
Preprocessing of Binary Executable Files
Towards Retargetable Decompilation

Jakub Křoustek, Dušan Kolář
Faculty of Information Technology, IT4Innovations Centre of Excellence

Brno University of Technology
Brno, Czech Republic

{ikroustek, kolar}@fit.vutbr.cz

Abstract—The goal of retargetable machine-code decompila-
tion is to analyze and reversely translate platform-dependent
executable files into a high level language (HLL) representation.
This process can be used for many different purposes, such as
legacy code reengineering, malware analysis, etc. Retargetable
decompilation is a complex task that must deal with a lot of differ-
ent platform-specific features and missing information. Moreover,
input files are often compressed or protected from any kind of
analysis (up to 80% of malware samples). Therefore, accurate
preprocessing of input files is one of the necessary prerequisites in
order to achieve the best results. This paper presents a concept of
a generic preprocessing system that consists of a precise signature-
based compiler and packer detector, plugin-based unpacker, and
converter into an internal platform-independent file format. This
approach has been adopted and tested in an existing retargetable
decompiler. According to our experimental results, the proposed
retargetable solution is fully competitive with existing platform-
dependent tools.

Keywords—reverse engineering, decompilation, packer detec-
tion, unpacking, executable file, Lissom

I. INTRODUCTION

Reverse engineering is used often as an initial phase of
a reengineering process. As an example we can mention
reengineering of legacy software to operate on new computing
platforms. One of the typical reverse-engineering tools is a
machine-code decompiler, which reversely translates binary
executable files back into an HLL representation, see [1],
[2] for more details. This tool can be used for binary code
migration, malware analysis, source code reconstruction, etc.

More attention is paid to retargetable decompilation in
recent years. The goal is to create a tool capable to decom-
pile applications independent of their origin into a uniform
code representation. Therefore, it must handle different target
architectures, operating systems, programming languages, and
their compilers. Moreover, applications can be also packed or
protected by so-called packers or protectors. This is a typical
case of malware. Therefore, such input must be unpacked
before it is further analyzed; otherwise, its decompilation will
be inaccurate or impossible at all. Note: in the following text,
we use the term packing for all the techniques of executable
file creation, such as compilation, compression, protection, etc.

In order to achieve retargetable decompilation, its pre-
processing phase is crucial because it eliminates most of
the platform-specific differences. For example, this phase is
responsible for a precise analysis of an input application (e.g.,
detection of a target platform). Whenever a presence of a
packed code is detected, such application has to be unpacked.

Furthermore, the platform-dependent object file format
(OFF) is converted into an internal uniform code represen-
tation. The final task of preprocessing is an information
gathering, such as detection of originally used programming
language, compiler, or its version. This information is valuable
during the following phases of decompilation because different
languages and compilers use different features and generate
unique code constructions; therefore, such knowledge implies
more accurate decompilation.

In this paper, we present several platform-independent pre-
processing methods, such as language and compiler detection,
executable file unpacking, and conversion. These methods
were successfully interconnected, implemented, and tested in
a preprocessing phase of an existing retargetable decompiler
developed within the Lissom project [3].

The paper is organized as follows. Section II discusses the
related work of executable file preprocessing. Then, we briefly
describe the retargetable decompiler developed within the Lis-
som project in Section III. In Section IV, we give a motivation
for a compiler and packer detection within decompilation.
Afterwards, our own methods used in the preprocessing phase
are presented in Section V. Experimental results are given in
Section VI. Section VII closes the paper by discussing future
research.

II. RELATED WORK

There are several studies and tools focused on binary
executable file analysis and transformation. Most of them are
not focused directly on decompilation but some of these ideas
can be applied in this field. Their major limitation for such
usage is their bounding to one particular target platform.

In this section, we briefly mention several existing tools
used for packer detection, unpacking, and OFF conversion.

A. Compiler and Packer Detection

The knowledge of the originally used tool (e.g., compiler,
linker, packer) for executable creation is useful in several
security-oriented areas, such as anti-virus or forensics soft-
ware [4]. Overwhelming majority of existing tools are limited
to the Windows Portable Executable (WinPE) format on the
Intel x86 architecture and they use signature-based detection.
Almost all of these tools are freeware but not open source.

Formats of signatures used by these tools for pattern
matching usually contain a hexadecimal representation of the
first few machine-code instructions on the application’s entry
point (EP). EP is an address of the first executed instruction

259Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

within the application. A sequence of these first few instruc-
tions creates a so-called start-up or runtime routine, which
is quite unique for each compiler or packer and it can be
used as its footprint. Accuracy of detection depends on the
signature format, their quality, and used scanning algorithm.
Identification of sophisticated packers may need more than one
signature.

Databases with signatures are either internal (i.e., pre-
compiled in code of a detector), or stored in external files
as a plain text. The second ones are more readable and users
can easily add new signatures. However, detection based on
external signatures is slower because they must be parsed at
first. Some detection tools are distributed together with large,
third-party external databases.

B. Unpacking

Binary executable file packing is done for one of these
reasons—code compression, code protection, or their combi-
nation. The idea of code compression is to minimize the size of
distributed files. Roughly speaking, it is done by compressing
the file’s content (i.e., code, data, symbol tables) and its
decompression into memory or into a temporal file during
execution.

Code protection can be done by a wide range of tech-
niques (e.g., anti-debugging, anti-dumping, insertion of self-
modifying code, interpretation of code in internal virtual
machine). It is primarily used on MS Windows but support
of other platforms is on arise in the last years (e.g., gzexe and
Elfcrypt for Linux, VMProtect for Mac OS X, multi-platform
UPX and HASP).

Packers are proclaimed to be used for securing commercial
code from cracking; however, they are massively abused by
malware authors to avoid anti-virus detection. Decompilation
of compressed or protected code is practically impossible,
mainly because it is “just” a static code analysis and unpacking
is done during the runtime. Therefore, it is crucial to solve this
issue in order to support decompilation of this kind of code.

UPX is a rare case of packers because it also supports
decompression. Unpacking is a very popular discipline of
reverse engineering and we can find tools for unpacking many
versions of all popular packers (e.g., ASPackDie, tEunlock,
UnArmadillo). We can also find unpacking scripts for popular
debuggers, like OllyDbg, which do the same job.

Currently, about 80% to 90% of malware is packed [5]
and about 10 to 15 new packers are created from existing
ones every month [6], more and more often using polymorhic
code generators [7]. In past, there were several attempts to
create generic unpackers (e.g., ProcDump, GUW32), but their
results were less accurate than packer-specific tools. However,
creation of single-purpose unpackers from scratch is a time
consuming task. Once again, these unpacking techniques are
developed primarily for MS Windows and other platforms are
not covered.

C. Object-File-Format Conversion

This part is responsible for converting platform-dependent
file formats into an internal representation. We can find several
existing projects focused on this task. They are used mostly for

OFF migration between two particular platforms and they were
hand-coded by their authors just for this purpose. Therefore,
they cannot be used for retargetable computing.

A typical example is the MAE project [8], which supports
execution of Apple Macintosh applications on UNIX. Sun
Microsystems Wabi [9] allows conversion of executables from
Windows 3.x to Solaris. AT&T’s FreePort Express is another
binary translator of SunOS executables into the Digital UNIX
format. More examples can be found in [10].

III. LISSOM PROJECT’S RETARGETABLE DECOMPILER

The Lissom project’s [3] retargetable decompiler aims to
be independent on any particular target architecture, operating
system, or OFF. It consists of two main parts—the preprocess-
ing part and the decompilation core, see Figure 1. Its detailed
description can be found in [11], [12].

target
architecture

 models

DECOMPILER

COFF

B A C K - E N D

M I D D L E - E N D

F R O N T - E N D

G
E
N
E
R
A
T
O
R

MIPS

x86

ARM

...

input
application

C Python’ ...

Preprocessing

...ELF WinPE

additional
information

Fig. 1: The concept of the Lissom project’s retargetable
decompiler.

The preprocessing part is described in the following sec-
tion. Basically, it unpacks and unifies examined platform-
dependent applications into an internal Common-Object-File-
Format (COFF)-based representation.

Afterwards, such COFF-files are processed in the decom-
pilation core, which is partially automatically generated based
on the description of target architecture. This decompilation
phase is responsible for decoding of machine-code instructions,
their static analysis, recovery of HLL constructions (e.g., loops,
functions), and generation of the target HLL code. Currently,
the C language and a Python-like language are used for this
purpose and the decompiler supports decompilation of MIPS,
ARM, and x86 executables.

IV. MOTIVATION

The information about the originally used compiler is valu-
able during the decompilation process because each compiler
generates a quite unique code in some cases; therefore, such
knowledge may increase a quality of the decompilation results.
One of such cases are so-called instruction idioms. Instruction
idiom represents an easy-to-read statement of the HLL code
that is transformed by a compiler into one or more machine-
code instructions, which behavior is not obvious at the first
sight. See [13] for an exhausting list of the existing idioms.

260Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

We illustrate this situation on an example depicted as a
C language code in Figure 2. This program uses an arithmetical
expression “-(a >= 0)”, which is evaluated as 0 whenever
the variable a is smaller than zero; otherwise, the result is
evaluated as -1. Note: the following examples are independent
on the used optimization level within the presented compilers.
All compilers generate 32-bit Linux ELF executable files for
Intel x86 architecture [14] and the assembly code listings were
retrieved via objdump utility.

#include <stdio.h>

int main(int argc, char **argv)
{

int a;

scanf("%d", &a);
// Prints - "0" if the input is smaller than 0
// - "-1" otherwise
printf("%d\n", -(a >= 0));

return 0;
}

Fig. 2: Source code in C.

Several compilers substitute code described in Figure 2 by
instruction idioms. Moreover, different compilers generate dif-
ferent idioms. Therefore, it is necessary to distinguish between
them. For example, code generated by the GNU compiler GCC
version 4.0.4 [15] is depicted in Figure 3. As we can see, the
used idiom is non-trivial and its readability is far from the
original expression.

Address Hex dump Intel x86 instruction
--
; scanf
; Variable ’a’ is stored in %eax
80483e2: f7 d0 not %eax
80483e4: c1 e8 1f shr $31,%eax
80483e7: f7 d8 neg %eax
; Print result stored in %eax
; printf

Fig. 3: Assembly code generated by gcc 4.0.4.

The Clang compiler is developed within the LLVM
project [16], [17]. Output of this compiler is illustrated in
Figure 4. As we can see, Clang uses idiom, which is twice as
long as the previous one and it is assembled by the different
set of instructions. Therefore, it is not possible to implement
one generic decompilation analysis. Such solution will be
inaccurate and slow (i.e., detection of all existing idioms no
matter on the originally used compiler).

Decompilation of instruction idioms (or other similar con-
structions) produces a correct code; however, without any
compiler-specific analysis, this code is hard to read by a human
because it is more similar to a machine-code representation
than to the original HLL code. Compiler-specific analyses are
focused on these issues (e.g., they detect and transform idioms
back to a well-readable representation), but the knowledge of
the originally used compiler and its version is mandatory.

Figure 5 depicts decompilation results for the gcc compiled
code listed in Figure 3 (i.e., code generated by gcc 4.0.4). The
Lissom retargetable decompiler was used for this task. As we

Address Hex dump Intel x86 instruction
--
; scanf
; Variable ’a’ is stored on stack at -16(%ebp)
8013bf: 83 7d f0 00 cmpl $0,-16(%ebp)
8013c3: 0f 9d c2 setge %dl
8013c6: 80 e2 01 and $1,%dl
8013c9: 0f b6 f2 movzbl %dl,%esi
8013cc: bf 00 00 00 00 mov $0,%edi
8013d1: 29 f7 sub %esi,%edi
8013d3: ;...
8013d6: 89 7c 24 04 mov %edi,4(%esp)
; Print result stored on stack at 4(%esp)
; printf

Fig. 4: Assembly code generated by clang 3.1.

can see, the expression contains bitwise shift and xor operators
instead of the originally used comparison operator. This makes
the decompiled code hard to read.
#include <stdint.h>
#include <stdio.h>

int main(int argc, char **argv)
{

int apple;
apple = 0;
scanf("%d", &apple);
printf("%d\n", -(apple >> 31 ^ 1));
return 0;

}

Fig. 5: Decompiled source code (without compiler-specific
analyses).

Furthermore, it is important to detect compiler version too.
In Figure 6, we illustrate that the different versions of the same
compiler generate different code for the same expression. We
use gcc version 3.4.6 and the C code from the Figure 2.

Address Hex dump Intel x86 instruction

; scanf
; Variable ’a’ is stored on stack at -4(%ebp)
80483f3: 83 7d fc 00 cmpl $0,-4(%ebp)
80483f7: 78 09 js 8048402
80483f9: c7 45 f8 ff ff ff ff movl $-1,-8(%ebp)
8048400: eb 07 jmp 8048409
8048402: c7 45 f8 00 00 00 00 movl $0,-8(%ebp)
8048409:
; Print result stored on stack at -8(%ebp)
; printf

Fig. 6: Assembly code generated by gcc 3.4.6.

In this assembly code snippet, we can see that no instruc-
tion idiom was used. The code simply compares the value of
a variable with zero and sets the result in a human-readable
form. It is clear that the difference between the code generated
by the older (Figure 6) and the newer version (Figure 3) of
this compiler is significant. Therefore, we can close this section
stating that information about the used compiler and its version
is important for decompilation.

V. PREPROCESSING PHASE OF THE RETARGETABLE
DECOMPILER

In this section, we present a design of the preprocessing
phase within the Lissom project retargetable decompiler. The

261Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

complete overview is depicted in Figure 7. The concept
consists of the following parts.

input
application...ELF WinPE

Unpacking
plugins

...

Armadillo

LameCrypt

1)

3)

4)

COFF

Unpacker

Common library

2)

db
sign.

PE2COFF

ELF2COFF

...

Conversion
plugins

Converter

config

G
E
N
E
R
A
T
O
R

Compiler/packer
detector

5)

DECOMPILER6)

Fig. 7: The concept of the preprocessing phase.

At first, the input executable file is analyzed and the used
OFF is detected. All common formats are supported (e.g.,
WinPE, UNIX ELF, Mach-O). Information about the target
processor architecture is extracted from the OFF header (e.g.,
e_machine entry in ELF OFF) and it is used together with
other essential information in further steps.

The next part of this step is a detection of a tool used
for executable creation. This is done using a signature-
based detection of start-up code as described in Section II.
Example of such a start-up code can be seen in Fig-
ure 8. Signature for this code snippet is “5589E583EC18C
7042401000000FF15--------E8”, where each charac-
ter represents a nibble of instruction’s encoding. All variable
parts must be skipped during matching by a wild-card character
“-”, e.g., a target address in the call instruction. This
signature format is quite similar to formats used by other
detectors listed in Section II.

Address Hex dump Intel x86 instruction

0040126c: 55 push %ebp
0040126d: 89e5 mov %esp, %ebp
0040126f: 83ec18 sub $0x18, %esp
00401272: c7042401000000 movl $0x1, (%esp)
00401279: ff1500000000 call *0x0
0040127f: e8 ...

Fig. 8: Start-up code for MinGW gcc v4.6 on x86 (crt2.o)
generated by objdump -d.

Our signature format also supports two new features—
description of nibble sequences with zero or more occurrences
and description of unconditional short jumps. Example of
the former one is “(90)”, denoting an optional sequence of
nop instructions for x86 architecture. Example for the second
one is “#EB”, denoting an unconditional short jump for the

same architecture, which size is specified in the next byte;
everything between the jump and its destination is skipped.
In Figure 9, we can find a code snippet covered by signature
“#EB(90)40”.

Address Hex dump Intel x86 instruction

00401000: eb 02 jmp short <00401004>
00401002: xx xx ; don’t care
00401004: 90 nop
00401005: 90 nop
00401006: 40 inc %eax

Fig. 9: Example of advanced signature format.

These features come handy especially for polymorphic
packers [7] producing a large number of different start-up
codes (e.g., Obsidium packer). Describing one version of such
packer usually needs dozens of classical signatures. However,
this number can be significantly reduced using the above-
mentioned features.

Signatures within our internal database were created with
focus on the detection of the packer’s version. This information
is valuable for decompilation because two different versions of
the same packer may produce diverse code constructions. The
database also contains signatures for non-WinPE platforms;
therefore, it is not limited like other tools. Finally, new
signatures can be automatically created whenever the user can
provide at least two files generated by the same version of
packer. Presence of multiple files is mandatory in order to find
all variable nibbles in the start-up code.

Whenever a usage of packer was detected in the first phase,
the unpacking part is invoked. Unpacking is done by our own
generic unpacker, which consists of a common unpacking li-
brary and several plugins implementing unpacking of particular
packers. The common library contains the necessary functions
for rapid unpacker creation, such as detection of the original
entry point (OEP), dump of memory, fixing import tables, etc.
Therefore, a plugin itself is very tiny and contains only code
specific to a particular packer.

A plugin can be created in two different ways: either it can
reverse all the techniques used by the packer and produce the
original file, or the plugin can execute the packed file, wait
for its decompression, and dump its unprotected version from
memory to file. The first one is hard to create because it takes
a lot of time to analyze all the used protection techniques.
Its advantage is that unpacking can be done on any platform
because the file is not being executed. That is the main
disadvantage of the second approach. Such a plugin can be
created quickly; however, it must be executed on the same
target platform. In present, we support unpacking of several
popular packers like Armadillo, UPX (Linux and Windows),
NoodleCrypt and others in the second way. See Section VII
for its future research.

After unpacking, the re-generated executable file is once
more analyzed. In rare cases, second packer was used and we
need to unpack this file once more. Otherwise, the analysis will
try to detect the used compiler and its version, and generate
a configuration file, which is used by other decompilation
tools. This configuration file also contains information about

262Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

the target architecture, endianness, bitwidth, address of OEP,
etc.

Afterwards, the platform-specific unpacked executable file
is converted into an internal COFF-based representation. The
converter is also realized in a plugin-based way and each
plugin converts one particular OFF. Currently, we support ELF,
WinPE, Mach-O, and several others OFF. See [10] for more
details about this tool.

Using the information about the target architecture in the
configuration file, the instruction decoder is automatically
created by the generator tool [12]. Instruction decoder is
the first part of the decompiler’s front-end, which translates
machine code instructions into a semantics description of their
behavior.

Finally, the COFF executable file is processed in the gener-
ated decompiler according to the configuration file. Using the
provided information about used compiler, it can selectively
enable compiler-specific analyses (e.g., detection of instruction
idioms, recovery of functions).

VI. EXPERIMENTAL RESULTS

This section contains an evaluation of the previously de-
scribed method of packer detection. The accuracy of our tool
(labeled as “Lissom”) is compared with the latest versions of
existing detectors. Their short overview is depicted in Table I.

TABLE I: Overview of existing compiler/packer detection
tools.

tool signatures
name version internal external total

Lissom 1.00 2181 0 2181
RDG Packer Detector [18] 0.6.9 ? 10 ?
ProtectionID (PID) [19] 0.6.4.0 499 0 499
Exeinfo PE [20] 0.0.3.2 667 7075 7742
Detection is Easy (DiE) [21] 0.6.4 ? 1870 ?
NtCore PE Detective [22] 1.2.1.1 0 2806 2806
FastScanner [23] 3.0 1605 1832 3437
PEiD [24] 0.95 672 1774 2446

All of these detection tools use the same approach as our
solution—detection using signature matching. As we can see
in Table I, most of them use a combination of pre-compiled
internal signatures and a large external database created by
the user community. The competitive solutions are limited to
WinPE OFF and a number of their signatures varies between
hundreds and thousands. The number of internal signatures is
not always absolutely precise because some authors do not
specify this number, like RDG or FastScanner. Therefore, we
had to analyze such applications and try to find their databases
manually (e.g., using reverse engineering). We were unable to
find it in the RDG and DiE detectors. Our solution consists of
2181 internal signatures for all supported OFFs and we also
support the concept of external signatures.

Using reverse engineering, we also figured out that several
tools (e.g., PEiD) use additional heuristic technique for packer
detection. These techniques are not focused on the start-up
code or machine code at all. They are analysing several
properties of the executable file (e.g., attributes of sections,
information stored within file header) and they perform a
detection of packer-specific behavior. Using this heuristic
analysis, it is possible to detect even the polymorphic packers
like Morphine encryptor.

Twenty WinPE packers (e.g., ASPack, FSG, Obsidium,
UPX) and several their versions (105 different tools in total)
were used for comparison of previously mentioned detectors.
We used these packers for packing several compiler-generated
executables—with different size (50kB to 5MB), used com-
piler, compilation options, and packer options. The purpose is
that some packers create different start-up code based on the
file size and characteristics (data-section size, PE Header flags,
etc.). The test set consists of 5267 executable files in total. We
prepared three test cases for the evaluation of the proposed
solution.

At first, we evaluated the detection of packer’s name. This
type of detection is the most common and also the easiest to
implement because generic signatures can be applied (i.e., sig-
natures with only few fixed nibbles describing complete packer
family). On the other hand, this information is critical for
the complete decompilation process because if we are unable
to detect usage of executable-file protector, the decompilation
results will be highly inaccurate. The results of detection are
compared in Figure 10.

0

20

40

60

80

Lissom RDG PID ExeinfoPE DiE PEDetectiveFastScan PEiD

A
c
c
u
ra

c
y
 (

%
)

Detection of packer’s name (e.g., UPX)

100

Fig. 10: Summary of packer detection (packer names).

According to the results, the RDG [18] detector has the
best ratio of packer’s name detection (98%), while our solution
was second with ratio over 95%. All other solutions achieved
comparable results—between 80% and 90%. We can also no-
tice that larger signature databases do not imply better results
in this cathegory (e.g., Exeinfo PE). Such large databases are
hard to maintain and they can produce several false-positive
results because of too much generic signatures.

Afterwards, we tested the accuracy of tool’s major version
detection. In other words, this test case was focused on tool’s
ability to distinguish between two generations of the same
tool (e.g., UPX v2 and UPX v3). This feature comes handy
in the front-end phase during compiler specific analyses. For
example, the compiler may use in its newer versions more
aggressive optimizations that have a very specific meaning
and they need a special attention by the decompiler (e.g.,
instruction idioms, loops transformation, jump tables), see
Section IV for details. The results are depicted in Figure 11.

Within this test case, RDG and our solution once again
achieved the best results (both scored 93%). Only ExeinfoPE
and ProtectionID exceeded 80% success ration from the others.

Finally, we tested the ratio of precise packer’s version
detection. This task is the most challenging because it is
necessary to create one signature for each particular version
of each particular packer. This information is crucial for the
unpacker because the unpacking algorithms are usually created

263Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

0

20

40

60

80

Lissom RDG PID ExeinfoPE DiE PEDetectiveFastScan PEiD

A
c
c
u
ra

c
y
 (

%
)

100

Detection of packer’s major version (e.g., UPX 1.xx)

Fig. 11: Summary of packer detection (packer versions).

for one particular packer version and their incorrect usage may
lead to a decompilation failure.

0

20

40

60

80

Lissom RDG PID ExeinfoPE DiE PEDetectiveFastScan PEiD

A
c
c
u
ra

c
y
 (

%
)

100

Detection of packer’s precise version (e.g., UPX 1.23)

Fig. 12: Summary of packer detection (detailed detection).

Based on the results depicted in Figure 12, our detector
achieved the best results in this category with 86% accuracy.
The results of other solutions were much lower (51% at most).
This is mainly because we focus primarily on detecting the
precise version and we also support search in the entire PE
file and its overlay and not just on its entry point.

VII. CONCLUSION

This paper was aimed on architecture-independent prepro-
cessing methods used within the existing retargetable decom-
piler. We introduced methods of packer detection, unpacking,
and OFF conversion. Up to now, this concept has been success-
fully tested on the MIPS, ARM, and x86 architectures within
the Lissom project’s [3] retargetable decompiler.

We made several tests focused on accuracy of our solution
and according to the experimental results, it can be seen that
our concept is fully competitive with other existing tools.

We close the paper by proposing two areas for future
research. (1) The unpacking phase can be enhanced by using
retargetable simulators [25]. Such tools can emulate the target
host system and, therefore, it will not be necessary to unpack
executables on the same system as its origin. (2) We can further
increase decompilation results by creation of new signatures
and compiler-specific analyses (e.g., better loop statement
recovery, detecting different types of function calls).

ACKNOWLEDGMENTS

This work was supported by the project TA ČR
TA01010667 System for Support of Platform Independent
Malware Analysis in Executable Files, BUT FIT grant FIT-S-
11-2 and FEKT-FIT-J-13-2000 Validation of Executable Code

for Industrial Automation Devices using Decompilation, by
the project CEZ MSM0021630528 Security-Oriented Research
in Information Technology, and by the European Regional
Development Fund in the IT4Innovations Centre of Excellence
project (CZ.1.05/1.1.00/02.0070).

REFERENCES

[1] C. Cifuentes, “Reverse compilation techniques,” Ph.D. dissertation,
School of Computing Science, Queensland University of Technology,
Brisbane, AU-QLD, 1994.

[2] M. J. V. Emmerik, “Static single assignment for decompilation,” Ph.D.
dissertation, University of Queensland, Brisbane, AU-QLD, 2007.

[3] Lissom, 2013, available on URL: http://www.fit.vutbr.cz/research/
groups/lissom/ [retrieved: 2013-04-22].

[4] G. Taha, “Counterattacking the packers,” in AVAR, 2007.
[5] M. M. T. Brosch, “Runtime packers: The hidden problem?” in Black

Hat, 2006.
[6] K. Babar and F. Khalid, “Generic unpacking techniques,” in 2nd

International Conference on Computer, Control and Communication,
2009, pp. 1–6.

[7] Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, and S. J.
Stolfo, “On the infeasibility of modeling polymorphic shellcode,” in
14th ACM Conference on Computer and Communications Security
(CCS’07). ACM, 2007, pp. 541–551.

[8] Apple Inc., “Macintosh application environment,” 1994, available on
URL: http://www.mae.apple.com/ [retrieved: 2013-04-22].

[9] D. R. P. Hohensee, M. Myszewski, “Wabi cpu emulation,” Hot Chips
VIII, 1996.

[10] J. Křoustek, P. Matula, and L. Ďurfina, “Generic plugin-based convertor
of executable file formats and its usage in retargetable decompilation,”
in 6th International Scientific and Technical Conference (CSIT’2011).
Lviv Polytechnic National University, 2011, pp. 127–130.

[11] L. Ďurfina et al., “Design of a retargetable decompiler for a static
platform-independent malware analysis,” International Journal of Se-
curity and Its Applications, vol. 5, no. 4, 2011, pp. 91–106.

[12] L. Ďurfina, J. Křoustek, P. Zemek, and B. Kábele, “Detection and
recovery of functions and their arguments in a retargetable decompiler,”
in 19th Working Conference on Reverse Engineering (WCRE’12).
Kingston, Ontario, CA: IEEE Computer Society, 2012, pp. 51–60.

[13] H. Warren, Hacker’s Delight. Boston: Addison-Wesley, 2003.
[14] Intel Corporation, “Intel 64 and ia-32 architectures software developer’s

manual volume 1: Basic architecture,” 2011.
[15] GNU Compiler Collection, 2013, available on URL: http://gcc.gnu.org/

[retrieved: 2013-04-22].
[16] Clang, 2013, available on URL: http://clang.llvm.org/ [retrieved: 2013-

04-22].
[17] The LLVM Compiler System, 2013, available on URL: http://llvm.org/

[retrieved: 2013-04-22].
[18] RDG Packer Detector, 2013, available on URL: http://rdgsoft.8k.com/

[retrieved: 2013-04-22].
[19] ProtectionID, http://pid.gamecopyworld.com/, 2013, available on URL:

[retrieved: 2013-04-22].
[20] ExeinfoPE, 2013, available on URL: http://www.exeinfo.xwp.pl/ [re-

trieved: 2013-04-22].
[21] Die, 2013, available on URL: http://hellspawn.nm.ru/ [retrieved: 2013-

04-22].
[22] NtCore PE Detective, 2013, available on URL: http://www.ntcore.com/

[retrieved: 2013-04-22].
[23] FastScanner, 2013, available on URL: http://www.at4re.com/ [retrieved:

2013-04-22].
[24] PEiD, 2013, available on URL: http://www.peid.info/ [retrieved: 2013-

04-22].
[25] Z. Přikryl, “Advanced methods of microprocessor simulation,” Ph.D.

dissertation, Brno University of Technology, Faculty of Information
Technology, 2011.

264Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

