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Abstract—This work addresses the problem of finding the 

maximum number of unweighted vertex-disjoint triangles in 

an undirected graph G. It is a challenging NP-hard problem in 

combinatorics and it is well-known to be APX-hard. We 

propose two heuristics for this problem. The first is based on 

local substitutions, while the second uses a surrogate relaxation 

of the related integer linear program which is analog to a 

specific knapsack problem. A computational comparison of  

the two heuristics using randomly generated benchmarks has 

shown that the first heuristic outperforms the second heuristic 

regarding the obtained packing solutions and the respective 

computation times.  

Keywords - packing problems; maximum triangle packing; 

heuristics; computational study. 

I.  INTRODUCTION  

In the unweighted Maximum k-Set Packing (k-MSP) 
problem, a collection C of exactly k sized sets of a popula-
tion P is given. The aim in the related optimization problem 
is to find the maximum number of pairwise disjoint sets. For 

example, let  be an instance of a 2-MSP, where C  {{1, 

2}, {1, 3}, {3, 4}} and P  {1, 2, 3, 4}. The optimal solution 

maximizing the number of pairwise disjoint sets for  is {{1, 
2}, {3, 4}}. The unweighted k-MSP is a well-known NP-

complete problem in the complexity theory. Even when k  

, the problem remains NP-hard and can be transformed to 
an instance of the 3-dimensional matching problem [1]. 
However, it is polynomial time solvable for the well-known 

2-dimensional matching problem when k   [1].  
In this paper, we will consider the Maximum Triangle 

Packing (MTP) problem. It can be formulated as follows. Let 

G be a graph such that G  (V, E) where V and E respectively 
denote the vertex set and the edge set for the graph G. For 

instance of the -MSP problem, the population P 
represents the set V while the collection C represents all the 

triangles (i.e., cliques of size ) of the graph G. Indeed, a     

set Si C which have x, y and z as elements, if and only if, 
(x, y), (x, z) and (y, z) belongs to the set E. The goal in this 
case is to find the maximum number of vertex-disjoint 
triangles of the graph G, the so-called MTP problem. Notice 
that in this work we are not addressing the case of edges-
disjoint triangles because we attempt to consider the disjoint 
3-Set Cover (3-SC) problem [13]. The MTP problem can     
be found in numerous real-world problems, including sched-
uling, biology [2] and extraction of test forms [3].  

The remaining paper’s structure is as follows. In Section 
2, we quote the relevant related work of the MTP problem 
cases. In Section 3, we give some basics and definitions 
illustrating them with an example.  Section 4 describes the 
two proposed heuristics. In Section 5, we provide an 
experimental comparison of the aforementioned heuristics by 
randomly generated MTP instances and also detail how they 
are built. Section 6 concludes the paper and discusses further 
developments of this work.     

II. RELATED WORK 

The interest of the scientific community regarding the 
MTP problem and k-MSP problem in general continues to 
grow almost daily. The MTP problem is NP-hard; Caprara 
and Rizzi [4] proved that the MTP problem is also APX-hard 

for graphs with a degree  4, which means that we cannot 
approximate the MTP problem within any given approximat-
ion ratio (i.e., nonexistence of a polynomial time approxima-
tion scheme [1]) unless P = NP. However, it is solvable in 
polynomial time if the maximum graph degree is at most 3. 

In [5], it is showed that the MTP problem admits a (  ( 

 )  )-approximation algorithm when the maximum 

degree is at most 4, for any constant   , whereas the ((  

  )-non-approximability is shown in [2]. In [6], the k-

MSP problem (resp., MTP problem) admits a (k    )-

approximation algorithm (resp., (    )-approximation 

algorithm). Wang, Feng and Chen [9] gave an (


)-

time parameterized algorithm for the -MSP problem. 
For the weighted case, a weight is assigned to each edge 

of a complete graph of size t  3, the goal is to maximize the 
sum of edge weight selecting t vertex-disjoint triangles. 

Hassin and Rubinstein proposed a randomized ((    

)-approximation algorithm [7] for the weighted case. An 
improvement of their work is given in [8], the approximation 

algorithm achieves an expected ratio of  (  ). 
With respect to the constraint programming approach, an 

empirical comparison of three constraint models for the   
MTP problem is provided [10].  Additionally in [3], a branch 
and bound for the k-MSP problem is proposed. Recently, 
Bertsimas, Iancu and Katz [11] developed a pseudo-
polynomial time approximation algorithm for the k-MSP 

problem within an approximation ratio of k

  (k  1).  

Due to the APX-hardness of the MTP problem, work 
tackling the non-approximability within some approximation 
ratio can give us a better grasp of its approximability. 
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III. BASICS AND DEFINITIONS 

In this section, we give some definitions which are 
necessary for the better understanding of the two proposed 

heuristics. The set of vertices {v1, v2,, vn}V has a size n, 

while the triangles set {k1, k2,, km} K has a size m. The 
weight of a vertex vi represents the number of triangles to 

which vi belongs. These weights are called here i such that 

i{,, n}. Figure 1 gives an example of a graph G and 

vertex weights. The weight of a triangle kj  {vi, vg, vh} K, 

is the sum of its vertices weights vi, vg, vh V. We refer to the 

triangles weights as j such that j{,, m}. We say that 

two triangles kj and kj’ K overlap, if they share a common 

vertex kj  kj’  vi V. In Figure 1, the triangles k1 and k2 

overlap in v2. Moreover, the neighborhood degree j of a 

triangle kj K represents the number of triangles that overlap 
kj, called in [10] collision count. For example, the triangle k1 
has as a neighborhood degree value of 2 because it shares a 
vertex with k2 and k3. Table 1 gives the triangle weight and 
neighborhood degree for the same graph G. 

IV. OUR HEURISTICS 

Before describing the two proposed heuristics, we point 
out that each vertex of the input graph must belong to at least 
one triangle, without loss of generality. Moreover, in this 
study the outcomes of MTP instances are assessed regarding 
the number of obtained triangles, which means that the 
smallest gap between the optimal solution and the returned 
solution is better. We also pay attention to the computation 
time that it costs.  
 

 
 

Figure 1.  An example of a graph G and the vertex weights  

TABLE I.  TRIANGLE WEIGHT AND NEIGHBORHOOD DEGREE OF THE 

GRAPH G 

Triangle 

The triangles set K 

k1 v1 

v2 v3 

k2 v2 

v4 v5 

k3 v3 

v6 v7 

k4 v4 

v5 v7 

k5 v4 

v5 v6 

k6 v5 

v6 v7 

k7 v4 

v6 v7 

j 5 10 10 12 12 12 12 

j 2 5 5 4 4 4 4 

A. Local subtitution-based heuristic 

In this section, we explain the behavior of the first 
heuristic as illustrated in Algorithm 1.  

The algorithm starts by computing the neighborhood 

degree j for each triangle. The next step is to find the 

triangle with the smallest j value that is done with TriMin (). 
The motivation behind this is to select the triangles which 
outline the graph structure with the aim that the selection      
in the rest of the graph (i.e., the inner parts of the graph)    
will not generate couples and singletons. Algorithm 1 avoids 
selecting a triangle (i.e., Tmin) which overlaps with disjoint 
triangles neglecting a local optimality. For that MaxDisjoint 
() returns Neigh the maximum number of disjoint triangles 
which overlap with a certain triangle kj. Notice that the 
number returned by MaxDisjoint () is upper bounded by 3, 
that is because we cannot have 4 disjoint triangles which 
overlap a triangle. The final step is to remove the selected 
triangle(s) and its (their) neighborhood triangles with 
RemoveNeigh(). The process is repeated until there remains 

no triangles in .  
 
Algorithm 1 (Local substitution) 
Input: the graph G 
Output: a packing of triangles PT 

a)   K, PT , Neigh ; Tmin ; 

b) While (  ) 

c)     Calculate the neighborhood degree j for each   

d)     j{,, m}; 

e)    Tmin  TriMin (); 

f)    Neigh  MaxDisjoint (Tmin); 

g)         if (Neigh  )  PT  PT  Neigh,    \ Neigh,   
h)                                 RemoveNeigh (Neigh); 

i)                       else    PT  PT  Tmin,    \ Tmin,   
j)                                 RemoveNeigh (Tmin); 
k)   end while; 
l) return PT; 
m) end. 
  

To better understand the aforementioned heuristic we 
take the graph in Figure 1 as an example and we briefly 
outline its steps. First of all, the set of solution PT is 

initialized to  and  is initialized to K. After that k1 is 

assigned to Tmin, because it has the smallest j value and 
{k2, k3} to Neigh, this is due to the fact that k2 and k3 are 
disjoint and overlap k1. Finally, {k1, k2, k3, k4, k5, k6, k7} are 

removed from  and the algorithm returns PT {k2, k3}, 
which is one of the optimal solutions.  

B. The second heuristic 

The MTP problem for a graph G  (V, E) can be stated     

as an Integer Linear Program (ILP), like in (1) where B        

{, }
n  m

 is the vertex-triangle Belonging matrix. The 
columns of the matrix B contains exactly 3 ones, which 
means that the vertices representing the 3 non-zero values 

belong to the triangle (column). Let xk  1 if the kth triangle 

is selected in the returned solution,  otherwise. A surrogate 
relaxation of (1) is presented in (2).  

1  1  

 

2  2  

 
3  2  

 

4  4  

 
7  4  

 

5  4  

 
6  4  
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Detailed work on the multiple varieties of relaxations for 

the k-MSP problem is presented in [12]. In (1) a constraint is 
devoted to each vertex, whereas in (2) we attribute the vertex 

weight i to each constraint. Hence, a reformulation of the 
constraint-weighted ILP leads to (2) where the ILP is 
variable-weighted. The relaxed problem is reduced to the 
one-dimensional knapsack problem (1-KP) [1] where the 

items represent the triangles and the knapsack capacity is . 
In this case, the optimal solution for the 1-KP is to select the 
items in the increasing weight order, because all the items 
have 1 as profit value. The solution of the relaxed problem 
yields an upper-bound on the optimal solution of MTP 
problem. The following Algorithm 2 allows us to derive a 
feasible solution based on the relaxed solution. 

Before outlining the different steps of Algorithm 2, we 
define what a packing solution is. A packing solution exists 
if no triangle of a solution overlaps. Algorithm 2 takes as an 

input the graph G and the vector of weights  and . It starts 
by calling SolveILP (), which solves (2) in a linear time. 
After that, Algorithm 2 verifies whether the returned solution 
is a packing solution or not. In the negative case, it chooses 
the first encountered triangles, which overlaps and selects the 

one having the smallest triangle weight j value, maximizing 

the   j for future iterations, this is done with Intersect (). 
To avoid that the selected triangle in Step e intersects again, 
we attribute an exclusive penalty-weight to the neighborhood 
of the selected triangle via Penalty (). The penalty is a large 

integer value which is assigned to a triangle weight j 

without affecting its vertices weights i (i.e., not uniformly 
distributed to its vertices weights). This process is repeated 
until the returned solution is a packing solution and 
terminates. 

To illustrate Algorithm 2, let us consider the example in 
Figure 1. Algorithm 2 starts with X = {0, 0, 0, 0, 0, 0, 0}    

and  = 1 + 2 + 2 + 4 + 4 + 4 + 4 = 21. Step c returns X = 
{1, 1, 0, 0, 0, 0, 0}. Step d checks if the returned solution      
is a packing solution. A negative response is returned 
because k1 overlaps k2 in v2. Intersect () is called and returns 

k1 as the chosen triangle, due to 1  2. A penalty is attrib-
uted to each of k2 and k3 excluding them from the returned 
solution, because k2 and k3 are neighborhood triangles of     
k1. Algorithm 2 starts a second iteration and has as a result        
of Step c X = {1, 0, 0, 1, 0, 0, 0}. A positive response is retu- 

Algorithm 2 (relaxed ILP) 

Input: the graph G, the weight vectors  and  

Output: a packing of triangles X {, }
 m

 

a)   K, X {0}
m
; 

b)  Do  
c)    X = SolveILP (X, (2), , );  
d)            if (X is a packing)  goto step h; 

e)                    else Intersect (X , ); 

f)                           Penalty (X , );                               
g)  While (X is not a packing solution); 
h) return X; 
i) end. 

 
rned because k1 does not overlap k4. Algorithm 2 terminates 
and returns {k1, k4} which is another optimal solution for this 
example.  

V. COMPUTANTIONAL COMPARISON 

We now give some details of the experimental tests. We 
have implemented and tested the two aforementioned 
algorithms using different MTP instances and have 
compared their results to the solution returned by (1) via 
CPLEX 12.5 [14]. Due to the lack of benchmarks, the MTP 
instances are randomly generated in the following way: we 

start with a stable graph of size n, we fix a vertex vi V and 

chose randomly two other vertices vg and vh V, creating the 

triangle kj = {vi, vg, vh} K. We repeat this process until all 
vertices participate in at least one triangle. The size of the 
MTP instances are up to m = 4182 and n = 3000.  

All the tests are done on Intel® Core™ i7-2600 CPU 
(3.40 GHz, 3.70 GHz), with 16GB of RAM. Algorithm 1 
and Algorithm 2 are coded in the C Language. Table 2 
summarizes the number of returned solutions along with the 
computation times. In the columns tuples (2, 3), (4, 5) and (6, 
7) the number of returned triangles and the computation 
times of Algorithm 1, Algorithm 2 and CPLEX respectively 
are represented.  

From Table 2, we observe that Algorithm 1 outperforms 
Algorithm 2 regarding the returned packing solutions for all 
generated MTP instances. However, both are dominated by 
CPLEX outcomes. We highlight that we interrupted CPLEX 
resolution after 48 hours for the last two MTP instances.  
Regarding the computational times, Algorithm 1 needs little 
CPU time compared to Algorithm 2 but both are still 
polynomial. These two heuristics provide results relatively 
quickly and are more suitable for user interaction system 
applications. In this context, the systems must return a 
solution with a certain quality of the approximation in a 
small amount of time.  

We remark that the gap between the returned number of 
triangles by the two proposed heuristics and CPLEX 

solutions strongly depends on the order of the triangle set . 
Indeed, in the case when two triangles have the same weight 

value, the first in the triangle set  is chosen. This choice 
allows to have deterministic solutions, if it happens to run 
the two heuristics several times in a row. An improvement of 

the two heuristics will be to sort the triangle set  in such a 

way that the most promising triangle will be placed first in . 
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TABLE II.  THE OBTAINED RESULTS OF ALGORITHM 1, ALGORITHM 2 

AND CPLEX USING RANDOMLY GENERATED MTP INSTACES 

MTP 

Instances 

(vertices, 

triangles) 

The results and their Computation Times (CT) 

Algorithm 1 Algorithm 2 CPLEX 

Sol  
CT 

(sec) 
Sol 

CT 

(sec) 
Sol CT  

(600, 671) 135 0.073 131 0.16 167 
3.26 

(sec) 

(800, 834) 188 0.096 172 0.33 230 
19.2 

(sec) 

(850, 869) 194 0.12 186 0.48 240 
10.2 

(sec) 

(900, 978) 207 0.142 196 0.49 260 
11 

min 

(1000, 1050) 228 0.188 217 0.64 291 
9 

min 

(1000, 1132) 229 0.184 214 0.73 295 
11 

min 

(1100, 1152) 251 0.206 246 0.9 319 
10 

min 

(1150, 1225) 261 0.237 249 1 330 
132 
min 

(1200, 1280) 270 0.270 259 1.1 346 
101 

min 

(1400, 1495) 322 0.482 303 1.8 Interrupted 

(3000, 4182) 719 5.04 666 26.7 Interrupted 

Sol, sec and min represent solution, secondes and minutes respectivelly. 

VI. CONCLUSION AND FUTURE WORK 

In this work, we deal with the problem of finding the 
maximum number of unweighted vertex-disjoint triangles in 
an undirected graph G. The problem is well-known to be   
NP-hard and APX-hard. Two heuristics have been proposed 
for this problem. To investigate the heuristic’s performance, 
we provide a computational comparison of both of them       
to the CPLEX solution with randomly generated MTP 
instances. We have shown that the first heuristic outperforms 
the second regarding the obtained packing solutions and the 
respective computation times. 

As a perspective for future work, we plan to use other 
metrics to compute the triangles and vertices weight 
improving also the penalty process. We also project to 
compare the two proposed heuristics with other appro-
ximation algorithms and to consider the weighted case of the 
MTP problem. The main motivation behind this work is to 
use the obtained solution for the MTP problem to consider 
the disjoint 3-SC problem [13]. In the disjoint 3-SC problem 
the optimality is the minimum of sets within a collection C 
of size at most 3 which cover the population P. We expect to 

address the disjoint 3-MSC problem applied on a graph G  

(V, E) where the vertices set V is covered by the fewest 
number of 3-clique, 2-clique and 1-clique (a k-clique is a 
clique of size k) maximizing the 3-clique packing hopefully 
generating a cover with the fewest sets.  
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