

A Simple M2M Overlay Entity Discovery Protocol

Teemu Väisänen

VTT Technical Research Centre of Finland, Oulu, Finland

Teemu.Vaisanen @ vtt.fi

Abstract—This paper deals with discovering M2M overlay

entities in Machine-to-Machine (M2M) service networks. The

eXtensible Messaging and Presence Protocol (XMPP) is used as

a basic building block for the M2M communication. XMPP

does not offer mechanisms for discovering unknown entities

from unknown contacts, and this paper’s goal is to provide a

protocol enabling this. The presented protocol does this by

using asynchronous remote procedure calls (RPCs), unicast

messages and friend-to-friend type of communication. The

paper proposes new XMPP subscription statuses to enable

exchange of roster items in the M2M overlay entity discovery

protocol without compromising privacy, and presents the

protocol for discovering unknown M2M overlay entities from

unknown M2M overlay entities.

Keywords - distributed systems, service discovery, privacy

I. INTRODUCTION

Machine-to-machine (M2M) is a buzzword meaning a
bagful of technologies that allow devices to communicate
with one another using different communication channels.
Terms such as M2M, Internet of Things (IoT), Smart Objects
(SO), and Web of Objects basically all mean the same,
including e.g., remote management of devices. Technologies
used commonly in M2M include at least naming and
identification of entities, service discovery (SD), security
services such as authentication, and communication
technologies. End-to-end M2M communication can be
established with one or more protocol conversion gateways
running between the actual M2M devices, but the trend is to
build systems where end-to-end communication is possible
for example using IPv6 [1]. Overlay networks in M2M are
sometimes called middleware and they are often used on top
of other networks to make naming easier, to improve routing,
and/or to improve Quality-of-Service (QoS). In M2M service
networks, a SD protocol can be thought of as a
comprehensive discovery protocol including at least
functionalities of M2M device, overlay entity and service
discovery mechanisms, and mechanisms for selecting
discovered M2M services that are to be used. The selection
can be based on discovery order, location, etc.

The M2M service network presented in this paper is
based on the eXtensible Messaging and Presence Protocol
(XMPP) [2]. M2M overlay entities are identified as XMPP
Jabber Identifiers (JIDs) running in XMPP clients. M2M
services are running in M2M overlay entities. XMPP’s SD
mechanisms do not offer the possibility for discovering
unknown overlay entities from unknown rosters, which is
discussed more in details in Section II. The protocol
presented in this paper provides a solution to this problem.

Later in this paper this M2M overlay entity discovery
protocol is called only service discovery (SD) protocol.

The rest of this paper is organized as follows: Section II
gives information about XMPP and existing related SD
protocols, Section III introduces the main contribution, the
SD protocol and how XMPP is used, Section IV gives
evaluation and presents some of the use cases, which were
used to test the protocol, while Section V concludes the
paper and gives proposals for future work.

II. RELATED WORK

XMPP is a set of open XML technologies for presence
and real-time communication. It is continuously extended
through the standardization process of XMPP Standards
Foundation. XMPP was originally created for near-real-time
messaging, presence, and request-response services [3][4],
but it has been used to build e.g., Smart Grids [5], M2M
architectures [6][7], and sensor networks [8]-[13].

XMPP offers built-in publish-subscribe (“pubsub”)
functionality [14], so polling is not necessarily required
between clients and services. The specification of pubsub is
long, but the idea is simple: 1) An entity publishes
information to a node at pubsub service, and 2) the pubsub
service pushes a notification to all entities that are authorized
to learn about the published information.

XMPP uses Transport Layer Security (TLS) to secure
server-to-server and client-to-server connections [2] and
offers end-to-end signing and object encryption [15]. In
addition to these, security extensions exist or are proposed,
including e.g., privacy [16]. XMPP is distributed; anyone can
have their own servers with several clients. Client-server
architecture commonly enables connectivity through
firewalls, because clients initiate sessions. XEPs such as
[17][18] exist to help with firewalls.

XMPP has four presence subscription statuses. In ‘none’
state the user does not have a subscription to the contact's
presence information, and the contact does not have a
subscription to the user's presence information. In other
words, you are not interested in the item's presence, and the
item is not interested in yours. In ‘to’ state the user has a
subscription to the contact's presence information, but the
contact does not have a subscription to the user's presence
information. In ‘from’ state the contact has a subscription to
the user's presence information, but the user does not have a
subscription to the contact's presence information. In ‘both’
state both the user and the contact have subscriptions to each
other's presence information [2]. These statuses do not tell
anything about how (if at all) your presence information
should be told by your contacts to their contacts or contacts

14Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

unknown to you and/or to your contacts. This paper
discusses how these kinds of situations with existing XMPP
statuses should be handled and how new presence
subscription statuses could be used to improve privacy
wishes.

XMPP creates long-lived sessions between
communicating entities. Sessions might shut down because
of many reasons and repeating session initialization might be
problematic and/or slow. XMPP uses XML stanzas, and
XML parsers may become a bottleneck in embedded devices
and in networks that have limited bandwidth capabilities.
However, Binary XML might become more common in the
future: XMPP is presented as one use case in WC3’s XML
Binary Characterization Use Cases [19] and it has been
proposed to be used with Efficient XML Interchange (EXI)
[20]. If XMPP is used in mobile devices in the same way as
in PCs with fixed power, problems such as battery running
out will certainly arise. Because of this, an extension
providing knowledge of mobile handset behavior has been
described [21]. In addition, other XEPs to decrease
bandwidth exist, e.g., Stream Compression [22]. Although
XML takes resources, the smallest interoperable XMPP
client implementations work in embedded devices such as
sensors [8]-[13], and there are client and server
implementations for mobile phones.

XMPP has two different types of SD protocols [23][24].
In the basic XMPP SD protocol [23] entities are servers,
clients or gateways. The protocol provides methods for 1)
discovering entities (disco#items) and for 2) discovering
features supported by a given entity (disco#info). An XMPP
client knows at least one other entity, its server. The client is
able to discover services (multi-user chatrooms (MUC) [25],
pubsub, etc.) offered by the server and features that are
supported in those services. XMPP’s serverless messaging
specification [24] defines mechanisms that enable working
without servers, e.g., in body area networks, or LANs:
Principles of zero-configuration networking (Zeroconf) [26]
are used. Zeroconf uses multicast DNS (mDNS) [27] and
DNS-Based Service Discovery (DNS-SD) [28]. In XMPP
roster item exchange can be done e.g., with service
administration [29] or roster-item exchange [30].

In social networks, discovery protocols have been used
for finding friends, groups, links, etc. “Google’s Search plus
Your World” (earlier “Google Social Search”) [31] has
features that allow your friends to affect your search results.
The SD presented in this paper lets the XMPP client
answering the SD request to build the answer. Facebook
social search [32] includes information about the frequency
of clicks on the search results by members of the social
network who are within a predetermined degree of separation
from the member who submitted the request. This degree can
be compared to a hop limit in the presented SD protocol.

III. THE SD PROTOCOL

This section presents the main contribution of this paper,
the SD protocol. The purpose of the SD protocol is to
discover M2M overlay entities from unknown M2M overlay
entities without compromising privacy. Protocol must work
without centralized naming services, which keep track of

M2M overlay entities, it must not broadcast huge amount of
messages and flood the network, and it must work over
XMPP, but also in XMPP clients without support for service
administration [29] or roster-item exchange [30]. This paper
presents a SD protocol that meets these requirements, using
ideas coming from the following real life examples:

A tap in Eemil’s bathroom has started to leak and has
caused moisture problems in the bathroom. Eemil wants to
find a person who could fix these problems. If he already
knows someone who has fixed bathrooms or taps before, he
will probably ask these people to help first. If Eemil does not
know anyone who is able to fix his bathroom, he might ask
from his friends if anyone has a friend who has fixed
bathrooms before. If one of his friends knows such a person,
it is likely that he or she gives this information to Eemil. If
none of Eemil’s friends know such a person, they can ask
from their friends. If any of Eemil’s friends’ friends know
such people, they can send this information directly to Eemil
(if Eemil’s friends have told who is the original requester), or
to the last requester (Eemil’s friend who asked it) and they
can forward the reply to Eemil. When thinking the example
further, Eemil can select friends from whom he wants to ask
the fixer. If Eemil thinks that some of his friends should
certainly know about people working with bathroom fixing,
or that some of his friends know more people than an
average person, he will probably ask from them first.

Based on this real life example and to enable discovering
unknown entities from unknown M2M overlay entities, the
hop limit was selected to be two. Hop limit is analyzed in
Section IV.

XMPP offers basic building blocks listed in Section II,
such as message transmission, naming of M2M overlay
entities (nodeid@domainid/resourceid) and rosters, for the
protocol. In used M2M service network, every XMPP JID in
XMPP client has its own private roster, which is called a
private M2M overlay. Rosters are stored to XMPP servers.
XMPP servers can be clustered. Roster includes other XMPP
JIDs. The overlay can be constructed in several ways: by
adding roster items after registration, using different
presence subscription statuses [2], or accepting all XMPP
client subscriptions from the XMPP server it is registered to.
These are mainly implementation and configuration issues.
MUC [25] rooms can be thought of as second type of a M2M
overlay. Describing usage of MUCs in the SD protocol is out
of the scope of this paper. A M2M device runs one or more
XMPP clients. An XMPP client has one or more JIDs
registered, which can be registered to one or more XMPP
servers.

The following list contains required features of a M2M
overlay entity, which are not offered by XMPP:
1. The entity can ask from its contacts to parse a string

presenting the wanted M2M overlay entity name.
2. The entity can forward the parsing request to its

contacts.
3. If the entity finds a wanted string from its roster list, and

contacts in the answer accept forwarding their
information, the entity answers to the requester, who
might be the original requester or forwarder of the
parsing request.

15Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

4. The entity can parse rosters with additional information
such as reputation.

The SD protocol works at the application layer inside an
XMPP client implementation. It can be categorized as a
unicast protocol, as it sends direct discovery messages to
known receivers. Its purpose is to discover M2M overlay
entities presented as JIDs.

Our proposal is that when using XMPP’s four existing
presence subscription statuses “none”, “from”, “to”, and
“both”, by default the entities should not advertise the
existence or the presence of one another to anyone else.

Because some, but not all, M2M overlay entities or their
owners might want to share their JIDs to unknown entities,
there is a need for new XMPP presence subscription statuses.
They could be such that the entity replying to a SD request
knows if the JID in the answer allows giving its name to
other entities. At least the following new additional presence
subscription statuses to XMPP are needed:

subscription=’from-anyone’: This means the same as the
XMPP state ‘from’ but also that your contact can advertise
you and your presence information to anyone. Notice that
this does not mean that anyone who tries to subscribe to your
presence information is necessarily accepted by you.

subscription=’from-contacts’: This means the same as the
state ‘from’, but also that your contact can advertise you and
your presence to any of her contacts.

subscription=’both-anyone’: You and the contact are
interested in each other’s presence information and can
advertise it to anyone.

subscription=’both-contacts’: You and the contact are
interested in each other’s presence information and can
advertise it to your own and your contact’s contacts.

Adding more new subscription statuses such as
advertising presence only to certain server is possible, and
instead of using new subscription statuses, new fields can be
used to tell about these privacy wishes.

The SD protocol uses one-way RPC. It is a variant of
asynchronous RPC in which the client continues
immediately after sending the request to the server without
waiting for the server’s acknowledgement [33]. The SD
protocol messages are formatted as JSON-RPC [34]. JSON-
RPC is a remote procedure call protocol following the same
principles as XML-RPC [35]. JSON-RPC’s “notification”
provided asynchronous RPC for the SD protocol.
Notification is a special request which does not have a
response, it has same properties as request object except the
id must be null. In the prototype, the SD messages are
transmitted and processed as XMPP Instant Messaging (IM)
messages in XMPP clients.

Some XMPP clients might have service administration
[29] or roster-item exchange [30] support, and they can be
used with the SD protocol. For instance, if there is an entity
authorized to get all rosters from the server, it can give more
comprehensive answers for queries.

The SD protocol’s JSON-RPC messages’ params field
has to include at least information about the searched string.
A forwardedParseRoster method call’s params field includes
also information about the original sender. This enables
XMPP clients to reply directly to the original parseRoster

message sender. Examples of JSON-RPC formatted
notification messages are presented in Table 1.

TABLE 1. JSON-RPC FORMATTED NOTIFICATION MESSAGES

{“method”: “parseRoster”, “params”: [{“value”: “weather”}], “id”:

null}

{“method”: “forwardedParseRoster”, “params”: [{“value”: “weather”,

“originalsender”: “tempsensor.313@vtt.fi/kaitovayla1”}], “id”:

null}

{“method”: “reply”, params”: [{“value”: weatherservice@vtt.fi”}],

“id”: null}

In a pseudo code, the SD protocol works as presented in
Table 2.

TABLE 2. THE SD PROTOCOL IN PSEUDO CODE

STRING wanted_service;

XMPP ROSTER own_roster;

JSON-RPC MESSAGES parseRoster, forwardedParseRoster, reply;

IF (own_roster includes wanted_service) Service is discovered;

ELSE Send parseRoster request to selected contacts in own_roster;

IF (proper reply is received) {

IF (reply includes wanted_service) Service is discovered;

}

IF(proper parseRoster function request is received) {

IF (own_roster includes wanted_service) Service is discovered

and reply is sent to the requester.

ELSE Send forwardedParseRoster request to selected contacts in

own_roster;

}

IF (proper forwardedParseRoster function request is received) {

IF (own_roster includes wanted_service) Service is discovered

and reply is sent to the original requester;

}

IV. EVALUATION

The SD protocol was tested in different use cases with 1-
3 modified XMPP clients. Each client had 1-3 XMPP
accounts (JIDs) registered to 1-3 XMPP servers. Three
unmodified XMPP clients were used for debugging.

A. Hop limit

This section presents two use cases used to test the SD
protocol and to get information about the hop limit. Figures
1-2 present use cases, where users A, B, C, D, and E are
M2M overlay entities, and boxes next to them represent
contacts in their rosters. Each JID has their own different
M2M overlay (JIDs in their roster).

Figure 1. E tries to find C, hop limit is unlimited.

16Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Figure 1 presents an example, in which E tries to find C,
or a string that is in C’s JID.
1. E sends a roster parsing requests to its contacts A

(1a) and D (1b). It could be possible to send them
only to the ones who are currently available, not
e.g., in Do-Not-Disturb (DND) status.

2. A and D parse their own rosters. A’s roster matches
and it sends a reply (2a) to E. A and B have already
done a presence subscription. Same way D checks
its roster and it does not find C. It forwards the
request to its contacts A (2b) and B (2c), except E,
who is the original requester.

3. B receives the request from D, it parses its own
roster, match is found, and it replies to E. The reply
includes B’s parsed roster and information about C.
At this point B could also subscribe to E, and/or
exchange roster item [30]. At the same time E
already subscribes to C (3a), because it got
information about C from A (2a).

Optimizing the hop limit is a complex problem. Using
unlimited hop limit was not possible because without proper
timeouts it can flood the network and jam devices. One
requirement was that the protocol must be able to discover
unknown entities from unknown M2M overlay entities. This
means that the hop limit must be at least two. If the hop limit
is one, the protocol enables discovering unknown entities
only from known M2M overlay entities (your contacts).

If thinking about real world, sharing things with or
borrowing them to your friends is usually ok. Section III
presented an example of Eemil finding a fixer, in which a
maximum of two hops was used. Then again, two hops
might be too much because borrowing things to or sharing
them with friends of you friends might be something most
people do not want to do.

When moving these thoughts of human behavior from
real-life to M2M and to the SD protocol, it was decided that
a limit of two hops would be used: If a wanted M2M overlay
entity is not found from contacts, the entity can ask it from
its contacts (the first hop). If contacts do not know it, they
can forward a message to ask the wanted entity from their
contacts (the second hop). If they do not know it, the wanted
M2M overlay entity is not found. Selecting two also keeps
the protocol as simple as possible but still fulfills the
discovery requirement.

Figure 2. A tries to find E, hop limit is 2.

Figure 2 presents an example in which the M2M overlay
entity E is not found, because of the hop limit is two, and
because C does not know E. As it can be seen, if M2M
overlay entities have only few contacts in their rosters,

discovery process is short, may not succeed and only few
messages are sent.

B. Replying mechanism

After selecting the hop limit, the amount of transmitted
messages was calculated. In the worst case situation, the
maximum amount of SD and forwarded SD messages (with
considering neither XMPP nor TCP/IP acknowledgements
etc.) can be calculated using (1)-(8).

M = Maximum amount of messages.
α = Number of unique contacts in the roster of the SD
request message sender A.
β = Number of unique contacts in the roster(s) of unique
contact(s) of A.

Case A: All XMPP clients are registered to the one and
same XMPP server. Replies are sent directly to the original
sender (1) or through the SD request forwarder (2):

Μ = 2α + 4αβ. (1)

Μ = 2α + 6αβ. (2)

Case B: The SD request sender XMPP client is the only
client registered in the first XMPP server and two other
XMPP clients are registered in the one and same XMPP
server. Replies are sent directly to the original sender (3) or
through the SD request forwarder (4):

Μ = 3α + 5αβ. (3)

Μ = 3α + 7αβ. (4)

Case C: 2 XMPP clients (the SD request sender and the
first contact) are registered in the one and same XMPP
server, and the third XMPP client in another XMPP server.
Replies are sent directly to the original sender (5) or through
the SD request forwarder (6):

Μ = 2α + 6αβ. (5)

Μ = 2α + 8αβ. (6)

Case D: Every XMPP client is registered in its own
separate XMPP server. Replies are sent directly to the
original sender (7) or through the SD request forwarder (8):

Μ = 3α + 6αβ. (7)

Μ = 3α + 9αβ. (8)

17Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Using α=β=16 in (1)-(8) a chart in Figure 4 has been
drawn. It presents total amount of SD messages (requests and
responses). Y axis presents the amount of transmitted SD
messages. X axis presents cases A, B, C, D and (1)-(8). In
cases C and D the amount of SD messages are approximate
when answering directly to the requester (5) and (7). In fact,
(5)/(7) approaches 1 when α and β approach infinity.

The difference between direct replies and sending replies
through the forwarder can be calculated by subtracting
answers in each case A, B, or C. For example, when using
three servers with α=32 and β=32 (7) gives M = 6240 and (8)
gives M=9312, so the difference is 3072. When α and β
approach infinity, result of (2)/(1) approaches the ratio 1,5.
(4)/(3) approaches the ratio 1,4, (6)/(5) approaches the ratio
1+1/3 and (8)/(7) approaches the ratio 1,5.

If communication between clients and servers is not
taken into consideration, in the simplest case when α=β=1,
only three messages are transmitted: 1) from the SD request
sender A to its contact B, 2) B forwarded the SD request to
its contact C, and 3) C replies to A (9). If C would answer
through B, there would be 4 messages instead (10). These are
presented in Figure 5.

Μ = α + 2αβ. (9)

Μ = α + 3αβ. (10)

When α=β=1 and all clients are using only one server, the
number of messages increases to 6 (1), with two servers to 8
(3) and (5) and with three servers to 9 (7) respectively. If the
contact C would send the reply through B, numbers would be
with one server 8 (2), with two 10 (4) and (6) and with three
12 (8). These cases are described in Figures 6-8. S1, S2, and
S3 are servers.

Figure 3. Number of SD messages, α=β=16.

Figure 4. Number of SD messages, no servers, α=β=1.

Figure 5. Number of SD messages, one server, α=β=1.

Figure 6. Number of SD message, two servers, α=β=1.

Figure 7. Number of SD messages, three servers, α=β=1.

To save messages and bandwidth, the first approach was
selected: XMPP clients reply directly to the original SD
requester.

C. Answer handling

When the M2M overlay entity tries to find strings that are
too commonly used in JIDs, the SD request sender is likely
to get answers including several JIDs, from several different
senders. In some cases, this can also be thought of as an
advantage if entities known by several other entities are
thought to be more popular, and as such also more suitable.
The SD request message sender could use this suitability
information to categorize found JIDs. Currently the JID in
the first reply is selected.

D. Security

XMPP offers security services for the M2M service
network, but this section includes information about new
security issues coming from the SD protocol. In one-way
RPC the original sender cannot know for sure whether its
request will be processed if the reliability is not guaranteed,
but this also allows the requester to be able continue its work
without the need to wait for the reply. Direct replies to the
original SD requester generate threats, related to forging the
original sender. This makes flooding and Denial of Service
(DoS) attacks possible. Risk of the threats can be decreased
in servers, by asymmetric cryptography and processing only
certain messages (including proper information or coming
from certain domain, for example). In real life, when
answering directly to the original requester, request
forwarders would not necessarily get information if the
answer is found.

18Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

V. CONCLUSION AND FUTURE WORK

XMPP offers several building blocks, such as naming,
rosters, message transmission and remote commands,
pubsub, SD and security for M2M service networks, but no
mechanism for finding roster entities from unknown XMPP
entities. Therefore, this paper presented a simple M2M
overlay discovery protocol for discovering XMPP JIDs
behind several hops, in an XMPP based M2M service
network. Hop limit was two, which was selected based on
real life examples and in order to keep the protocol simple,
but so that it also fulfilled the discovery requirements. The
amounts of messages with synchronous or asynchronous
RPC were analyzed. Asynchronous one-way RPC and direct
replies to original requester were selected to decrease the
amount of messages. Each entity or owner of the entity
should be able to choose whether its presence and/or JID are
shared to unknown entities, or not. The proposed four new
XMPP subscription statuses enable describing when
information can be advertised only to contacts or to anyone.

Future work includes applying some ideas of the paper to
be submitted to XEPs. Mechanisms for handling different
JIDs received in different SD replies must be designed and
implemented. The SD protocol presented in this paper uses
JSON-RPC formatting [34], but the format of the SD
messages can be changed to Jabber-RPC format [35][36].
Distributed Hash Tables (DHT) could be used to enable
serverless communication between XMPP nodes. Xeerkat
[37] is one example implementation of a P2P computing
framework that utilizes XMPP as a communication protocol.

ACKNOWLEDGMENT

Author wants to thank UseNet project [38] members and
QXmpp [39] and ejabberd [40] developers. In the prototype,
QXmpp XMPP client was modified, and Ejabberd was used
as an XMPP server.

REFERENCES

[1] IPSO Alliance’s webpage, http://www.ipso-alliance.org, 16.04.2012

[2] IETF RFC 6120, P.Saint-Andre, “Extensible Messaging and Presence
Protocol (XMPP): Core”, March 2011

[3] P. Saint-Andre, K. Smith, and R. Tronçon, “XMPP: The Definitive
Guide, Building Real-Time Applications with Jabber Technologies”,
O’Reilly, 2009

[4] P. Saint-Andre, "XMPP: lessons learned from ten years of XML
messaging," Communications Magazine, IEEE, vol. 47, no. 4, pp. 92-
96, April 2009, doi: 10.1109/MCOM.2009.4907413

[5] M. R. Lavelle, (2010), “Micro-Grid Applications - Leveraging XMPP
Short Messaging”, http://www.lavelleenergy.com/documents/Micro-
grid%20Applications%20Paper.pdf, 16.04.2012

[6] M. Kuna, H. Kolaric, I. Bojic, M. Kusek, and G. Jezic,
"Android/OSGi-based Machine-to-Machine context-aware system,"
Telecommunications (ConTEL), Proceedings of the 2011 11th
International Conference on, pp. 95-102, 15-17 June 2011

[7] QEES Open Software Platform website,
http://qees.dk/da/services/open-software-platform, 16.04.2012

[8] T. Parkkila, (2005), “Application and platform management of an
embedded system”. Smart Systems 2005, Conference Proceedings.
Seinäjoki, 3-4 May 2005.

[9] A. Hornsby, P. Belimpasakis, and I. Defee, "XMPP-based wireless
sensor network and its integration into the extended home

environment," Consumer Electronics, 2009. ISCE '09. IEEE 13th
International Symposium on, pp. 794-797, 25-28 May 2009, doi:
10.1109/ISCE.2009.5156807

[10] A. Rowe, M. Berges, G. Bhatia, E. Goldman, R. Rajkumar, L.
Soibelman, J Garrett, and J. M. F. Moura, “Sensor Andrew: Large-
Scale Campus-Wide Sensing and Actuation”, Carnegie Mellon
University, 2008

[11] xbee-xmpp website, http://code.google.com/p/xbee-xmpp/,
16.04.2012

[12] A. Hornsby and E. Bail, "µXMPP: Lightweight implementation for
low power operating system Contiki," Ultra Modern
Telecommunications & Workshops, 2009. ICUMT '09. International
Conference on, pp. 1-5, 12-14 Oct. 2009, doi:
10.1109/ICUMT.2009.5345594A.

[13] P. Saint-Andre, “XEP-xxxx: Sensor-Over-XMPP”, XEP proposal, V
0.0.18

[14] P. Millard, P. Saint-Andre, and R. Meijer, “XEP-0060: Publish-
Subscribe”, V 1.13

[15] IETF RFC 3923, P. Saint-Andre, “End-to-end Signing and Object
Encryption for the Extensible Messaging and Presence Protocol
(XMPP), October 2004

[16] P. Millard and P. Saint-Andre, “XEP-0016: Privacy Lists”, V 1.6

[17] I. Paterson, D. Smith, P. Saint-Andre, and J. Moffitt, “XEP-0124:
Bidirectional-streams Over Synchronous HTTP (BOSH)”, V 1.10

[18] I. Paterson and P. Saint-Andre, “XEP-0206: XMPP Over BOSH”, V
1.3

[19] XML Binary Characterization Use Cases,
http://www.w3.org/TR/xbc-use-cases/#xmpp, 16.04.2012

[20] P. Saint-Andre, “XEP-xxxx: Stream Compression with Efficient
XML Interchange”, XEP proposal, V 0.0.1

[21] D. Cridland, “XEP-0286: XMPP on Mobile Devices”, V 0.1

[22] J. Hildebrand and P. Saint-Andre, “XEP-0138: Stream Compression”,
V 2.0

[23] J. Hildebrand, P. Millard, R. Eatmon, and P. Saint-Andre, “XEP-
0030: Service Discovery”, V 2.4

[24] P. Saint-Andre, “XEP-0174: Serverless Messaging”, V 2.0

[25] P. Saint-Andre, “XEP-0045: Multi-User Chat”, V 1.25

[26] Zero Configuration Networking (Zeroconf) webpage,
http://www.zeroconf.org, 16.04.2012/

[27] S. Cheshire and M. Krochmal, “Multicast DNS”, IETF Internet-Draft:
draft-cheshire-dnsext-multicastdns-15, Dec 9, 2011, Expires: June 11,
2012.

[28] S. Cheshire and M. Krochmal, “DNS-Based Service Discovery”,
IETF Internet-Draft: draft-cheshire-dnsext-dns-sd-11, Dec 9, 2011,
Expires: June 11, 2012.

[29] P. Saint-Andre, “XEP-0133: Service Administration”, V 1.1

[30] P. Saint-Andre, “XEP-0144: Roster Item Exchange”, V 1.0

[31] Google Search Plus Your World website,
http://www.google.com/insidesearch/plus.html, 16.04.2012

[32] US Patent 7890501, C. Lunt, N. Galbreath, & J., “Visual tags for
search results generated from social network information”

[33] A. S. Tanenbaum and M. van Steen. 2006. “Distributed Systems:
Principles and Paradigms (2nd Edition)”. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA.

[34] JSON-RPC specification, http://json-rpc.org/wiki/specification,
16.04.2012

[35] XML-RPC specification, http://xmlrpc.scripting.com/spec.html,
16.04.2012

[36] DJ Adams, “XEP-0009: Jabber-RPC”, V 2.2

[37] Xeerkat webpage, https://code.google.com/p/xeerkat/, 16.04.2012

[38] UseNet project website, https://usenet.erve.vtt.fi, 16.04.2012

[39] QXmpp website, https://code.google.com/p/qxmpp/, 16.04.2012

[40] ejabberd community site, http://www.ejabberd.im/, 16.04.2012

19Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

