5] is one of
the most mature quantum information techniques nowadays.
According to QKD, two remote users can create a private key
securely. This key is then used to crypt the secret message
into a ciphertext through a classical cryptographic scheme such
as the one-time pad, and the ciphertexts are then sent from
one user to another through a classical channel. However, in
a practical transmission process, the channel noise cannot be
avoided completely. Noise can increase not only the error rate
of the sending message, but also the difficulty of finding an
eavesdropper in the process of a security check.

In order to avoid the noise, some QKD protocols [6], [7]
considered the use of quantum channels which are subject to
collective decoherence. In this scenario, all qubits which suffer

noise are affected exactly in the same way [8]. Considering
this particularity, in such quantum channels it is possible to
find some symmetries that protect the information from the
noise. The states which remain unaffected by the decoherence
compose a decoherence-free subspace or subsystem (DFS) [9].

Boileau et al. [6] proposed two QKD protocols using
the DFS existing in the collective rotation quantum channel.
The first protocol considers a subspace and the second a
subsystem, both free of decoherence. Their protocol considers
also the use of singlets and the encoding is based on the
parity of qubits. Thanks to that, an uncertainty is inserted
about the state originally sent from the perspective of the
eavesdropper. However, it does not affect the legitimate parties
of the protocol, enabling them to create a private key that can
be later used to encrypt a classical message. It is important to
emphasize that the eavesdropper is not able to affect the qubits
exchanged, nor gather information about the key. Based on
similar ideas, Li et al. [7] proposed two QKD protocols using
DFS and considering the collective rotation and dephasing
quantum channels.

The amplitude damping is a type of quantum noise which
can make a qubit be lost. This type of error is also subject to
collective decoherence, characterizing the collective amplitude
damping quantum channels. Although these quantum channels
have a DFS, no QKD protocols have been developed for them.
Hence, the main objective of the present work is to characterize
a QKD protocol over collective amplitude damping quantum
channels, aiming at providing a secure way to create private
keys between the legitimate parties despite the existence of an
eavesdropper on the channel.

The present work is organized as follows. The decoherence-
free subspaces and subsystems are characterized and exempli-
fied in Section II. The collective amplitude damping quantum
channels and the decoherence-free subspaces existing on their
structure are shown in Section III. The model of communica-
tion considered as well as the steps that comprise the protocol
proposed are shown in Section IV. An analysis of security is
discussed in Section V. Lastly, final remarks and suggestions
for future work are presented in Section VI.

Notations and Conventions – The Dirac notation [10] will
be used to denote quantum states and operations over them
throughout the paper. A quantum state is said to be pure if it
can be represented by a unitary vector in the Hilbert space H.
The Hadamard operation, implemented by the gate H , has the

following matricial representation H = 1√
2

[
1 1
1 −1

]
. The

symbol 1 denotes the identity matrix.
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II. DECOHERENCE-FREE SUBSPACES AND SUBSYSTEMS

Due to decoherence, a quantum system may begin to lose
energy into the environment and decay to a ground state,
its relative phase may be erased and, thus, the information
it carries may be lost [11]. In this section, we will show
how to avoid these undesired effects despite the existence of
decoherence.

Let a closed quantum system be composed of the system of
interest S defined on a Hilbert space H and of the environment
E. The Hamiltonian that describes this system is defined as
follows:

H = HS ⊗ 1E + 1S ⊗HE +HSE , (1)

where 1 is the identity operator; and HS , HE and HSE

denote the Hamiltonians of system, environment and system-
environment interaction, respectively.

In order to prevent errors, it would be ideal that HSE

were equal to zero, indicating that system and environment
are decoupled and evolve independently and unitarily under
their respective Hamiltonians HS and HE [9]. However, in
practical scenarios, such an ideal situation is not possible since
no system is noiseless. So, after isolating a system to the best
of our ability, we should aim for the realistic goals of the
identification and correction of errors when they occur and/or
avoiding noises when possible and/or suppressing noise in the
system [12].

If some symmetries exist in the interaction between the
system and the environment, it is possible to find a “quiet cor-
ner” in the system Hilbert space not experiencing decoherence.
Let {Ei(t)} be a set of operators in the operator-sum repre-
sentation (OSR) corresponding to the evolution of the system.
We say that a system density matrix ρS is invariant under the
OSR operators {Ei(t)} if

∑
iEi(t)ρSE

†
i (t) = ρS . We are now

able to define the decoherence-free subspaces whose states are
invariant despite a non-trivial coupling between the system and
the environment.

Definition 1 (Decoherence-Free Subspace). A subspace H̃ of
a Hilbert space H is called decoherence-free with respect to
a system-environment coupling if every pure state from this
subspace is invariant under the corresponding OSR evolution
for any possible environment initial condition:

∑
i

Ei(t)|k̃⟩⟨k̃|E†
i (t) = |k̃⟩⟨k̃|, ∀|k̃⟩⟨k̃| ∈ H̃, ∀ρE(0). (2)

Let the Hamiltonian of the system-environment interaction
be HSE =

∑
j Sj ⊗ Ej , where Sj and Ej are the system

and environment operators, respectively. We consider that
the environment operators Ej are linearly independent. The
symmetries required to define a decoherence-free subspace
are described in the theorem below. For a detailed proof or
different formulations, see [9, Section 5].

Theorem 1 (Decoherence-Free Subspace Conditions). A sub-
space H̃ is decoherence-free iff the system operators Sj act
proportional to the identity on the subspace:

Sj |k̃⟩ = cj |k̃⟩ ∀j, |k̃⟩ ∈ H̃. (3)

The notion of a subspace which remains decoherence-free
throughout the evolution of a system is not, however, the most
general method for providing decoherence-free encoding of
information in a quantum system [9]. Knill et al. discovered a
method for decoherence-free encoding into subsystems instead
of into subspaces, which is presented below [13].

Definition 2 (Decoherence-Free Subsystem). Consider a de-
composition of the whole Hilbert space H = (HA⊗HB)⊕K,
where dim(H) = dim(HA) ·dim(HB)+dim(K). A subspace
HB of the full Hilbert space is a decoherence-free subsystem
if, for a quantum channel E:

∀ρA, ∀ρB , ∃τA : E(ρA ⊗ ρB) = τA ⊗ ρB , (4)

where ρA, τA ∈ B(HA), and ρB ∈ B(HB).

In fact, HB is said to encode a decoherence-free subsystem
if (4) is satisfied. In particular, when dim(HA) = 1, HB is a
decoherence-free subspace.

To make explicit the difference between decoherence-
free subspaces and subsystems, consider the encoding of a
generic qubit α|0⟩+ β|1⟩ into α|01⟩+ β|10⟩. In this case, the
information has been encoded into a subspace of the two qubit
Hilbert space. Suppose now that the information is encoded
only into the first qubit of the two qubits available, i.e.,
α|0⟩+β|1⟩ 7→ (α|0⟩+β|1⟩)⊗|ψ⟩. Since this second encoding
is a one-to-many mapping from the quantum information in
one qubit to a two qubit Hilbert space, then it is said that the
information has been encoded into a subsystem.

A. Example

The collective rotation quantum channel acts on the input
as follows:

|0⟩ 7→ cos θ|0⟩+ sin θ|1⟩, (5)
|1⟩ 7→ − sin θ|0⟩+ cos θ|1⟩, (6)

where θ is the collective rotation parameter which fluctuates
over time t. Two states that are immune to the decoherence
caused by this quantum noisy channel are the following Bell
states

|β00⟩ =
1√
2
(|00⟩+ |11⟩), (7)

|β11⟩ =
1√
2
(|01⟩ − |10⟩). (8)

Despite being entangled, these states are distinguishable
and can be properly obtained at the channel’s end using Bell
measurements.

If one encodes a generic quantum state |ψ⟩ = a|0⟩+ b|1⟩
using the mentioned Bell states as logic qubits, i.e., |ψL⟩ =
a|β00⟩ + b|β11⟩, we have that the resulting encoded state is
protected from decoherence since the logic states are immune
to the decoherence caused by the collective rotation quantum
channel E as follows:

272Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology



E(|β00⟩) =
1√
2
[(cos θ|0⟩+ sin θ|1⟩) ⊗ (cos θ|0⟩+ sin θ|1⟩)

+ (− sin θ|0⟩+ cos θ|1⟩) ⊗ (− sin θ|0⟩+ cos θ|1⟩)]
(9)

= |β00⟩, (10)

and

E(|β11⟩) =
1√
2
[(cos θ|0⟩+ sin θ|1⟩)⊗ (− sin θ|0⟩+ cos θ|1⟩)

+ (− sin θ|0⟩+ cos θ|1⟩)⊗ (cos θ|0⟩+ sin θ|1⟩)]
(11)

= |β11⟩. (12)

Besides the collective rotation quantum channel, the collec-
tive amplitude damping and the collective dephasing quantum
channels are also examples of noisy quantum channels that
have subspaces and subsystems that are immune to the existing
decoherence.

III. COLLECTIVE AMPLITUDE DAMPING
QUANTUM CHANNEL

The phenomenon of energy dissipation when conveying a
quantum state is modeled by the collective amplitude damping
quantum channel. This channel has the following OSR:

E(ρ) = A0ρA
†
0 +A1ρA

†
1, (13)

where the operation elements A0 and A1 are as follows:

A0 =

[
1 0
0

√
1− γ

]
, A1 =

[
0

√
γ

0 0

]
, (14)

where γ is the damping rate which can be thought of as the
probability of losing a photon [1, p. 380].

In this channel, due to its collectiveness behaviour, all
qubits which suffer amplitude damping are subject to the same
damping rate. Thanks to that, it is possible to find a “quiet
corner” in the Hilbert space of this channel whose states do
not suffer from the effects caused by this type of decoherence.
Such states are said to belong to a DFS H̃ of the input Hilbert
space H of this quantum channel [9]. If a state ρ ∈ H̃, where
H̃ ⊂ H, then it is not affected by the existing decoherence
on the collective amplitude damping quantum channel E , i.e.,
E(ρ) = ρ.

In this quantum channel, there are three different DFS, with
dimensions 1, 2 and 3, respectively, as shown below:

H̃1 = {|1⟩} , (15)

H̃2 =

{
|00⟩, |01⟩ − |10⟩√

2

}
, (16)

H̃3 =

{
1√
6
(−2|001⟩+ |010⟩+ |100⟩),

1√
2
(|011⟩ − |101⟩), |000⟩

}
. (17)

In particular, the DFS H̃2 will be used in the quantum key
distribution protocol that will be described in the next section.

IV. PROPOSED PROTOCOL

Our protocol considers the scheme of communications
showed in Figure 1. The legitimate parties (Alice and Bob)
are connected through a classical channel and also through a
collective amplitude damping quantum channel. Both channels
are considered insecure. Despite of that, the objective of Alice
and Bob is to create a private key to perform a secure classical
message exchange.

The eavesdropper Eve has access to the quantum channel
between Alice and Bob. She makes use of a device, which
measures the quantum states sent through the channel and
stores the basis used for measurement as well as the classical
result obtained.

Alice Bob

Eve

Fig. 1. Communication model considered. The single line wire represented
is used for quantum communications while the double line wire is used for
classical communications.

The idea of this protocol is very similar to the BB84 QKD
protocol [2], but with the advantage of the noise avoidance due
to the use of the DFS existing. The description of the protocol
will be presented in the sections below.

A. Protocol Description

The legitimate parties Alice and Bob makes use of the
following quantum states:

|→⟩ = |00⟩, (18)

|↑⟩ =
|01⟩ − |10⟩√

2
, (19)

|↗⟩ = |++⟩, (20)

|↘⟩ =
|+−⟩ − |−+⟩√

2
, (21)

where |−⟩ = |0⟩−|1⟩√
2

and |+⟩ = |0⟩+|1⟩√
2

. Notice that the
quantum states |↗⟩ and |↘⟩ are obtained from |→⟩ and |↑⟩
by a Hadamard operation. Thanks to the DFS properties, none
of the quantum states presented in Eqs. (18)-(21) are affected
by the collective amplitude damping. The quantum circuits
illustrated on Figure 2 show how to obtain such quantum states.

273Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology



(a) (b)

(c) (d)

Fig. 2. Quantum circuits that implement the states |→⟩, |↑⟩, |↗⟩, and |↘⟩,
respectively.

Alice starts the protocol sending states randomly chosen
from the set {|→⟩, |↑⟩, |↗⟩, |↘⟩}. Bob and Eve measure
the states received using the bases horizontal-vertical + =
{|→⟩, |↑⟩} or diagonal × = {|↗⟩, |↘⟩} also randomly chosen.

Let’s first consider that Eve is not affecting the communi-
cation between Alice and Bob. Table I shows some examples
of the results obtained by Alice and Bob in order to create
their private symmetric key. If Alice sends |→⟩ or |↑⟩ and Bob
measures with +, he will obtain bits 0 and 1, respectively, with
100% of certainty. The same is true when Alice sends |↗⟩
and |↘⟩ and Bob measures with ×. However, for instance,
if Alice sends |→⟩ and Bob measures with ×, then there is
a probability of 0.5 that he will receive the bit 0 and of 0.5
regarding the bit 1.

TABLE I. RESULTS OBTAINED BY BOB AFTER MEASURING THE
QUANTUM STATES SENT BY ALICE WITH THEIR RESPECTIVE PROBABILITY.

Alice sends |→⟩ |↑⟩ |↗⟩ |↘⟩

Bob measurement + + × ×
Bit obtained 0 1 0 1
Probability 1 1 1 1

Alice sends |→⟩ |↘⟩ |↗⟩ |↑⟩

Bob measurement × + + ×
Bit obtained 0 or 1 0 or 1 0 or 1 0 or 1
Probability 0.5 0.5 0.5 0.5

In order to avoid uncertainties regarding the bits obtained
by Bob, he will communicate to Alice the sequence of bases
he used to measure the qubits that she sent. Alice will return to
Bob a string of 0’s and 1’s, where 0 indicates that the respective
measurement must be discarded because it leads to uncertainty.
After this process, even without communicating the results of
the measurements, Alice and Bob agree on the results obtained
after the measurement. The bits resultant will compose the
private symmetric key that they will use in an one-time pad
encryption of the secret classical message sent through the
classical channel.

To illustrate the protocol proposed, let’s suppose that
Alice sends to Bob the following sequence of qubits:
|↗⟩, |↑⟩, |↑⟩, |→⟩, |↗⟩, |↘⟩, |↑⟩. Bob uses the sequence of
bases +,+,×,+,×,+,+ and obtains the sequence of bits
given by 0100011. Bob sends the sequence of bases he used

through the classical channel and Alice returns him the se-
quence 0011101. The sequence of bits sent by Alice indicates
that the first, second and sixth bits obtained by Bob must be
discarded. So, the private symmetric key between Alice and
Bob will have length 5 and will be equal to 00001. With this
key, Alice can send Bob a classical message in secrecy by
using the one-time pad scheme.

The one-time pad encryption scheme requires that the
message and the secret key must be of equal length. Let m be
the message and k be the key, both with n bits. The encrypted
version of the message e is obtained by ei = mi ⊕ ki, for
i = 1, . . . , n, where ⊕ denotes the addition modulo 2. If the
key is used only a single time and if it is kept in secret, then
the conditions for perfect secrecy in the communication are
guaranteed [14].

In the considered example, let’s suppose that Alice wants
to send a message m = 10101 to Bob. She will follow the one-
time pad steps, considering the key k = 00001, and will obtain
e = 10100 that will be sent through the classical channel to
Bob. Upon receiving e = 10100, Bob will use the key k =
00001, and will retrieve the message sent by Alice by also
using the ⊕ operation, which results in m = 10101. This way,
the quantum key distribution protocol and the secret classical
message exchange conclude successfully.

In the characterization of the protocol presented, the eaves-
dropper Eve makes no action during the key creation process.
However, it is very unrealistic and her action on the quantum
channel must be considered. The next section shows how she
can gather information from the private key created by Alice
and Bob and how they can use strategies in order to detect her
presence and to avoid her success.

B. Eavesdropping Checking

According to the model of communications considered,
Eve can perform measurements in the state sent by Alice,
recover a bit from it, and resend the resulting state to Bob.
During this process, Eve can not only recover bits from the
private key, but also change the quantum state originally sent
to Bob.

Eve performs measurements in the state send by Alice
using the bases + and × randomly chosen, i.e, using the
same strategy than Bob. To do so, she uses a device which
gets the input on the quantum channel, measures it, and
resend the resulting quantum state to the channel’s output. The
effects on the measurements performed by her may degrade the
information received by Bob. Table II synthesizes the effects
of Eve on the quantum channel.

If by random choice Eve chooses the same basis that Alice
used to prepare the quantum states, as shown in the first part
of Table II, she will measure the same bit than Bob and will
cause no disturbance on the system. However, if she measure
the states using the wrong basis, as shown in the second part
of Table II, she will have no certainty about the state sent by
Alice and will also modify the state received by Bob. When
this second situation happens, Alice and Bob can perform
successfully the eavesdropper detection.

To perform the eavesdrop detection, besides the bases
exchange between Bob and Alice, Bob will also reveal to Alice
some bits that he obtained after the measurement. Those bits
revealed are important to detect the eavesdropper but they must
be discarded after that in order to not compromise the security
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TABLE II. STATES SENT BY ALICE AND MEASURED BY THE
EAVESDROPPER EVE.

Alice sends |→⟩ |↑⟩ |↗⟩ |↘⟩

Eve measurement + + × ×
Eve’s resulting bit 0 1 0 1

Probability 1 1 1 1
Bob received state |→⟩ |↑⟩ |↗⟩ |↘⟩

Alice sends |→⟩ |↑⟩ |↗⟩ |↘⟩

Eve measurement × × + +
Eve’s resulting bit 0 or 1 0 or 1 0 or 1 0 or 1

Probability 0.5 0.5 0.5 0.5
Bob received state |↗⟩ or |↘⟩ |↗⟩ or |↘⟩ |→⟩ or |↑⟩ |→⟩ or |↑⟩

of private key. To illustrate such situation, let’s suppose that
Alice sent Bob the state |↗⟩, Eve measured it with the basis
+ and obtained the bit 1, and Bob measured with the basis ×
and received the bit 1. When Bob tells Alice that he used the
basis × and obtained the bit 1, she can notice that something
is wrong and can conclude that there exists an eavesdropper
in the quantum channel, because the scenario considered is
noiseless.

So, in order to create a private key in secrecy, they must
communicate not only the bases used for measurement, but
also some of the results obtained. It is essential to ensure the
security in the protocol proposed as it is going to be shown in
the next section.

V. SECURITY ANALYSIS

The goal of an ideal key distribution is to allow Alice and
Bob, who share no information initially, to share a secret key
(a string of bits) at the end. Eve, the eavesdropper, should not
obtain information about the key. Also, whatever Eve does,
Alice’s and Bob’s key should be identical. It is assumed that
all quantum and communication between Alice and Bob passes
through Eve, and similarly for classical communication [5].

No quantum key distribution protocol can succeed if Eve
has the power to impersonate Alice while communicating with
Bob and to impersonate Bob while communicating with Alice.
If Alice and Bob meet previously, there are authentication
techniques which can be used to ensure unconditional security
[15]. However, in a scenario where Alice and Bob have never
exchanged a secret key before, one must assume that Alice and
Bob have access to a faithful (classical) public channel so a
third part cannot accomplish the impersonation attack without
being detected.

Different from classic communication, the security of quan-
tum communication is based on the laws of physics rather
than the difficulty of computation. The eavesdropper Eve is so
powerful that her ability is only limited by the principles in
quantum mechanics. However, the No-Cloning Theorem [16]
forbids Eve to eavesdrop the quantum signals freely and fully
as her action will inevitably disturb the unknown states and
leave a trace in the outcomes obtained by the two legitimate
users [7]. These facts will help us in the characterization of
the security in the proposed protocol.

The eavesdropping strategy that we will consider in the
security analysis of the proposed protocol is the intercept and
resend attack [17] in which Eve measures the quantum state
sent by Alice, obtains a bit, and re-sends the resulting quantum

Fig. 3. Graphic showing the exponential decrease in Eve’s success probability
in recovering all key bits (blue line) and the probability of Alice and Bob
detecting the eavesdropper per bit exchanged to create the secret key (red
line).

state to Bob. This kind of attack was already depicted in
Section IV, but the probability of eavesdropping detection and
of Eve’s success is going to be described from now on. It is
important to emphasize that since this protocol is based on
the BB84 QKD protocol [2], the same proofs of security are
adequate to our proposition. We strongly suggest the work of
Mayers [5] as a source of a more formal approach to these
proofs.

If Alice wants to send a bit b to Bob, she can encode it
in two different ways. Eve, upon intercepting it, can also use
two options of measurement bases. Her chance of guessing the
correct bit is equal to 50%. But if she uses an incorrect basis
and it leads to Bob receiving a different bit than was originally
sent by Alice, the chance of eavesdropping detection is also
of 50% per bit sent.

Let us suppose that Alice and Bob want to create a private
key of size k. Given that Eve may perform intercept and
resend attacks, they will reinforce the eavesdropping checking
procedure by using k additional bits. The probability of Eve
measuring correctly the 2 · k bits exchanged between the
legitimate parties is of p(2 · k) = 0.52·k which decreases
exponentially as the size of the key increases as shown in
the blue line in Figure 3.

However, if Eve mistakes a single bit in a 2 · k bits
sequences (probability equal to perror(1) = 0.5 per bit), it may
result in a bit error detection by Bob and Alice (probability
equal to pdetection(1) = 0.5 per bit missed by Eve). Considering
these probabilities, the chance of detecting Eve at the n-th
bit goes asymptotically to 0.5, as shown in the red line of
the graphic in Figure 3, i.e., it is strongly related with the
probability of error detection. Differently from the probability
of Eve success, the probability of eavesdropping detection
is independent per bit exchanged. Since Eve can change a
qubit and this alteration may not be detected, as reported in
Tables I and II, there always a probability of not detecting the
eavesdropper in the communication.

As it can be seen, while the success of Eve depends
on guessing all bits without disturbing the communication
between Alice and Bob, her detection depends on one mistake
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on her measurements which disturbs the bit received by Bob
used in the eavesdrop checking process. Thus, we can conclude
that the ability of the protocol to detect eavesdropping is high,
ensuring enough security for practical scenarios of its use.
This concludes the analysis of security of the quantum key
distribution protocol proposed.

VI. CONCLUSION

The first practical demonstration of a QKD protocol took
place in the early 1990s using photons over a distance of 30
cm through air. After that, the next implementation over the
atmosphere guaranteed a secure communication with quantum
bits over a distance of 2 km. After that, QKD protocols could
be implemented in distances up to 250 km [18]. Nowadays,
even commercial devices are being developed and sold to
perform secure quantum key distribution [19].

However, one of the main problems in practical QKD
is the noise, which can not only affect the communication
between the legitimate parties, but can also favor an existing
eavesdropper. In the attempt to minimize such problems, we
proposed a QKD protocol over a collective amplitude damping
quantum channel where an eavesdropper performs intercept
and resend attacks.

This protocol is mainly based on BB84 QKD protocol
[2], but since it considers the existing DFS on the quantum
channel taken into account, the communication is noiseless.
However, we consider the existence of an eavesdropper which
aims at discovering the private key in the attempt to make a
breach of security in the message exchange between Alice
and Bob. In order to avoid it, the legitimate parties must
use extra bits, randomness and also certain procedures for
eavesdropping checking. As shown in Section V, it causes a
very low probability of Eve’s success while the probability of
eavesdropping detection is high.

This work contributes to the use of the DFS in secure
communications. If the eavesdropper is passive, following the
model of quantum wiretap channels [20], [21], it is possible to
reach unconditional security in the communications [22], [23].
This scenario not always occurs, so it is essential to consider
other protocols and techniques. Since DFS arise where col-
lective decoherence takes place [24], other works developing
QKD protocols for collective dephasing and rotation quantum
channels were already considered [6], [7]. However, so far, no
protocol for QKD on collective amplitude damping quantum
channels were known.

In practical scenarios, some works already report the im-
plementation of quantum channels with DFS [25]–[27] even
in long distance [28]. With this already existing technology,
the proposed protocol can be adopted in realistic scenarios to
provide secure communications.

In future work, we aim at proposing other protocols
and techniques for secure communications over eavesdropped
quantum noisy channels.
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