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Abstract—In this paper, we compute upper bounds and
optimal solutions for a deterministic linear bilevel program-
ming problem and then, for a stochastic version of this
problem. The latter is formulated while adding probabilistic
knapsack constraints in the upper level problem of the initial
deterministic model. The upper bounds are computed using a
Lagrangian iterative minmax algorithm and linear program-
ming relaxations. To this purpose, we first transform both
problems into the so called Global Linear Complementarity
problems. We then, use these models to derive equivalent mixed
integer programming formulations. This allows comparing the
iterative minmax algorithm and the linear programming upper
bounds with the optimal solution of the problem for the
deterministic and stochastic instances as well. Our numerical
results show tight near optimal bounds for both, the stochastic
and deterministic linear programming relaxations and larger
gaps for the iterative minmax algorithm.

Keywords-Linear bilevel programming; stochastic program-
ming; mixed integer programming.

I. INTRODUCTION

In mathematical programming, the bilevel programming
problem (BPP) is a hierarchical optimization problem. It
consists in optimizing an objective function subject to a
constrained set in which another optimization problem is
embedded. The first level optimization problem (upper-level
problem) is known as the leader’s problem while the lower-
level is known as the follower’s problem. Formally, it can
be written as follows

min
{x∈X,y}

F (x, y)

s.t. G(x, y) ≤ 0

min
{y}

f(x, y)

s.t. g(x, y) ≤ 0

where x ∈ Rn1 , y ∈ Rn2 , F : Rn1 × Rn2 → R and
f : Rn1×Rn2 → R are the decision variables and the objec-
tive valued functions for the upper and lower level problems,
respectively. Similarly, the functions G : Rn1×Rn2 → Rm1

and g : Rn1×Rn2 → Rm2 denote upper and lower level con-
straints. Bilevel programming is commonly used to model
situations in which two or more decision makers control
part of the variables within a particular decision process
[1]. The main goal is thus, to find an optimal point such
that the leader and the follower minimizes their respective
objective valued functions F (x, y), f(x, y) subject to their
respective linking constraints G(x, y) and g(x, y). Notice
that either the leader (or the follower) might also have
their own particular constraints such as the set X in the
above leader problem. Applications concerning BPP include
transportation, networks design, management and planning
among others (for different domains of applications see for
instance [6]).

It has been shown that BPPs are strongly NP-hard even
for the simplest case in which all the involved functions are
affine [8]. Hereafter, we only consider the case in which
all the above functions F (x, y), f(x, y), G(x, y), g(x, y) are
linear. Besides, if a particular constrained set exists in the
leader or in the follower problem, we assume that it is a
polyhedral affine space.

Stochastic programming (SP), on the other side, is an
optimization technique which deals with the uncertainty
of the input parameters of a mathematical program [16].
The underlying idea of SP is that the input parameters can
be modeled as random variables to which the theory of
probabilities can be applied. The probability distributions
governing the data are usually assumed to be known in
advance or that they can be estimated. The probability space
is also usually assumed to be discrete and as such, one can
consider finite sets of scenarios for the input parameters.
There are two well known scenario based approaches in
SP. The first one is known as the recourse model approach
[5], [7] while the second one is known as probabilistic
constrained approach [7]. The literature related to SP has
grown considerably in last decades. A general survey can
be found for instance in [14] and the reader is also referred
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to [3], [9], [15] or to a more recent book in [16] for a deeper
comprehension.

In this paper, we consider the probabilistic knapsack
constrained approach proposed in [7] when embedded into
the upper level problem. Under this approach, it is imposed
a threshold risk on the probability of occurrence for some
(or all) of the constraints within a particular mathematical
model. This means that some of the constraints should be
satisfied, at least for a given percentage, while the rest of
them are discarded.

The paper is organized as follows. In Section II, we
provide a brief state of the art concerning joint aspects of
bilevel and stochastic programming. Then, in Section III,
we state the linear bilevel programming problem (LBPP)
and briefly explain the probabilistic constrained approach
considered. In Section IV, we derive the Global Linear
Complementarity problem (GLCP) and also explain how
the iterative minmax (IMM) algorithm works in order to
compute the upper bounds. In Section V, we derive from the
GLCPs, mixed integer and linear programming formulations
(Resp. MIP and LP) according to [1]. Numerical results are
given for the LBPP and for the stochastic LBPP (SLBPP)
in Section VI. Finally, in Section VII we give the main
conclusions of the paper.

II. RELATED WORK

Although there exist many application domains in which
bilevel programming can be suitably applied, joint stochastic
and bilevel programming aspects have not yet widely been
explored so far. Some preliminary works are the following
[2], [4], [11]–[13], [17].

In [11], Luh et al. study a deterministic pricing problem
and propose a stochastic counterpart for it by assuming
that the inducible region is subject to uncertainty. Here,
the inducible region is defined as the feasible set of the
follower problem induced by the decision of the leader
problem. Next, Patriksson et al. also incorporates uncertainty
in the input data of hierarchical mathematical Programming
problems [13]. In both papers [11], [13], the authors discuss
theoretical aspects such as necessary and sufficient condi-
tions for optimality, existence of solutions, convexity, and
propose algorithms to deal with the problem at hand. Subse-
quently, Christiansen et al. [4], consider a stochastic bilevel
programming problem which corresponds to an application
in structural optimization where again, theoretical aspects
such as existence of optimal solutions, Lipschitz continuity
and differentiability aspects are discussed. More recently,
applications concerning telecommunication network prob-
lems have been studied in [2], [17]. Therein, the analysis
covers both theoretical and also practically oriented issues.
In particular, special attention is given to different formula-
tions of one and two stage stochastic bilevel programming
problems where necessary optimality conditions for each of
these problem instances are stated. Additionally, in [17], it

is also proposed an algorithm which uses a stochastic quasi-
gradient method to solve the problem.

Finally in [12], Özaltin et al. consider a stochastic bilevel
knapsack problem with uncertain right-hand sides, and de-
rive necessary and sufficient conditions for the existence of
an optimal solution. In particular, they provide an equivalent
two stage stochastic formulation when the leader problem
take only integer values for the decision variables, although
at the cost of having binary decision variables in the follower
problem. Branching based algorithms are proposed to solve
large scale instances of the problem.

In this paper, we focus more on computational numerical
experiments rather than on theoretical aspects. Hence, we
proceed as follows. We first compute upper bounds and
optimal solutions for a generic linear bilevel programming
problem (LBPP). We then, extend this generic LBPP by
introducing knapsack probabilistic constraints in the upper
level problem [7]. Hence, we compute upper bounds and
optimal solutions for this stochastic LBPP (SLBPP) as well.
The upper bounds are computed using a Lagrangian iterative
minmax (IMM) algorithm proposed in [10] and also using
linear programming (LP) relaxations we formulate from the
so called Global Linear Complementarity Problem (GLCP)
according to [1]. In [10], Kosuch et al. neither provide
optimal solutions for deterministic or stochastic problems
nor calculate gaps to measure IMM efficiency. Furthermore,
even when Audet et al. propose links to derive an equivalent
MIP formulation from a linear bilevel programming problem
[1], they do not provide numerical comparisons to measure
the tightness of its LP relaxation. Therefore, this paper
can be seen as an extension of the works presented in
[10] and [1] in the sense that now, we do provide optimal
solutions and upper bounds for the IMM and for the LP
relaxations as well as numerical comparisons between them,
for deterministic and stochastic instances. In particular, we
compute the optimal solutions using the MIP equivalent
formulations [1].

III. PROBLEM FORMULATION

In this section, we first present the generic LBPP under
study. Then, we extend this generic model by adding knap-
sack probabilistic constraints in the upper level problem ac-
cording to [7]. Since the probabilistic constrained approach
introduces binary variables in the problem, we then obtain a
mixed integer linear bilevel programming problem (MILBP)
which we transform back into a LBPP [1]. We consider the
following LBPP:

LBP1: max
{x}

cT1 x+ dT1 y (1)

s.t. A1x+B1y ≤ b1 (2)
0 ≤ x ≤ 1n1 (3)
y ∈ arg max

{y}
{cT2 x+ dT2 y} (4)

s.t. A2x+B2y ≤ b2 (5)
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0 ≤ y ≤ 1n2
(6)

where x ∈ Rn1 and y ∈ Rn2 are decision variables.
Vectors 1n1 and 1n2 are vectors of size n1 and n2 with
entries equal to one. Matrices A1, B1, A2, B2 and vectors
c1, c2, d1, d2, b1 ∈ Rm1 , b2 ∈ Rm2 are input real matri-
ces/vectors defined accordingly. In LBP1, (1)-(3) correspond
to the leader’s problem while (4)-(6) represent the follower’s
problem. Knapsack probabilistic constraints can be added
to the upper-level problem of LBP1 as follows. Let w =
w(ω) ∈ Rn1

+ and S = S(ω) ∈ R+ be two random variables
distributed according to a discrete probability distribution Ω.
We consider the following knapsack probabilistic constraints
in the upper level problem

P
{
wT (ω)x ≤ S(ω)

}
≥ (1− α) (7)

where α represents the risk we take while not satisfying
some of the constraints. Since Ω is discrete, one may
suppose that w = w(ω) and S = S(ω) are concentrated
in a finite set of scenarios such as w(ω) = {w1, .., wK}
and S(ω) = {s1, ..sK}, respectively with probability vector
pT = (p1, .., pK) for all k such that

∑K
k=1 pk = 1 and

pk ≥ 0. According to [7], constraints in (7) can be trans-
formed into the following pair of deterministic constraints

wTk x ≤ sk +Mkzk k = 1 : K (8)
pT z ≤ α (9)

where vector zT = (z1, .., zK , ) is composed of binary vari-
ables. This means, if zk = 0 then the constraint is included,
otherwise it is not activated. Mk for each k = 1 : K is
defined as

Mk =

n1∑
i=1

wik − sk

where wik denotes the ith component of vector wk. Putting it
altogether yields the following deterministic mixed integer
linear bilevel program

MILBP1: max
{x,z}

cT1 x+ dT1 y

s.t. A1x+B1y ≤ b1

0 ≤ x ≤ 1n1

wTk x ≤ sk +Mkzk k = 1 : K

pT z ≤ α
zk ∈ {0, 1}K

y ∈ arg max
{y}
{cT2 x+ dT2 y}

s.t. A2x+B2y ≤ b2

0 ≤ y ≤ 1n2

Although MILBP1 contains binary variables, it can be
converted back into an equivalent continuous LBPP [1] as

follows

LBP2: max
{x,z}

cT1 x+ dT1 y

s.t. A1x+B1y ≤ b1

0 ≤ x ≤ 1n1

wTk x ≤ sk +Mkzk k = 1 : K

pT z ≤ α
0 ≤ zk ≤ 1, ∀k
v = 0K

(y, v) ∈ arg max
{y,v}
{cT2 x+ dT2 y + 1TKv}

s.t. A2x+B2y ≤ b2

0 ≤ y ≤ 1n2

v ≤ z (10)
v ≤ 1K − z (11)

In LPB2, we denote by 1K and 0K , the vector of all ones
and the vector of all zeros of dimension K. As explained
in [1], the transformation from MILBP1 into LBP2 can be
done by performing the following steps. First the binary
variables z ∈ {0, 1}K for each k = 1 : K in the upper
level problem should be relaxed inside the interval [0,1]. In
parallel, a new continuous variable vector v = 0K should be
placed in the leader’s problem imposing that all its entries be
equal to zero. In fact, vector v is introduced in the follower’s
problem when adding the term 1TKv in its objective function
together with the new constraints (10)-(11). The term added
in the objective function together with the latter constraints
will enforce all the entries in vector z to be either equal
to zero or one. We then, have derived an equivalent LBPP
formulation for MILBP1. Notice that v is a variable vector
in the follower’s problem while vector z is a variable vector
in the leader’s problem.

In the next section, we derive the so called Global
Linear Complementarity Counterparts for LBP1 and LBP2.
Subsequently, we briefly present and explain the Lagrangian
iterative minmax algorithm proposed in [10].

IV. THE GLCP AND IMM ALGORITHM

In this section, we explain all the necessary transformation
steps until reaching the GLCP counterparts for LBP1 and
LBP2. Then, we present IMM algorithm and describe how
it works in order to compute the upper bounds. Finally, we
derive from the GLCP problems equivalent MIP formula-
tions according to [1] together with their LP relaxations.

A. The Global Linear Complementarity Problem

The GLCP is a single level quadratic optimization prob-
lem. The main idea of deriving the GLCP consists of
replacing the original follower’s problem with its initial
constraints, dual constraints and complementary slackness
conditions. The decision variables of GLCP are thus: the
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leader, the follower and the follower’s dual variables as well.
In order to derive a GLCP model for LBP1, we first write
the dual of the follower problem as follows

LBPD1: min
{λ,µ}

λT (b2 −A2x) + 1TKµ (12)

s.t. (B2)Tλ+ In2µ ≥ d2 (13)
λ ≥ 0, µ ≥ 0 (14)

where λ and µ are Lagrangian multipliers vectors of ap-
propriate size. In2

represents the identity matrix of order
n2. Now, we add the complementary slackness conditions
we construct by using LBP1 and LBPD1 together with its
respective dual constraints (13)-(14). We may obtain the so
called GLCP counterpart for LBP1 as follows

LBPG1: max
{x,y,λ,µ}

cT1 x+ dT1 y

s.t. A1x+B1y ≤ b1

0 ≤ x ≤ 1n1

A2x+B2y ≤ b2

0 ≤ y ≤ 1n2

(B2)Tλ+ In2
µ ≥ d2

λ ≥ 0, µ ≥ 0

(b2 −A2x−B2y)Tλ = 0 (15)
(1n2 − In2y)Tµ = 0 (16)
((B2)Tλ+ In2µ− d2)T y = 0 (17)

where (15)-(17) are the complementary slacknes conditions.
To derive the GLCP counterpart for LBP2, we proceed
similarly as for LBP1. In this case, the dual formulation
for the follower problem can be written as

LBPD2: min
{λ1,µ1,µ2,µ3}

λT1 (b2 −A2x) + µT1 z +

+µT2 (1K − z) + µT3 1n2
(18)

s.t. (B2)Tλ1 + In2
µ3 ≥ d2 (19)

IKµ1 + IKµ2 ≥ 1K (20)
λ1 ≥ 0, µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0 (21)

where λ1, µ1, µ2 and µ3 are Lagrangian multiplier vectors
respectively. Subsequently, the GLCP in this case reads

LBPG2: max
{x,y,z,µ1,µ2,µ3,λ1}

cT1 x+ dT1 y

s.t. A1x+B1y ≤ b1

0 ≤ x ≤ 1n1

A2x+B2y ≤ b2

0 ≤ y ≤ 1n2

wTk x ≤ sk +Mkzk k = 1 : K

pT z ≤ α, 0 ≤ zk ≤ 1 ∀k = 1 : K

(B2)Tλ1 + In2µ3 ≥ d2
IKµ1 + IKµ2 ≥ 1K
λ1 ≥ 0, µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0

λT1 (b2 −A2x−B2y) = 0 (22)
µT1 z = 0 (23)
µT2 (1K − z) = 0 (24)
µT3 (1n2 − y) = 0 (25)
yT ((B2)Tλ1 + In2µ3 − d2) = 0 (26)

In LBPG2, the last constraints (22)-(26) are due to the
complementary slackness condition.

In the next subsection, we briefly illustrate how IMM
algorithm works when solving a minmax relaxation derived
from the GLCP [10].

B. The IMM Algorithm
To show how the IMM algorithm works, we take for

illustration purposes, the GLCP we have already derived
from the previous subsection denoted by LBPG2. Notice that
this model is a quadratic optimization problem since their
complementary constraints (22)-(26) are quadratic, and thus
it is hard to solve directly. The first step of IMM consists
in relaxing these quadratic constraints into the following
Lagrangian function

L(x, y, z, λ1, µ1, µ2, µ3) =

= cT1 x+ dT1 y +

+λT1 (b2 −A2x−B2y) +

+µT1 z + µT2 (1K − z) +

+µT3 (1n2
− z) +

+yT ((B2)Tλ1 + In2
µ3 − d2) (27)

This allows writing a minmax relaxation for LBPG2 as
follows

LGN2: min
{µ1,µ2,µ3,λ1}

max
{x,y,z}

L(x, y, z, λ1, µ1, µ2, µ3)

s.t. A1x+B1y ≤ b1

0 ≤ x ≤ 1n1

A2x+B2y ≤ b2

0 ≤ y ≤ 1n2

wTk x ≤ sk +Mkzk k = 1 : K

pT z ≤ α, 0 ≤ zk ≤ 1 ∀k = 1 : K

(B2)Tλ1 + In2
µ3 ≥ d2

IKµ1 + IKµ2 ≥ 1K
λ1 ≥ 0, µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0

The second step of IMM consists of decomposing LGN into
two linear programming subproblems: LGNs and LGNd as

LGNs: max
{x,y,z,ϕ}

ϕ

ϕ ≤ L(x, y, z, λq1, µ
q
1, µ

q
2, µ

q
3),

∀q = 0, 1, ..., N − 1 (28)
s.t. A1x+B1y ≤ b1

0 ≤ x ≤ 1n1
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A2x+B2y ≤ b2

0 ≤ y ≤ 1n2

wTk x ≤ sk +Mkzk k = 1 : K

pT z ≤ α, 0 ≤ zk ≤ 1 ∀k = 1 : K

and

LGNd: min
{µ1,µ2,µ3,λ1,β}

β

β ≥ L(xq, yq, zq, λ1, µ1, µ2, µ3),

∀q = 1, ..., N (29)
s.t. (B2)Tλ1 + In2

µ3 ≥ d2
IKµ1 + IKµ2 ≥ 1K
λ1 ≥ 0, µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0

where ϕ and β are defined as free real variables. Finally,
the third step of the algorithm consists in solving iteratively
both LGNs and LGNd. At iteration q, the auxiliary constraint
(28) (resp. (29)) is added to LGNs (resp. LGNd) in order
to enforce the convergence of their optimal solution values
towards the optimal solution value of LGN. The iteration
process stops when either β − ϕ < δ or (β − ϕ)/β < ε for
small δ > 0 and ε > 0. The convergence of IMM is proven
in [10]. Notice that even when IMM does not converge to
a stationary point, it provides, at least, an upper bound for
the GLCP. Hereafter, we denote by LGN1 and LGN2 the
minmax relaxations we formulate starting from LBP1 and
LBP2 respectively. In this paper, we compute upper bounds
for LGN1 and LGN2 using IMM algorithm. Afterward, we
compare these upper bounds with LP relaxations we derived
from equivalent MIP formulations according to [1].

V. MIP AND LP FORMULATIONS

In this subsection, we present for each GLCP problems
(LBPG1 and LBPG2 respectively) an equivalent MIP for-
mulation. The method basically consists of replacing each
quadratic constraint of the GLCP by two linear constraints
that include a new binary variable. According to [1], a MIP
formulation for LBPG1 can be written as follows

MIP1: max
{x,y,λ,µ,ν1,ν2,ν3}

cT1 x+ dT1 y

s.t. A1x+B1y ≤ b1

0 ≤ x ≤ 1n1

A2x+B2y ≤ b2

0 ≤ y ≤ 1n2

(B2)Tλ+ In2
µ ≥ d2

λ ≥ 0, µ ≥ 0

b2 −A2x−B2y + Lν1 ≤ L1m2
(30)

λ ≤ Lν1, ν1 ∈ {0, 1}m2 (31)
1n2
− In2

y + Lν2 ≤ L1n2
(32)

µ ≤ Lν2, ν2 ∈ {0, 1}n2 (33)
(B2)Tλ+ In2

µ− d2 + Lν3 ≤ L1n2
(34)

y ≤ Lν3, ν3 ∈ {0, 1}n2 (35)

In this model, constraints in (30)-(31),(32)-(33),(34)-(35) are
equivalent to constraints (15),(16),(17) in LBPG1 respec-
tively. These constraints force at least one of the terms within
each product term to be equal to zero. To this end, a large
constant L is needed [1]. Similarly, we can derive a MIP
formulation for LBPG2 as follows

MIP2: max
{x,y,z,µ1,µ2,µ3,λ1,θ1,θ2,θ3,θ4,θ5}

cT1 x+ dT1 y

s.t. A1x+B1y ≤ b1

0 ≤ x ≤ 1n1

A2x+B2y ≤ b2

0 ≤ y ≤ 1n2

wTk x ≤ sk +Mkzk k = 1 : K

pT z ≤ α, 0 ≤ zk ≤ 1 ∀k = 1 : K

(B2)Tλ1 + In2
µ3 ≥ d2

IKµ1 + IKµ2 ≥ 1K
λ1 ≥ 0, µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0

b2 −A2x−B2y + Lθ1 ≤ L1m2
(36)

λ ≤ Lθ1, θ1 ∈ {0, 1}m2 (37)
z + Lθ2 ≤ L1K (38)
µ1 ≤ Lθ2, θ2 ∈ {0, 1}K (39)
1K − z + Lθ3 ≤ L1K (40)
µ2 ≤ Lθ3, θ3 ∈ {0, 1}K (41)
1n2 − y + Lθ4 ≤ L1n2 (42)
µ3 ≤ Lθ4, θ4 ∈ {0, 1}n2 (43)
(B2)Tλ1 + In2µ3 − d2 + Lθ5 ≤ L1n2 (44)
y ≤ Lθ5, θ5 ∈ {0, 1}n2 (45)

Analogously, in this model constraints (36)-(45) replace
constraints (22)-(26) in LPBG2. We denote by LP1 and LP2
the corresponding linear programming relaxations derived
from MIP1 and MIP2, respectively.

VI. NUMERICAL RESULTS

In this section, we present numerical results for MIP1,
MIP2, LP1, LP2, LGN1 and LGN2. The input data is
generated as follows. The entries in matrices A1, A2, B1, B2

are filled with random values uniformly picked from [-1,1]
except for the last row which is uniformly filled with values
in [0,1]. The entries of b1, b2 are generated in the following
way:

b1i =

n1∑
j=1

A1
ij +

n2∑
j=1

B1
ij + ρ1i , i = {1, ..,m1}(46)

b2i =

n1∑
j=1

A2
ij +

n2∑
j=1

B2
ij + ρ2i , i = {1, ..,m2}(47)

337Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology



Table I
UPPER BOUNDS AND OPTIMAL SOLUTIONS FOR THE DETERMINISTIC PROBLEM (LBPP)

# Instance Size MIP1 LGN1 Time LGN1 # LPs LP1 Time LP1 Gaps
m1 m2 n1 n2 Ubs Std Ubs Std LGN1 LP1

1 25 25 50 50 318.6297 400.5155 55.2680 0.4578 19.9000 324.0572 53.2167 0.1703 20.5718 1.5381
2 25 25 50 100 570.9695 754.9484 45.3639 0.5563 15.7000 579.6330 45.8222 0.1641 24.2832 1.3892
3 25 25 50 150 800.2270 1078.6 38.0506 0.7156 14 806.3612 39.1128 0.1844 25.7922 0.7522
4 25 25 50 250 1319.1 1758.4 69.2061 1.1703 12.4000 1324 55.1661 0.2797 24.9855 0.3751
5 25 25 100 50 534.4669 616.3301 46.8627 0.9031 30.7000 541.6181 49.7854 0.2375 13.3941 1.3551
6 25 25 100 100 823.3725 993.2053 43.7868 0.9297 22.1000 830.9123 50.2394 0.2422 17.1145 0.8795
7 25 25 100 150 1061 1323.7 75.8933 1.0781 18.3000 1062.8 94.5218 0.2562 19.9749 0.1677
8 25 25 100 250 1501 1975.4 80.0849 1.5844 15.7000 1512.4 85.2606 0.2719 24.0231 0.7090
9 25 25 150 50 796.3497 879.2877 71.7902 1.1422 31.2000 799.2495 71.0114 0.2391 9.4376 0.3403

10 25 25 150 100 1050 1232 47.2699 1.4094 27.6000 1057.9 56.2905 0.2391 14.8390 0.7229
11 25 25 150 150 1288.4 1567.1 66.5875 1.4109 20.6000 1303.8 61.2962 0.2609 17.8121 1.1917
12 25 25 150 250 1763.7 2213.5 96.8940 2.3250 20.1000 1768.8 83.8630 0.3000 20.3168 0.2782
13 25 25 250 50 1348.7 1436.5 68.2226 1.4578 29.6000 1349.4 59.5212 0.2656 6.0902 0.0493
14 25 25 250 100 1541.7 1736.5 61.1188 2.0219 31.1000 1552 55.1324 0.2797 11.2055 0.6480
15 25 25 250 150 1777 2047.9 59.2596 1.9344 23.5000 1782.3 44.7907 0.2781 13.2086 0.2986
16 25 25 250 250 2292.5 2723 48.3565 2.5031 20.1000 2297.4 61.8148 0.3234 15.8171 0.2108
17 50 50 50 50 181.8254 256.2218 48.6907 0.8703 17.6000 184.6658 45.4258 0.2516 29.3389 1.4090
18 50 50 50 100 399.8696 570.6325 83.5419 2.3438 24 404.9089 63.2648 0.2562 29.8847 1.2420
19 50 50 50 250 1116.7 1581.4 60.9783 2.9844 14.8000 1117.8 57.5520 0.3422 29.3974 0.1003
20 50 50 50 500 2413.4 3281.7 68.6972 3.3344 10.6000 2415.2 56.4318 0.4969 26.4553 0.0747
21 50 50 100 50 338.3935 401.1113 80.9225 2.6719 34.6000 338.8181 68.0222 0.2562 15.5971 0.1357
22 50 50 100 100 639.0975 804.6371 58.2480 5.3641 39 642.3280 62.9545 0.2813 20.7142 0.5395
23 50 50 100 250 1403.2 1836.7 54.4123 4.9594 21.6000 1408.8 76.2232 0.3516 23.6332 0.4281
24 50 50 100 500 2595.3 3471.6 89.8953 5.4188 14.6000 2596.1 102.6473 0.4656 25.2606 0.0311
25 50 50 250 50 1146.4 1223.7 79.9139 6.2484 54.6000 1156.5 75.4866 0.3266 6.2685 0.8414
26 50 50 250 100 1374.8 1544.5 66.4153 7.4703 50.8000 1381.5 64.8566 0.3563 10.9772 0.4713
27 50 50 250 250 2136.1 2551.2 96.8040 10.4750 37 2137.3 69.5131 0.4203 16.2371 0.0592
28 50 50 250 500 3282.1 4180.2 79.3646 11.9203 23.7000 3287 73.9953 0.5359 21.4839 0.1534
29 50 50 500 50 2392.7 2472.2 94.0571 12.0469 60.4000 2394.9 88.9616 0.4484 3.2086 0.0864
30 50 50 500 100 2586.4 2750 43.8231 11.7516 52 2590.4 47.6176 0.4609 5.9523 0.1548
31 50 50 500 250 3386.5 3828.9 63.0136 16.3172 45.7000 3390.8 57.1894 0.5453 11.5474 0.1240
32 50 50 500 500 4574 5499.7 92.8812 18.2703 29.9000 4574.8 82.5642 0.6703 16.8290 0.0173
33 100 100 150 150 764.0421 999.6294 89.3524 32.7984 49.5000 767.1260 91.5415 0.4359 23.7201 0.3816
34 100 100 150 200 1010.3 1330.6 56.0125 38.4875 45.4000 1010.5 56.4980 0.4531 24.0978 0.0212
35 100 100 150 300 1483.4 2006.4 61.0033 33.0938 43.8000 1485.2 42.4945 0.5594 26.0603 0.1240
36 100 100 150 500 2518.9 3400.1 73.6681 39.9469 30.4000 2520.9 92.7737 0.7281 25.9167 0.0807
37 100 100 200 150 1107.4 1358.6 102.1064 46.0844 60.4000 1108.5 77.3447 0.4437 18.4364 0.1010
38 100 100 200 200 1362.7 1703.6 161.0181 49.2656 51.6000 1363.7 137.4408 0.4719 20.0013 0.0709
39 100 100 200 300 1774.1 2296.3 52.6927 38.4375 49.2000 1776 44.1224 0.5906 22.7256 0.1049
40 100 100 200 500 2742 3602.8 55.1760 45.6688 33.4000 2744.2 41.0465 0.7656 23.8907 0.0809
41 100 100 300 150 1495.9 1758.3 102.0865 65.8469 84.6000 1497.8 97.7465 0.5406 14.9401 0.1207
42 100 100 300 200 1782.6 2157.1 56.6420 45.8000 70.4000 1783.5 66.7431 0.5938 17.3630 0.0469
43 100 100 300 300 2196.5 2718.8 30.9680 50.4688 58.2000 2197.8 31.8063 0.7000 19.2058 0.0609
44 100 100 300 500 3259.4 4111.9 67.2305 73.8406 47 3261 91.4262 0.8625 20.7402 0.0461
45 100 100 500 150 2525 2768.5 140.0770 61.5875 89.4000 2525.2 130.6626 0.7438 8.7985 0.0105
46 100 100 500 200 2782.7 3146.5 73.4873 53.1187 67.6000 2786.3 105.9573 0.7813 11.5874 0.1255
47 100 100 500 300 3246.4 3765.5 128.5285 80.2375 76 3249.1 120.3366 0.8500 13.7950 0.0848
48 100 100 500 500 4159.1 5026.3 71.2547 90.6281 51.6000 4160.3 61.3897 1 17.2430 0.0282

where ρ1i and ρ2i for each i, are random numbers picked
from the interval [0, 2]. This procedure ensures that the
inducible region generated by the upper level and lower
level constraints be non-empty and bounded. Each input
data vector wk, for each probabilistic constraint in LBP2,
is chosen uniformly distributed from [0,1] while sk are
picked from the interval [ 12W̃k, W̃k]. Here, W̃k is computed
as W̃k = wTk 1n1 for k = 1 : K. Finally, vectors c1, c2, d1, d2
are randomly chosen from (0, 10] and α = 0.05. Again, this
procedure guarantees boundedness for the feasible region of
the bilevel instances, although it does not guarantee non-
emptiness anymore [10].

Without loss of generality we set the large value L needed
for the resolution of the MIP and LP formulations be equal
to L = 105. The IMM algorithm as well as the MIP and LP
formulations are implemented using Matlab 7.8 and Cplex
12.2. The simulations are run in a 2100 MHz computer with
2 Gb Ram under windows XP.

Table I shows numerical results for MIP1, LGN1 and LP1
while table II shows the same information for MIP2, LGN2
and LP2, respectively. These numerical results correspond to

averages computed over 50 sample runs for each instance,
except for the instances 33 to 48 in tables I and II. For
these instances, we only compute the average over 10 runs
since solving the MIP models become prohibitive for larger
instances. The two tables provide similar information. In
table I, columns 2 to 5 give the instance sizes. Column 6
provides the optimal solution of MIP1. Columns 7 and 8
give the upper bounds and the standard deviation obtained
while using IMM to solve LGN1. Columns 9 and 10 give
the cpu time in seconds and the number of LPs IMM needs
to converge. Similarly, columns 11 to 13 provide the upper
bounds we obtain with the LP1 relaxation, its standard
deviation and the cpu time in seconds. Finally, relative
gaps are given in columns 14 and 15 for LGN1 and LP1,
respectively. The gaps are computed as

(
Ubs−MIP1

Ubs

)
· 100

in each case.

Table II provides exactly the same information for MIP2,
LP2 and LGN2. The only difference now, is that the second
column gives the number of scenarios k = {1, ..,K} we
add in the leader’s problem. From the numerical results,
we mainly observe in table I, that the gaps decrease with
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Table II
UPPER BOUNDS AND OPTIMAL SOLUTIONS FOR THE STOCHASTIC PROBLEM (SLBPP)

# Instance Size MIP2 LGN2 Time LGN2 # LPs LP2 Time LP2 Gaps
K m1 m2 n1 n2 Ubs Std Ubs Std LGN2 LP2

1

25

25 25 100 100 784.3203 989.2347 33.8779 1.3563 21.4000 820.4212 34.9967 0.2172 20.6631 4.3371
2 25 25 100 250 1513.4 2019.9 43.3322 1.7859 14 1564.5 69.4705 0.2281 25.0775 3.2478
3 25 25 250 100 1433.4 1742.2 48.9163 3.5781 35.5000 1583 45.0512 0.2406 17.7093 9.4391
4 25 25 250 250 2082.1 2700.1 57.2095 4.0766 23.4000 2267.3 76.3264 0.3516 22.8960 8.1650
5

50

25 25 100 100 760 979.1 42.86 1.7828 23.6999 795.01 49.1429 0.2 22.3878 4.3532
6 25 25 100 250 1487.31 1990.43 53.6890 1.9218 14 1555.41 51.2573 0.2250 25.2638 4.3767
7 25 25 250 100 1399.5 1707 56.8898 3.6875 29.9000 1553.6 53.2098 0.2656 17.9859 9.8821
8 25 25 250 250 2127.5 2719.5 55.6479 3.9328 20.8000 2288.7 62.2031 0.3094 21.7517 7.0396
9

75

25 25 100 100 760.4551 986.0295 31.6953 2.5156 25.9000 807.3817 36.6528 0.2172 22.8722 5.7832
10 25 25 100 250 1497.7 1998.7 54.0413 2.6828 17.4000 1573.3 62.6726 0.2578 25.0623 4.7602
11 25 25 250 100 1388.2 1743.4 60.6976 4.1031 27.3000 1572.8 59.4721 0.2938 20.3690 11.7179
12 25 25 250 250 2131.8 2761.1 60.2416 4.9328 22.5000 2311.9 73.1240 0.3250 22.7843 7.7919
13

100

25 25 100 100 772.6953 1001.2 84.1361 11.4016 37 826.4422 65.5359 0.2500 22.6190 6.3321
14 25 25 100 250 1472.6 1966.2 71.4463 2.7703 16.1000 1535.6 56.7641 0.2641 25.0811 4.0855
15 25 25 250 100 1377.4 1726.4 41.9370 4.9156 26.5000 1552.3 35.1868 0.3234 20.2008 11.2598
16 25 25 250 250 2102.2 2708.9 76.7820 5.5844 22.1000 2283.2 84.8015 0.3625 22.3871 7.8996
17

25

50 50 100 100 604.5257 781.5844 58.1403 6.0828 33.6000 612.4399 55.7202 0.2172 22.6608 1.2270
18 50 50 100 500 2540.1 3455.1 71.2097 6.6953 14.9000 2585.6 65.6119 0.4031 26.4760 1.7418
19 50 50 500 100 2376.6 2822.8 58.5527 14.5063 45.9000 2645.4 62.4349 0.4484 15.7803 10.1482
20 50 50 500 500 4275.7 5460.6 89.9955 26.5719 33.7000 4594.6 122.9921 0.6375 21.6995 6.9387
21

50

50 50 100 100 626.8187 814.5498 67.9897 6.5563 31.9000 638.3389 69.7229 0.2250 23.1182 1.6959
22 50 50 100 500 2583.6 3489.2 73.0974 7.5297 15.6000 2631.8 88.4050 0.4188 25.9651 1.8243
23 50 50 500 100 2272.6 2747.3 68.7120 20.6469 54.5000 2581.8 66.2905 0.5047 17.2523 11.9420
24 50 50 500 500 4229.5 5455.9 68.9315 28.6516 34.5000 4577 80.0359 0.6859 22.4812 7.5911
25

75

50 50 100 100 622.8990 794.1815 78.9943 3.9438 12.6000 637.6912 70.7837 0.2422 21.3467 2.1283
26 50 50 100 500 2573.2 3484.7 90.6039 8.0594 15.8000 2632 121.2170 0.4266 26.1898 2.2405
27 50 50 500 100 2289 2757.2 54.4159 27.1641 57.5000 2588.4 70.9270 0.5641 16.9958 11.5822
28 50 50 500 500 4284.8 5507.7 143.5341 28.1391 31.8000 4641.4 126.0542 0.7375 22.1955 7.6747
29

100

50 50 100 100 663.1588 865.8819 88.8559 8.8281 30.7000 684.2872 77.8045 0.2531 23.3672 2.9595
30 50 50 100 500 2532.7 3456.1 59.4832 9.0188 16.4000 2592.8 71.4109 0.4422 26.7103 2.2995
31 50 50 500 100 2305.5 2821.9 74.0348 25.1313 49.4000 2649.8 66.3914 0.6234 18.2569 12.9559
32 50 50 500 500 4182 5405.5 109.3389 30.8578 32 4537.1 131.9653 0.8078 22.6406 7.8144
33

25

100 100 200 200 1246.5 1583 62.0970 54.3094 50.6000 1252.3 47.2326 0.4969 21.2346 0.4482
34 100 100 200 500 2634.2 3560.8 56.6990 54.5812 35 2688.9 35.4166 0.7688 26.0167 2.0287
35 100 100 500 200 2709 3153.9 130.3294 84.5500 77 2838.2 139.4445 0.8281 14.1019 4.4996
36 100 100 500 500 4074.9 5194.1 140.2969 118.9000 57.2000 4306 124.6958 1.0531 21.5359 5.3538
37

50

100 100 200 200 1260.4 1579.9 77.4642 52.2313 44.4000 1270.7 67.9033 0.5281 20.1980 0.7712
38 100 100 200 500 2697.9 3641.6 125.9619 42.6219 28.4000 2756 153.8828 0.7813 25.9101 2.0966
39 100 100 500 200 2562.8 3044.8 73.0194 148.5656 101.4000 2696 102.6904 0.8500 15.8426 4.9312
40 100 100 500 500 3978.4 5096.3 105.5789 125.0719 62.4000 4209.8 82.0509 1.1375 21.9291 5.4933
41

75

100 100 200 200 1255.6 1612.9 42.5691 85.2406 63.8000 1275.4 67.2191 0.5375 22.1537 1.5483
42 100 100 200 500 2711.9 3683.5 29.0749 51.3500 32.6000 2775.8 99.9843 0.8000 26.3931 2.3101
43 100 100 500 200 2586.1 3039.6 131.0485 108.6281 72.8000 2769.2 95.2660 0.9031 14.8680 6.6020
44 100 100 500 500 3983.2 5108.9 96.7893 113.1469 55.2000 4223.8 111.6474 1.1406 22.0329 5.6904
45

100

100 100 200 200 1318.8 1649.6 70.3429 90.2156 60.4000 1340.7 63.9094 0.5594 20.0475 1.6257
46 100 100 200 500 2681.1 3622.4 76.0711 57.9453 35.2500 2733.7 108.2080 0.8164 26.0016 1.8915
47 100 100 500 200 2549.2 3121.6 128.1110 154.1375 93.2000 2778 119.7769 0.9344 18.2931 8.1927
48 100 100 500 500 3992.3 5062.4 116.0704 122.7125 56.2000 4200.6 149.1135 1.1844 21.1434 4.9305

the size of the instances and that they are very tight when
compared to the optimal solution of the problem. On the
other hand, the cpu times show that the LP relaxations are
faster than IMM algorithm. For the latter, we observe a
rapid growth which is directly related to the size of the
instances. Concerning the average number of LPs IMM
needs to converge, we notice a slightly increasing trend.
Then, the growth in cpu time can be explained by the size of
the LPs it solves within each iteration. Finally, we can see
that the standard deviations show a constant behavior when
compared to the average upper bounds in both cases, for
the IMM and for the LP relaxation. The numerical results
in table II, are a little bit different. Here, we observe that
the relative gaps are not as tight as in table I for the LP
relaxations, but still better than those obtained with IMM
algorithm. Although, they become tighter as the size of the
instances increase which is an interesting result. We can also
see that the effect of increasing the number of scenarios
in the probabilistic constraints does not have a significant
impact on the numerical results. It is easy to note that
these gaps are tighter when n1 < n2. Concerning the cpu

times, we observe an increasing trend for the Lagrangian
approach while for the LP relaxation they almost remain
unchanged. The average number of LPs solved by IMM
shows a slight increasing trend. Finally, we observe that the
standard deviation behaviors are similar.

VII. CONCLUSION AND FUTURE WORK

In this paper, we computed upper bounds and optimal
solutions for a deterministic linear bilevel programming
problem and a probabilistic constrained linear bilevel coun-
terpart due to [7]. The upper bounds were computed using
the iterative minmax algorithm proposed in [10] and also
using linear programming relaxations we derived according
to the approach proposed in [1].

To this end, we transformed all the linear bilevel models
into the so called Global Linear Complementarity problems
from which we derived equivalent MIP and LP formulations.
Our numerical results showed tight relative gaps for the
upper bounds obtained with the LP relaxations. On the
opposite, those obtained with IMM algorithm were consid-
erably larger in all the instances we tested. In particular,
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we obtained better gaps on deterministic instances rather
than for the stochastic ones, which means that probabilistic
constraints decrease the effectiveness of the LP relaxations.

Finally, we argue that even when the LP relaxations give
tighter bounds on these specific problems, IMM algorithm
still provides a more general framework as it can be used to
handle any type of non-linear constraints. Therefore, future
research should also be devoted to strengthen IMM while
testing it on different types of problems.
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