
Towards an Efficient Handling of the Maximum Triangle Packing Problem

Youcef Abdelsadek
1, 2

, Francine Herrmann
 2

1
Department of Informatics, Systems and Collaboration

Public Research Centre-Gabriel Lippmann

Belvaux, Luxembourg

e-mail: abdelsad@lippmann.lu, otjacque@lippmann.lu

Imed Kacem
 2
, Benoît Otjacques

 1

2
Laboratoire de Conception, Optimisation et Modélisation

des Systèmes (LCOMS EA 7306)

University of Lorraine - Metz, France

e-mail: francine.herrmann@univ-lorraine.fr,

imed.kacem@univ-lorraine.fr

Abstract—This work addresses the problem of finding the

maximum number of unweighted vertex-disjoint triangles in

an undirected graph G. It is a challenging NP-hard problem in

combinatorics and it is well-known to be APX-hard. We

propose two heuristics for this problem. The first is based on

local substitutions, while the second uses a surrogate relaxation

of the related integer linear program which is analog to a

specific knapsack problem. A computational comparison of

the two heuristics using randomly generated benchmarks has

shown that the first heuristic outperforms the second heuristic

regarding the obtained packing solutions and the respective

computation times.

Keywords - packing problems; maximum triangle packing;

heuristics; computational study.

I. INTRODUCTION

In the unweighted Maximum k-Set Packing (k-MSP)
problem, a collection C of exactly k sized sets of a popula-
tion P is given. The aim in the related optimization problem
is to find the maximum number of pairwise disjoint sets. For

example, let  be an instance of a 2-MSP, where C  {{1,

2}, {1, 3}, {3, 4}} and P  {1, 2, 3, 4}. The optimal solution

maximizing the number of pairwise disjoint sets for  is {{1,
2}, {3, 4}}. The unweighted k-MSP is a well-known NP-

complete problem in the complexity theory. Even when k 

, the problem remains NP-hard and can be transformed to
an instance of the 3-dimensional matching problem [1].
However, it is polynomial time solvable for the well-known

2-dimensional matching problem when k   [1].
In this paper, we will consider the Maximum Triangle

Packing (MTP) problem. It can be formulated as follows. Let

G be a graph such that G  (V, E) where V and E respectively
denote the vertex set and the edge set for the graph G. For

instance of the -MSP problem, the population P
represents the set V while the collection C represents all the

triangles (i.e., cliques of size ) of the graph G. Indeed, a

set Si C which have x, y and z as elements, if and only if,
(x, y), (x, z) and (y, z) belongs to the set E. The goal in this
case is to find the maximum number of vertex-disjoint
triangles of the graph G, the so-called MTP problem. Notice
that in this work we are not addressing the case of edges-
disjoint triangles because we attempt to consider the disjoint
3-Set Cover (3-SC) problem [13]. The MTP problem can
be found in numerous real-world problems, including sched-
uling, biology [2] and extraction of test forms [3].

The remaining paper’s structure is as follows. In Section
2, we quote the relevant related work of the MTP problem
cases. In Section 3, we give some basics and definitions
illustrating them with an example. Section 4 describes the
two proposed heuristics. In Section 5, we provide an
experimental comparison of the aforementioned heuristics by
randomly generated MTP instances and also detail how they
are built. Section 6 concludes the paper and discusses further
developments of this work.

II. RELATED WORK

The interest of the scientific community regarding the
MTP problem and k-MSP problem in general continues to
grow almost daily. The MTP problem is NP-hard; Caprara
and Rizzi [4] proved that the MTP problem is also APX-hard

for graphs with a degree  4, which means that we cannot
approximate the MTP problem within any given approximat-
ion ratio (i.e., nonexistence of a polynomial time approxima-
tion scheme [1]) unless P = NP. However, it is solvable in
polynomial time if the maximum graph degree is at most 3.

In [5], it is showed that the MTP problem admits a (  (

 )  )-approximation algorithm when the maximum

degree is at most 4, for any constant   , whereas the (( 

  )-non-approximability is shown in [2]. In [6], the k-

MSP problem (resp., MTP problem) admits a (k    )-

approximation algorithm (resp., (    )-approximation

algorithm). Wang, Feng and Chen [9] gave an (


)-

time parameterized algorithm for the -MSP problem.
For the weighted case, a weight is assigned to each edge

of a complete graph of size t  3, the goal is to maximize the
sum of edge weight selecting t vertex-disjoint triangles.

Hassin and Rubinstein proposed a randomized ((   

)-approximation algorithm [7] for the weighted case. An
improvement of their work is given in [8], the approximation

algorithm achieves an expected ratio of (  ).
With respect to the constraint programming approach, an

empirical comparison of three constraint models for the
MTP problem is provided [10]. Additionally in [3], a branch
and bound for the k-MSP problem is proposed. Recently,
Bertsimas, Iancu and Katz [11] developed a pseudo-
polynomial time approximation algorithm for the k-MSP

problem within an approximation ratio of k

  (k  1).

Due to the APX-hardness of the MTP problem, work
tackling the non-approximability within some approximation
ratio can give us a better grasp of its approximability.

249Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

III. BASICS AND DEFINITIONS

In this section, we give some definitions which are
necessary for the better understanding of the two proposed

heuristics. The set of vertices {v1, v2,, vn}V has a size n,

while the triangles set {k1, k2,, km} K has a size m. The
weight of a vertex vi represents the number of triangles to

which vi belongs. These weights are called here i such that

i{,, n}. Figure 1 gives an example of a graph G and

vertex weights. The weight of a triangle kj  {vi, vg, vh} K,

is the sum of its vertices weights vi, vg, vh V. We refer to the

triangles weights as j such that j{,, m}. We say that

two triangles kj and kj’ K overlap, if they share a common

vertex kj  kj’  vi V. In Figure 1, the triangles k1 and k2

overlap in v2. Moreover, the neighborhood degree j of a

triangle kj K represents the number of triangles that overlap
kj, called in [10] collision count. For example, the triangle k1
has as a neighborhood degree value of 2 because it shares a
vertex with k2 and k3. Table 1 gives the triangle weight and
neighborhood degree for the same graph G.

IV. OUR HEURISTICS

Before describing the two proposed heuristics, we point
out that each vertex of the input graph must belong to at least
one triangle, without loss of generality. Moreover, in this
study the outcomes of MTP instances are assessed regarding
the number of obtained triangles, which means that the
smallest gap between the optimal solution and the returned
solution is better. We also pay attention to the computation
time that it costs.

Figure 1. An example of a graph G and the vertex weights

TABLE I. TRIANGLE WEIGHT AND NEIGHBORHOOD DEGREE OF THE

GRAPH G

Triangle

The triangles set K

k1 v1

v2 v3

k2 v2

v4 v5

k3 v3

v6 v7

k4 v4

v5 v7

k5 v4

v5 v6

k6 v5

v6 v7

k7 v4

v6 v7

j 5 10 10 12 12 12 12

j 2 5 5 4 4 4 4

A. Local subtitution-based heuristic

In this section, we explain the behavior of the first
heuristic as illustrated in Algorithm 1.

The algorithm starts by computing the neighborhood

degree j for each triangle. The next step is to find the

triangle with the smallest j value that is done with TriMin ().
The motivation behind this is to select the triangles which
outline the graph structure with the aim that the selection
in the rest of the graph (i.e., the inner parts of the graph)
will not generate couples and singletons. Algorithm 1 avoids
selecting a triangle (i.e., Tmin) which overlaps with disjoint
triangles neglecting a local optimality. For that MaxDisjoint
() returns Neigh the maximum number of disjoint triangles
which overlap with a certain triangle kj. Notice that the
number returned by MaxDisjoint () is upper bounded by 3,
that is because we cannot have 4 disjoint triangles which
overlap a triangle. The final step is to remove the selected
triangle(s) and its (their) neighborhood triangles with
RemoveNeigh(). The process is repeated until there remains

no triangles in .

Algorithm 1 (Local substitution)
Input: the graph G
Output: a packing of triangles PT

a)   K, PT , Neigh ; Tmin ;

b) While (  )

c) Calculate the neighborhood degree j for each

d) j{,, m};

e) Tmin  TriMin ();

f) Neigh  MaxDisjoint (Tmin);

g) if (Neigh  ) PT  PT  Neigh,    \ Neigh,
h) RemoveNeigh (Neigh);

i) else PT  PT  Tmin,    \ Tmin,
j) RemoveNeigh (Tmin);
k) end while;
l) return PT;
m) end.

To better understand the aforementioned heuristic we
take the graph in Figure 1 as an example and we briefly
outline its steps. First of all, the set of solution PT is

initialized to  and  is initialized to K. After that k1 is

assigned to Tmin, because it has the smallest j value and
{k2, k3} to Neigh, this is due to the fact that k2 and k3 are
disjoint and overlap k1. Finally, {k1, k2, k3, k4, k5, k6, k7} are

removed from  and the algorithm returns PT {k2, k3},
which is one of the optimal solutions.

B. The second heuristic

The MTP problem for a graph G  (V, E) can be stated

as an Integer Linear Program (ILP), like in (1) where B 

{, }
n  m

 is the vertex-triangle Belonging matrix. The
columns of the matrix B contains exactly 3 ones, which
means that the vertices representing the 3 non-zero values

belong to the triangle (column). Let xk  1 if the kth triangle

is selected in the returned solution,  otherwise. A surrogate
relaxation of (1) is presented in (2).

1  1

2  2

3  2

4  4

7  4

5  4

6  4

250Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

Detailed work on the multiple varieties of relaxations for

the k-MSP problem is presented in [12]. In (1) a constraint is
devoted to each vertex, whereas in (2) we attribute the vertex

weight i to each constraint. Hence, a reformulation of the
constraint-weighted ILP leads to (2) where the ILP is
variable-weighted. The relaxed problem is reduced to the
one-dimensional knapsack problem (1-KP) [1] where the

items represent the triangles and the knapsack capacity is .
In this case, the optimal solution for the 1-KP is to select the
items in the increasing weight order, because all the items
have 1 as profit value. The solution of the relaxed problem
yields an upper-bound on the optimal solution of MTP
problem. The following Algorithm 2 allows us to derive a
feasible solution based on the relaxed solution.

Before outlining the different steps of Algorithm 2, we
define what a packing solution is. A packing solution exists
if no triangle of a solution overlaps. Algorithm 2 takes as an

input the graph G and the vector of weights  and . It starts
by calling SolveILP (), which solves (2) in a linear time.
After that, Algorithm 2 verifies whether the returned solution
is a packing solution or not. In the negative case, it chooses
the first encountered triangles, which overlaps and selects the

one having the smallest triangle weight j value, maximizing

the   j for future iterations, this is done with Intersect ().
To avoid that the selected triangle in Step e intersects again,
we attribute an exclusive penalty-weight to the neighborhood
of the selected triangle via Penalty (). The penalty is a large

integer value which is assigned to a triangle weight j

without affecting its vertices weights i (i.e., not uniformly
distributed to its vertices weights). This process is repeated
until the returned solution is a packing solution and
terminates.

To illustrate Algorithm 2, let us consider the example in
Figure 1. Algorithm 2 starts with X = {0, 0, 0, 0, 0, 0, 0}

and  = 1 + 2 + 2 + 4 + 4 + 4 + 4 = 21. Step c returns X =
{1, 1, 0, 0, 0, 0, 0}. Step d checks if the returned solution
is a packing solution. A negative response is returned
because k1 overlaps k2 in v2. Intersect () is called and returns

k1 as the chosen triangle, due to 1  2. A penalty is attrib-
uted to each of k2 and k3 excluding them from the returned
solution, because k2 and k3 are neighborhood triangles of
k1. Algorithm 2 starts a second iteration and has as a result
of Step c X = {1, 0, 0, 1, 0, 0, 0}. A positive response is retu-

Algorithm 2 (relaxed ILP)

Input: the graph G, the weight vectors  and 

Output: a packing of triangles X {, }
 m

a)   K, X {0}
m
;

b) Do
c) X = SolveILP (X, (2), , );
d) if (X is a packing) goto step h;

e) else Intersect (X , );

f) Penalty (X , );
g) While (X is not a packing solution);
h) return X;
i) end.

rned because k1 does not overlap k4. Algorithm 2 terminates
and returns {k1, k4} which is another optimal solution for this
example.

V. COMPUTANTIONAL COMPARISON

We now give some details of the experimental tests. We
have implemented and tested the two aforementioned
algorithms using different MTP instances and have
compared their results to the solution returned by (1) via
CPLEX 12.5 [14]. Due to the lack of benchmarks, the MTP
instances are randomly generated in the following way: we

start with a stable graph of size n, we fix a vertex vi V and

chose randomly two other vertices vg and vh V, creating the

triangle kj = {vi, vg, vh} K. We repeat this process until all
vertices participate in at least one triangle. The size of the
MTP instances are up to m = 4182 and n = 3000.

All the tests are done on Intel® Core™ i7-2600 CPU
(3.40 GHz, 3.70 GHz), with 16GB of RAM. Algorithm 1
and Algorithm 2 are coded in the C Language. Table 2
summarizes the number of returned solutions along with the
computation times. In the columns tuples (2, 3), (4, 5) and (6,
7) the number of returned triangles and the computation
times of Algorithm 1, Algorithm 2 and CPLEX respectively
are represented.

From Table 2, we observe that Algorithm 1 outperforms
Algorithm 2 regarding the returned packing solutions for all
generated MTP instances. However, both are dominated by
CPLEX outcomes. We highlight that we interrupted CPLEX
resolution after 48 hours for the last two MTP instances.
Regarding the computational times, Algorithm 1 needs little
CPU time compared to Algorithm 2 but both are still
polynomial. These two heuristics provide results relatively
quickly and are more suitable for user interaction system
applications. In this context, the systems must return a
solution with a certain quality of the approximation in a
small amount of time.

We remark that the gap between the returned number of
triangles by the two proposed heuristics and CPLEX

solutions strongly depends on the order of the triangle set .
Indeed, in the case when two triangles have the same weight

value, the first in the triangle set  is chosen. This choice
allows to have deterministic solutions, if it happens to run
the two heuristics several times in a row. An improvement of

the two heuristics will be to sort the triangle set  in such a

way that the most promising triangle will be placed first in .

251Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

TABLE II. THE OBTAINED RESULTS OF ALGORITHM 1, ALGORITHM 2

AND CPLEX USING RANDOMLY GENERATED MTP INSTACES

MTP

Instances

(vertices,

triangles)

The results and their Computation Times (CT)

Algorithm 1 Algorithm 2 CPLEX

Sol
CT

(sec)
Sol

CT

(sec)
Sol CT

(600, 671) 135 0.073 131 0.16 167
3.26

(sec)

(800, 834) 188 0.096 172 0.33 230
19.2

(sec)

(850, 869) 194 0.12 186 0.48 240
10.2

(sec)

(900, 978) 207 0.142 196 0.49 260
11

min

(1000, 1050) 228 0.188 217 0.64 291
9

min

(1000, 1132) 229 0.184 214 0.73 295
11

min

(1100, 1152) 251 0.206 246 0.9 319
10

min

(1150, 1225) 261 0.237 249 1 330
132
min

(1200, 1280) 270 0.270 259 1.1 346
101

min

(1400, 1495) 322 0.482 303 1.8 Interrupted

(3000, 4182) 719 5.04 666 26.7 Interrupted

Sol, sec and min represent solution, secondes and minutes respectivelly.

VI. CONCLUSION AND FUTURE WORK

In this work, we deal with the problem of finding the
maximum number of unweighted vertex-disjoint triangles in
an undirected graph G. The problem is well-known to be
NP-hard and APX-hard. Two heuristics have been proposed
for this problem. To investigate the heuristic’s performance,
we provide a computational comparison of both of them
to the CPLEX solution with randomly generated MTP
instances. We have shown that the first heuristic outperforms
the second regarding the obtained packing solutions and the
respective computation times.

As a perspective for future work, we plan to use other
metrics to compute the triangles and vertices weight
improving also the penalty process. We also project to
compare the two proposed heuristics with other appro-
ximation algorithms and to consider the weighted case of the
MTP problem. The main motivation behind this work is to
use the obtained solution for the MTP problem to consider
the disjoint 3-SC problem [13]. In the disjoint 3-SC problem
the optimality is the minimum of sets within a collection C
of size at most 3 which cover the population P. We expect to

address the disjoint 3-MSC problem applied on a graph G 

(V, E) where the vertices set V is covered by the fewest
number of 3-clique, 2-clique and 1-clique (a k-clique is a
clique of size k) maximizing the 3-clique packing hopefully
generating a cover with the fewest sets.

ACKNOWLEDGMENT

We would like to thank the anonymous referees for their
pertinent remarks which improved the presentation of this
paper.

REFERENCES

[1] M. R. Garey and D. S. Johnson, “Computers and
Intractability: A Guide to the Theory of NP-Completeness,”
W. H. Freeman and Co., New York, 1979.

[2] M. Ashley, T. B.-Wolf, P. Berman, W. Chaovalitwongse, B.
DasGupta, and M.-Y. Kao, “On approximation for covering
and packing problems,” in Journal of Computer and System
Sciences, vol. 75, 2009, pp. 287–302.

[3] D. I. Belov and R. D. Armstrong, “A constraint programming
approach to extract the maximum number of non-overlapping
test forms,” in Computational Optimization and Applications,
vol. 33, 2006, pp.319–332.

[4] A. Caprara and R. Rizzi, “Packing triangles in bounded
degree graphs,” In Information Processing Letters, vol. 84,
2002, pp. 175-180.

[5] G. Manić and Y. Wakabayashi, “Packing triangles in low
degree graphs and indifference graphs,” in Discrete Math.,
vol. 308, 2008, pp. 1455-1471.

[6] C. A. J. Hurkens and A. Schrijver, “On the size of systems of
sets every t of which have an SDR, with an application to the
worst-case ratio of heuristics for packing problem,” in SIAM
J. DISC. Math., vol. 2, No. 1, 1989, pp. 68-72.

[7] R. Hassin and S. Rubinstein, “An approximation algorithm
for maximum triangle packing,” Discrete Applied Math., vol.
154, 2006, pp. 971-979.

[8] Z.-Z. Chen, R. Tanahashi, and L. Wang, “An improved
randomized approximation algorithm for maximum triangle
packing,” in Discrete Applied Math., vol. 157, 2009, pp.
1640-1646.

[9] J. Wang, Q. Feng, and J. Chen, “An ()-time
parameterized algorithm for the 3-set packing problem,” in
Theorical Computer Science, vol. 412, 2011, pp. 1745-1753.

[10] P. Prosser, “Triangle packing with constraint programming,”
In the 9th International Workshop on Constraint Modelling
and Reformulation, 2010, pp. 1-15.

[11] D. Bertsimas, D. A. Iancu, and D. Katz, “A new local search
algorithm for binary optimization,” INFORMS Journal on
Computing, Articles in Advance, 2012, pp. 1-14.

[12] R. Borndörfer and R. Weismantel, “Set packing relaxations of
some interger programs,” ZIB-Report SC 97-30, 1999, pp. 1-
19.

[13] R. Duh and M. Fürer, “Approximation of k-set cover by semi-
local optimization,”, In Proceedings of the 29th annual ACM
Sym. On Theory of Computing 1997, pp. 256-264.

[14] www-01.ibm.com/software/commerce/optimization/cplex-
optimizer/ [retrieved:10.05.2013].

252Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

