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Abstract—In this paper, we propose a knowledge-based ap-
proach to support Sensor Web (SW) deployments in Informed
Virtual Geographic Environments (IVGE) using multi-agent
geo-simulation techniques. Sensor webs can be thought of as
distributed network systems composed of hundreds of nodes
deployed in geographic environments for in-situ sensing and
data acquisition purposes. The deployment of sensor webs is by
nature a spatial problem since nodes are highly constrained by
the geographic characteristics of their environment. Therefore,
there is a need for an efficient modelling paradigm to address
the issue of SW deployment while taking into consideration the
constraints of the geographic space and knowledge it provides
to support their autonomous decision making capabilities. The
proposed approach builds on top of our previous works on
Informed Virtual Geographic Environments. It also relies on
well-established theories on spatially reasoning agents and
on qualitative reasoning about geo-simulation results. The
applicability of our approach is illustrated using a scenario
of a sensor web deployment for weather monitoring purposes.

Keywords-Informed Virtual Geographic Environments; Sensor
Web; Geographic Deployment; Multi-Agent Geo-Simulation.

I. INTRODUCTION

Sensor Webs (SW) are distributed network systems com-
posed of hundreds of such sensor nodes [1] [2]. New
capabilities such as micro-sensing and in-situ sensing as
well as the wireless connection of these nodes open new
possibilities for applications in various domains such as
military, environment and disaster relief [3] [4]. The low
per-node cost and the shrinking size of microprocessors in
addition to the enhancement of their computation capaci-
ties, while decreasing their energy consumption, will allow
dense distribution of these wireless networks of sensors
and actuators [2]. SW can be thought of as a macro-
instrument concept that allows for the spatio-temporal un-
derstanding of phenomena which take place in geographic
environments through the coordinated efforts of a large
number of sensing nodes of different types [2]. However,
once SW are designed, the deployment of such complex
systems is a real challenge because of the complexity and
the large-scale of the geographic environment [4]. Sensor
web deployment is by nature a spatial problem since nodes
are highly constrained by the geographic characteristics of
the environment. Even if it is practical to evaluate research

on the real hardware platform, it may not be practical to
experiment in an appropriate environment. An example of
this are sensor webs which operate on glaciers, remote
wildlife habitats, volcanos, and other environments where
in-situ sensing techniques are required and with which it is
expensive or dangerous to experiment. Therefore, there is a
need for an efficient modelling paradigm to address the issue
of sensor webs deployment using actors representing sensor
nodes evolving in and interacting with a representation of
their geographic environment.

In order to address the above mentioned challenges,
we propose a knowledge-based multi-agent geo-simulation
approach to support the simulation of SW deployments in
informed VGEs. A critical step towards the simulation of
SW deployment is the creation of appropriate representa-
tions of the geographic space and of the sensors evolving
in it, in order to efficiently support the sensors’ spatio-
temporal reasoning capabilities (Figure 1). Moreover, a
VGE should provide sensor agents with knowledge about
the virtual environment in which they evolve and with
which they interact. A number of challenges arise when
creating knowledge about the environment, among which
we mention: 1) to represent knowledge using a standard
formalism; 2) to provide agents with tools and mechanisms
to allow them acquire knowledge about the environment; and
3) to infer and to predict based on premises and facts that
characterise the geographic environment in order to support
spatial agents’ decision-making. This approach builds on our
previous works on Informed Virtual Geographic Environ-
ments [5] [6] [7], on spatially reasoning agents [5] and on
qualitative reasoning about geo-simulation results [8].

The rest of the paper is organised as follows. Section
II presents related works on agent-based simulation tools
for Sensor Web. Section III presents our approach and
details its underlying components. Section IV illustrates our
framework through a SW deployment scenario for weather
monitoring purposes. Section V discusses the results and
concludes with our future works.
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Figure 1. Sensor Web Multi-Agent Geo-Simulation Layered Approach: Observation; Simulation; Decision-
Making; Action.

II. RELATED WORK

According to our literature review, architectures for the
management of sensor webs involving the Multi-Agent Geo-
simulation paradigm do not exist. However, a few research
projects have attempted to integrate the agent paradigm into
sensor web architectures such as IrisNet [9], Abacus [10],
Biswas and Phoha’s architecture [11], and SWAP [12].

Most of these architectures identify the need for dis-
tributed data collection and processing, and propose layered
architectures to achieve this. In Abacus different agents in
the processing layer detect and report alert conditions to a
higher layer interacting with users [10]. IrisNet uses agents
such as Sensor Agents (SA) and Sensor Organisers (SO)
to collect and analyze data from sensors to answer specific
classes of queries [9]. Biswas and Phoha’s approach uses
agents in the service layer to analyze data from sensors and
transfer it to the application layer [11]. All these approaches
deal with data collection by providing a distributed infras-
tructure for publishing, discovering and accessing sensor
resources. They also address the challenge of data fusion,
to some extent, and aim to provide end-users with the
information they need. These approaches share a common
objective through the use of the agent-paradigm which is the
distribution of tasks. However, these applications do not take
complete advantage of the multi-agent systems approach. In-
deed, they use reactive agents which are efficient for alerting
purposes, but are neither able to perform situated behaviors
nor autonomous decision-making. On the one hand, situated
behaviors include performing spatial reasoning and taking
advantage of the virtual environment’s description where
sensor agents are located. On the other hand, autonomous
decision-making includes managing sensor nodes in order
to efficiently cover the area of interest while taking into
account their limited capabilities as well as local spatial
characteristics. We think that, in order to achieve intel-
ligent and autonomous deployment of sensor webs, it is

essential to use a multi-agent geo-simulation approach in
which agents are endowed with advanced capabilities such
as perception, navigation, memory, and knowledge man-
agement. The knowledge management process includes the
following tasks: (1) to represent knowledge about geographic
environments using standard formalisms; (2) to allow spatial
agents to acquire knowledge about the environment; (3) to
allow agents to reason and to make decisions while taking
into account knowledge about geographic environments.

As the above-mentioned architectures do not address
the more challenging sensor web management issues, we
propose the knowledge-based multi-agent geo-simulation
model for the deployment of sensor webs in informed virtual
geographic environments.

III. A KNOWLEDGE-BASED MAGS APPROACH

The proposed approach (depicted in Figure 2) relies
on the Multi-Agent Geo-Simulation paradigm in order to
simulate the behaviour of a SW in a dynamic, complex,
and large-scale virtual geographic environment. Sensors are

Figure 2. The proposed knowledge-based multi-
agent geo-simulation model .
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modeled as intelligent agents embedded in a virtual space
where dynamic phenomena can occur. Sensor agents have
reasoning capabilities allowing them to reason about the
virtual space and to react to its dynamic phenomena. Spatio-
Temporal knowledge is used for two main purposes. First,
it is used during the geo-simulation to support agents rea-
soning capabilities. Second, it is used to analyze the results
of the geo-simulation and to offer decision support to users.
Finally, the results of the geo-simulation (which are inserted
as facts in the Result Facts Base) are analyzed in order to
offer decision support. In the following, we present these
components.

Figure 3. An example of the semantic type
hierarchy of agent archetypes.

A. Multi-Agent Geo-Simulation

The idea behind the agent-based simulation approach is to
move the most intensive processing out of the Physical Sen-
sor Web (PSW) into a parallel Virtual Sensor Web (VSW)
operating on a base station or a remote server. The objective
is to reproduce, in a realistic manner, the real world in a vir-
tual environment. Indeed, in this virtual environment, which
imposes no limits on data processing, energy consumption
and communication capabilities, it is possible to create a
system for the deployment of the physical sensor web. In
order to faithfully mimic the physical sensor web deployed
in the area of interest, we need to simulate, in a realistic
way, the physical sensor nodes as well as the geographic
environment where they are located. Physical sensor web
are represented in the virtual environment using software
agents. An agent is a program with domain knowledge,
goals and actions. An agent can observe and sense its
environment as well as affect it. Agents’ capabilities may
include (quasi-) autonomy, perception, reasoning, assessing,
understanding, learning, goal processing, and goal-directed
knowledge processing. The reproduction of the geographic
environment in which physical sensor nodes are deployed is
based on reliable data obtained from Geographic Information
Systems (GIS). The concept of Multi-Agent Geo-Simulation
(MAGS) evolves from such type of simulations involving

software spatial agents immersed in a virtual geographic
environment.

B. Spatio-Temporal Knowledge

As we mentioned so far, spatio-temporal knowledge is
used in our approach 1) to support agents decision making
during the geo-simulation and 2) to analyze the results
of the geo-simulation in order to offer decision support.
In the following we respectively present the representation
formalism and the categories of spatio-temporal knowledge
used in the proposed approach.

1) Representation formalism: We use Conceptual Graphs
(CGS) to represent spatio-temporal knowledge and to sup-
port spatio-temporal reasoning. CGs were introduced by
Sowa [13] as a system of logic based on Peirce’s existential
graphs and semantic networks of artificial intelligence. They
provide extensible means to capture and represent the se-
mantic of real-world knowledge and have been implemented
in a variety of projects for information retrieval, database
design, expert systems, qualitative simulations, and natural
language processing. However, their application to dynamic
geographic spaces modeling and analyzing is an innovative
issue. More details about CGs and their theoretical founda-
tions can be found in [13], among others.

Syntactically, a conceptual graph is a network of concept
nodes linked by relation nodes. Concept nodes are repre-
sented by the notation [Concept Type: Concept Instance]
and relation nodes by (Relationship-Name). The formalism
can be represented in either graphical or character-based
notations. In the graphical notation, concepts are represented
by rectangles, relations by circles and the links between
concepts and relation nodes by arrows. The character-based
notation (or linear form) is more compact than the graphical
one and uses square brackets instead of boxes and parenthe-
ses instead of circles. Some examples are presented in the
following sub-section.

2) Knowledge Categories: We distinguish three levels of
spatio-temporal knowledge: 1) Knowledge about the envi-
ronment, 2) Knowledge about actors and their behaviours
and 3) knowledge about the application domain (Figure 2)

• Knowledge about the environment: We define the
notion of knowledge about the environment (Environ-
ment Knowledge (EK) for short) as a specification of
a conceptualization of the environment characteristics.
Hence, EK is a description of the spatial concepts
(geographic features) and relationships (topologic, se-
mantic) that may exist in a geographic environment.
In multi-agent geo-simulation, EK is a specification
used for enabling knowledge exploitation for spatial
agents. Practically, EK is an agreement to use spatial
concepts (i.e., ask queries and make assertions), spatial
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(a) (b) (c)

Figure 4. Specification of rules using the Prolog+CG syntax.

relationships (i.e., describe actions and behaviors), in a
way that is consistent so we can share knowledge with
and among spatial agents. Our aim is to improve the
perception-decision-action loop on which relies most of
the existing agents’ models.

• Knowledge about Actors and Behaviours
Archetypes: Dealing with the specification of
agents’ attributes and associated spatial behaviors may
be complex and time and effort consuming. Agents’
characterization aims to specify: the agent archetype,
its super-types and sub-types according to the semantic
type hierarchy; and the behavior archetype that an
agent archetype is allowed to perform within the
informed VGE. Figure 3 shows an example of a
semantic type hierarchy of agent archetypes. Entity is
an abstract node and Storm, River, Building and Sensor
are instance nodes (leaves) of this agent archetype
lattice. A key characteristic of agent archetype is
inheritance. Agents belonging to one or several agent
archetypes inherit the characteristics associates with
these agent archetypes.
For example, let us consider two agent archetypes
Temp-sensor and Press-sensor respectively sensing
temperature and pressure. The Temp-sensor is charac-
terised by a measurement frequency f. On the other
hand, Press-sensor is characterised by a one meter
circular sensing field. Consider now TP-sensor a multi-
functional sensor which inherits from Temp-sensor and
Press-sensor. Thanks to the inheritance property pro-
vided by agent archetypes, this agent performs mea-
surements at a frequency f within a circular sensing area
of one meter. Since our research addresses the simula-
tion of spatial behaviors, it has been influenced by some
basic tenets of active theory [14]. In particular, our
approach to manage environment knowledge rests on
the commitments in active theory that: (1) activities are
directed toward objects, zones, or actors; (2) activities
are hierarchically structure; and (3) activities capture
some context-dependence of the meaning of informa-
tion. Theoretically, the common philosophy between
our knowledge-based approach and activity theory is a
view of the geographic environment from the perspec-
tive of an agent interacting with it [18]. Practically, the
most important borrowings from activity theory are the

idea that [15]: (1) the semantic of behaviors and objects
are inseparable; and (2) behaviors, objects, as well as
agents are hierarchically structured. Let us define the
following behavior archetypes that we associate with
the Sensor agent archetype as follows: (a) ”an agent
*m which is a sensor measures an object *c which is a
phenomenon with a frequency *f ” (See Figure 4(a)); (2)
”an agent *m which is a sensor measures an object *c
which is a measurement of unit *u” (See Figure 4(b)).
Since the above description is equal or more specific
than the antecedent of the following behaviour, it can
be inferred, by deduction, as shown in Figure 4(c).

• Knowledge about the Application Domain: The
above mentioned levels of knowledge are used during
the geo-simulation to support agents in their decision
making. In contrast, knowledge about the application
domain is mainly used to qualitatively analyze the
results of the geo-simulation and is thus more linked
to decision support. In the context of SW deployment,
nodes are aimed to collect measurements about phe-
nomena of interest which vary according to the applica-
tion domain (military, environmental surveillance, etc.).
Knowledge about the application domain defines phe-
nomena of interest in a particular application domain.
In our approach, we use the concept of spatio-temporal
situations [19] to model and reason about phenomena of
interest. A spatio-temporal situation represents a state,
an event or a process situated in space and time and
involving various objects of the world. Examples of
spatio-temporal situations can be a sensor which brake
down for a certain period of time at a certain spatial
area (state), the start of rain in certain spatial area
(punctual event) or a durative heavy rain in a given area
(process). A spatio-temporal situation has a semantic
type (rain, network breakdown, etc.), a start and end
times and is located in space. Knowledge about the
application domain defines spatio-temporal situations
of interest according to their temporal (state, punctual
event or durative process) and semantic characteristics.
For example, the semantic punctual event ”Start of rain”
can be defined as the fact of water level exceeding a
given threshold. Relationships between spatio-temporal
situations (temporal and spatial) are also specified in the
application domain knowledge, which enables defining
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(a) (b) (c) (d) (e)

Figure 5. Various geometric and semantic layers related to the Montmorency experimental forest, St.Lawrence
Region, Quebec, Canada: (a) and (b) two types of vegetation characterizing the land cover; (b) water resources
including rivers and lakes; and (b) road network

complex phenomena. For example, a situation of storm
can be defined as a situation of heavy rain followed by
/ accompanied with a situation of strong wind.

C. Decision support

The decision support component analyzes the result of the
geo-simulation using application domain knowledge in order
to identify situations of interest to the user. This data analysis
process is implemented using the approach proposed in [19].
Details of this approach are beyond the scope of this paper.
We only illustrate the principle using the simple example
showed in Figure 6. In this example, the situation of interest

Figure 6. An example of a simulation result
analysis and processing

is Flood. The application domain knowledge specifies that

there is a flood situation if the water-level exceeds 0,15
meter. Otherwise, there is no flood situation. The decision
support component uses this knowledge in order to analyze
the facts collected by agents during the simulation (Result
Facts Base). Particularly, the two facts illustrated in Fig. 3
are respectively interpreted as the start of flood in (Area A,
t= 14:35) and the end of flood in (Area A, 22:12) (punctual
events). Finally, start and end flood situations are used to
identify the flood situation itself as a process located in
Area A during the time interval [14:35, 22:12]. Obviously,
detection of real complex situations requires taking into
consideration other aspects (measurement errors, conflict of
measurements between several sensors, etc.) that are beyond
the scope of this paper.

IV. EXPERIMENTAL RESULTS

In order to illustrate our knowledge-based multi-agent
geo-simulation framework, we propose to simulate a sensor
web deployed in an IVGE representing the experimental
forest of Montmorency (Quebec, Canada) for weather mon-
itoring purposes (Fig. 4 and Fig. 5). This scenario shows
how agents adapt their spatial behaviors with respect to
knowledge they acquire from the IVGE using our environ-
ment knowledge management along with their perception
capabilities. The objective of the simulated sensor web is
to identify and monitor a simulated storm evolving in the
IVGE. In order to reason about knowledge, we used a
platform to deal with CGs manipulation called Amine [20].
Amine platform provides a pattern-matching and rule based
programming paradigm embedded in Prolog+CG language
which is basically an object-oriented and conceptual graphs-
based extension of Prolog language.

A few agent archetypes representing different kinds of
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(a) (b) (c)

Figure 7. IVGE representing the Montmorency experimental forest; (a) the 2.5D triangulated elevation map; (b)
the semantic maps; and (c) the 3D unified map

(a) (b) (c) (d)

Figure 8. Simulation results: (a) WeatherZone agents covering the monitored geographic area; (b) the simulated
sensors autonomously reaching their deployment position in the IVGE. The blue circle corresponds to the
perception field for active sensors; and (c)

sensors are involved in this scenario. These sensors are
first randomly deployed in the IVGE. Then, each sensor
computes a path in order to reach its deployment posi-
tion while taking into account the geographic environment
characteristics. When sensors reach their final destinations,
some of them stay active while other switch to idle in order
to preserve the overall energy of the sensor web. Active
sensors make measurements at a frequency f in order to
monitor weather conditions. Active and idle sensors as well
as the measurement frequency are specified in the simulation
scenario created by the MAGS’s user.

The simulated storm appears after a time frame t from the
beginning of the simulation. If an active sensor perceives the
storm agent, it directly accesses to its properties and extracts
the information that it monitors depending on its kind of
sensor, i.e. temperature, pressure, wind speed and direction,
or humidity. If a difference above a certain threshold ∆ is

observed, the sensor proceeds as follows: (1) it accelerates its
measurements frequency, (2) it adds a a new fact that keeps
track of the event with its timestamp in the Result Facts
Base; and (3) it sends a message to weak up idle all sensors
of the same kind which are situated in a certain estimated
distance. As the simulation time goes by and the storm
agent evolves in the IVGE, most of initially idle sensors
become active to sense the observed phenomenon. When
the storm agent is out of the perception field of the sensor,
this latter senses a new difference between the past and the
current measurement. It notifies the Result Facts Base by
adding a new fact that keeps track of the new event with its
timestamp; Idle and active sensors switch states in order to
preserve their energy. In order to model the simulation de-
scribed above, let us first consider the two agent archetypes
ZONE and SENSOR. In contrast with the ZONE agent
archetype, which represents a geographic area, the SEN-
SOR agent archetype is associated with individual sensors
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(a) (b) (c)

Figure 9. Behaviour archetypes expressed using the linear notation of Conceptual Graphs (CGs).

deployed in the informed virtual geographic environment.
Let us consider the two agent sub-types WEATHERZONE
and STORMZONE. Agents of type WEATHERZONE are
stationary and represent meteorological conditions within the
geographic area they cover. 5 instances of WEATHERZONE
are created in order to approximately cover the monitored
area (Fig. 6). In addition to their geometric characteristics,
these agents encompass attributes which characterize the
meteorological conditions such as temperature = 18 ◦C,
pressure = 1010 hPa, humidity = 30When a sensor detects a
difference above the threshold, it adds a fact in the Results
Facts Base using the CGs formalism. Consider the following
example involving the sensortemp1 adding a fact describing
an observed difference of temperature measurement of value
18 at cell 367 at 15h : 34 : 22 (See Figure 9(a)).

Let us now define the following sub-types of SEN-
SOR archetype: TEMPSENSOR for temperature measure-
ment, PRESSENSOR for atmospheric pressure measure-
ment, WINDSENSOR for wind speed and orientation mea-
surement, and HUMISENSOR for humidity measurement
(Figure 8). In this scenario, the situation of interest is the
storm. Let us suppose that we need to describe the evolution
of the storm during the geo-simulation for decision support
purposes. Knowledge about the application domain allows
specifying how the presence of a storm phenomenon can be
detected in a certain area.

For simplification, let us consider the following (Pro-
log+CG) rule specifying that a storm is detected at time
T in area A if there are (in the results facts base) facts
describing that temperature exceeds 20 ◦C and wind speed
exceeds 30km/h at the same time T and the same area
A (See Figure 9(b) and Figure 9(c)). A storm detection
event is triggered as soon as the conjunction of these two
facts exists within the result facts base. The analysis of
the simulation results conceptualize this event using the
knowledge associated with the situation description shown
in Figure 9.

V. CONCLUSION AND PERSPECTIVES

Our environment knowledge management approach is
original at various aspects. First, a multi-agent geo-
simulation model which integrates an informed virtual geo-
graphic environment populated with spatial agents capable

of acquiring and reasoning about environment knowledge
does not exist. Second, a formal representation of knowl-
edge about the environment using CGs which leverages a
semantically-enriched description of the virtual geographic
environment has not yet been proposed. Third, providing
agent with the capability to reason about a contextualized
description of their virtual environment and phenomenon oc-
curring within it during the simulation is also an innovation
that characterizes our approach. We are currently working on
the automated assessment of different simulation scenarios
for sensor web deployment using our qualitative knowledge
processing and analysis module. Indeed, users usually need
to analyze and compare various scenarios in order to make
informed decisions. This task may be complex and effort
and time consuming. However, since our framework already
supports the analysis of the multi-agent simulation results,
it is easy to extend it to automatically assess scenarios.

ACKNOWLEDGEMENT

This research was supported in part by the Grant in Aid
provided by the University of Minnesota. The author would
like to thank the reviewers for their valuable comments.

REFERENCES

[1] C.-H. Park, J. Cho, and D.-H. Kim, “Sensor web for support-
ing mobility in sensor networks,” in Computer Applications
for Web, Human Computer Interaction, Signal and Image
Processing, and Pattern Recognition, ser. Communications
in Computer and Information Science, T.-h. Kim, S. Mo-
hammed, C. Ramos, J. Abawajy, B.-H. Kang, and D. Slezak,
Eds. Springer Berlin Heidelberg, 2012, vol. 342, pp. 203–
208.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: A survey,” IEEE Communication
Magazine, vol. 40, no. 8, pp. 102–114, 2002.

[3] M. Bogdanovic, N. Veljkovic, and L. Stoimenov, “Spatial
sensor web for the prediction of electric power supply system
behaviour,” in Bridging the Geographic Information Sci-
ences, ser. Lecture Notes in Geoinformation and Cartography,
J. Gensel, D. Josselin, and D. Vandenbroucke, Eds. Springer
Berlin Heidelberg, 2012, pp. 81–98.

[4] M. Mekni and P. A. Graniero, “A multiagent geosimulation
approach for intelligent sensor web management,” IJDSN, vol.
2010, pp. 10–26, 2010.

230Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology



[5] M. Mekni, N. Jabeur, and B. Moulin, “A generic model
for situated holonic multi-agent systems: A case study on
sensor web management,” in MDAI 2008: Proceedings of
5th International Conference on Modelling Decisions for
Artificial Intelligence, Sabadell, Spain, October 2008, pp. 35–
46.

[6] M. Mekni, “Abstraction of informed virtual geographic envi-
ronments,” Geo-spatial Information Science, vol. 15, no. 1,
pp. 27–36, 2012.

[7] M. Mekni and B. Moulin, “A multi-agent geosimulation
approach for sensor web management,” in Proceedings of the
2008 Second International Conference on Sensor Technolo-
gies and Applications, ser. SENSORCOMM ’08. Washing-
ton, DC, USA: IEEE Computer Society, 2008, pp. 129–134.

[8] H. Haddad and B. Moulin, “An agent-based geosimulation
multidisciplinary approach to support scenarios evaluation in
dynamic virtual geographic environments,” in Proceedings of
the 2008 Spring simulation multiconference, ser. SpringSim
’08. San Diego, CA, USA: Society for Computer Simulation
International, 2008, pp. 53–60.

[9] P. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Srinivasan, “Iris-
net: an architecture for a worldwide sensor web,” Pervasive
Computing, IEEE, vol. 2, no. 4, pp. 22–33, 2003, 1536-1268.

[10] I. Athanasiadis, M. Milis, P. Mitkas, and S. Michaelides,
“Abacus: A multi-agent system for meteorological radar data
management and decision support,” in ISESS’05: Proceedings
of the Sixth International Symposium on Environmental Soft-
ware Systems, E. Jakeman & D.A. Swayne, Ed., Sesimbra,
Portugal, 2005.

[11] P. Biswas and S. Phoha, “A middleware-driven architecture
for information dissemination in distributed sensor networks,”
in Sensor Networks and Information Processing Conference,
2004, pp. 605–610.

[12] D. Moodley and I. Simonis, “New architecture for the sensor
web: the swap framework,” in ISWC 2006: 5th International
Semantic Web Conference, Athens, GA, USA, 2006, p. 17.

[13] J. Sowa, Knowledge Representation: Logical, Philosophical,
and Computational Foundations. Course Technology, August
1999.

[14] V. Kaptelinin, B. A. Nardi, and C. Macaulay, “Methods &
tools: The activity checklist: a tool for representing the space
of context,” interactions, vol. 6, no. 4, pp. 27–39, Jul. 1999.

[15] B. Nardi, Context and Consciousness: Activity Theory and
Human-Computer Interaction. Mit Press.

231Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology


	Introduction
	Related Work
	A Knowledge-Based MAGS Approach
	Multi-Agent Geo-Simulation
	Spatio-Temporal Knowledge
	Representation formalism
	Knowledge Categories

	Decision support

	Experimental Results
	Conclusion and perspectives
	References

