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Abstract— With the gradual relaxation of credit around the 
world, the cost of losses experienced when extending credit is 
expected to become increasingly important to financial 
institutions. In this paper, we offer theoretical and empirical 
evidence to support the argument that the minimisation of this 
cost should be the primary objective when developing 
classification models for credit scoring. This cost can be 
referred to as the Expected Misclassification Cost. In addition, 
we present and test a system that builds models to minimise 
this cost when given varying values for its components. 
Moreover, we show that using differing values for the 
components of Expected Misclassification Cost can result in 
improved performance, in terms of Type I or Type II accuracy, 
when Expected Misclassification Cost is used as the prime 
evaluation metric by a support vector machine.  

Keywords- Credit Scoring; Decision Support Systems; 
Expected Misclassification Cost ; Support Vector Machines   

 

I. INTRODUCTION 
The assessment of credit risk is a very important task for 

financial institutions. This is in part due to the need to avoid 
losses associated with inappropriate credit approval or 
rejection decisions [1]. In recent years, credit scoring has 
emerged as one of the primary ways for financial institutions 
to assess credit risk [2]. Credit scoring entails the 
classification of potential customers into applicants with 
good credit and applicants with bad credit. This is done by 
analysing the applicant’s data based on a past pattern of 
customer behaviour [3]. 

Since Fisher’s [4] seminal paper, numerous models have 
been proposed, which attempt to differentiate between 
“good” and “bad” credit applicants. Many of these 
classification models are based on classical statistical 
methods such as Discriminant Analysis (DA), Linear or 
Polynomial Regression (LPR), Logistic Regression (LR), 
Non-Parametric Models (NPMs), Artificial Neural Networks 
(ANNs), and Support Vector Machines (SVMs) [5], [6], [7], 
[8], [9], and [10]. 

Whatever its form, many existing credit scoring models 
are built on samples of customer historical data, and their 
primary objective is to avoid over-fitting while maximising 
generalisablity from the samples [5]. As a result, improving 
test accuracy, as in (1), which is the measure of how 
accurately the model classifies credit applicants from a 

withheld dataset, known as the test dataset, is of importance 
[5] and [6]. However, this approach alone can lead to 
unsatisfactory results if the cost of making one type of error 
as opposed to another is not considered. We propose that 
credit scoring models can be improved if they are designed 
to minimise this type of cost called the Expected 
Misclassification Cost [11]. 

 
Test Accuracy = 

True Positive
True Positive+False Positive

+ True Negative
False Negative+True Negative

      (1) 

 
The remainder of this paper is organised as follows. In 

Section II, we discuss some of the problems which emerge 
when using test accuracy as the primary model evaluation 
metric, before discussing the rationale behind the use of the 
Expected Misclassification Cost as the model evaluation 
metric. In Section III, the Support Vector Machine 
algorithm, which is the classification algorithm 
implemented in our system, is discussed. The details of the 
dataset chosen as our case study are presented in Section IV. 
Described in Section V, is our parameter tuning algorithm 
and the methodology of the study. Section VI, discusses the 
results of the study, and Section VII highlights the 
conclusions and directions for future research. 

 

II. BACKGROUND 

A. Skewed Datasets 
When a classification model is designed to minimise test 

accuracy as its main objective, this can prove problematic if 
the training dataset is skewed in favour of one particular 
class over another (as is often the case in credit scoring 
exercises). This is because it becomes difficult to determine 
if higher test accuracy corresponds to an improved quality 
classifier.  The following example illustrates this point. 

Suppose we have a classifier that gives a test accuracy of 
99% when determining the creditworthiness of clients. At 
first glance, this system seems to be a good classification 
model. However, if the probability of a potential customer 
being un-creditworthy is 0.5%, it becomes clear that test 
accuracy tells us nothing about the quality of the classifier 
because 99.5 % test accuracy can be achieved by classifying 
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all applicants as creditworthy. Without a doubt, this second 
approach is unacceptable, because by simply approving all 
applicants, we are not detecting potentially “bad” clients. 

To solve this problem, many researchers often use the 
Precision, as in (2), and Recall, as in (3), evaluation metrics.  
Precision is the measure of how accurately we have 
classified our positive predictions (what fraction is correctly 
categorised), while Recall measures the proportion of the 
dataset, which was actually positive, that we predicted as 
positive.  Given our previous scenario, the algorithm that 
simply predicts that the applicant was creditworthy 100% of 
the time would continue to score 99.5% on test accuracy; 
however, it would score 0% accuracy on the Recall 
evaluation metric. As a result, tailoring classification models 
to improve Precision and/or Recall can help to improve 
classifier quality when the dataset is skewed.  

 
Precision = True Positive

# Predicted as Positive
= True Positive

True positive+False Positive
 (2) 

 
Recall = True Positive

# Actually Positive
= True Positive

True Positive+False Negative
 (3) 

 

B. Minimising Type I and Type II errors 
Another issue that arises when using total test accuracy 

as the performance metric to develop credit scoring models, 
is the problem of minimising Type I error, as in (4), and 
Type II error, as in (5). If we let the null hypothesis on any 
credit approval decision be that the credit applicant is un-
creditworthy, then a Type I error occurs when we reject the 
null hypothesis that the potential customer is un-creditworthy 
and grants them credit when we should have rejected their 
application. Conversely, a Type II error occurs when we 
accept the null hypothesis (that the applicant is un-
creditworthy) when we should have rejected it, and grant the 
client credit.  Developing a model to maximise Precision and 
Recall using the F1 Score, as in (6), which is a type of 
average for Precision and Recall, can assist with minimising 
both of these errors. Furthermore, models could be 
developed to minimise Type I and Type II errors separately 
and/or jointly. However, focusing solely on effectively 
minimising Type I and II errors or maximising Precision and 
Recall does not take into consideration the misclassification 
cost to the institution of making one type of error over 
another [11]. We believe that existing credit scoring models 
could be enhanced if this expected cost is taken into 
consideration when developing the model. 

 
 

Type I Error = False Positive
True Negative+False Positive

                (4) 
 

Type II Error = False Negative
True Positive+False Negative

                (5) 
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

            (6) 
 
 

The Expected Misclassification Cost, as in (7), is 
comprised of two component costs associated with each type 
of inappropriate credit granting decision or error. Where the 
variable Z, represents the Expected Misclassification Cost, X 
the Default Cost, Y  the Opportunity Cost, the variable a,  the 
probability of Type I error, and b the probability of Type II 
error. 

 
𝑍 = 𝑋𝑎 + 𝑌𝑏              (7) 

 
 

The Expected Default Cost is associated with making 
Type I errors. This type of error can have the most damaging 
effect on the institution as it often leads to the loss of credit 
principal and interest. This cost can be quantified as the net 
present value of the credit principal and interest (base rate 
plus margin*principal), multiplied by the probability of Type 
I error. The second error, Type II is associated with the 
Expected Opportunity Cost of rejecting a potential client 
who would have been creditworthy. As a result, this cost is 
simply the net present value of the interest (net interest rate 
spread*principal) that could have been made, had credit been 
granted, multiplied by the probability of Type II error. 

 

C. Motivation 
Intuitively, for credit-granting decisions, Type I errors 

should be weighted with higher importance than Type II 
errors [10].  This belief is due to the fact that when a 
financial institution grants credit to a customer who later 
defaults, the financial institution potentially loses 100% of 
the principal and interest on the investment. This is often a 
higher cost than the opportunity cost of making a Type II 
error, which is usually limited to the loss of interest on the 
investment. However, to seek to minimise Type I error while 
ignoring its impact on Type II error (as they are inversely 
related) could lead to increased Expected Misclassification 
Cost to the institution. This can be seen by the following 
simplified example. 

 Suppose an institution seeks to minimise Type I error 
while ignoring its impact on Type II. One way of achieving 
this would be to simply cease granting credit. However, if 
this was done, then the institution would face massive 
opportunity costs because it would not be earning interest. 
This means that there must be some optimal value for both 
Type I and Type II errors such that Expected 
Misclassification Cost to the institution is minimised. 

We present a system that produces credit scoring models 
which classify credit applicants as either creditworthy or un-
creditworthy, such that the Expected Misclassification Cost 
to a financial institution is minimised. In addition, we present 
a parameter tuning algorithm which selects the parameters 
Gamma and C for the SVM (RBF kernel) such that Type I 
and/or Type II errors are optimised when weighted according 
to default cost and opportunity cost. We verify our results by 
testing our system using the LIBSVM (RBF kernel), which 
is a state of the art SVM by Chang and Lin [12]. 
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III. SVMS  AND CREDIT SCORING  
The SVM was first developed by Cortes and Vapnik [13] 

for binary classification. To do this binary classification, 
SVMs attempt to find the optimal separating hyperplane 
between classes by maximising the margin (Fig. 1). The 
points lying on the boundaries are called support vectors, and 
the middle of the margin is referred to as the optimal 
separating hyperplane. This margin maximisation 
characteristic of SVMs is argued to improve the decision 
boundaries and hence lead to better classifier quality. 

 

A. SVM  use in Credit Scoring 
Over the past decade, SVMs have been successfully used 

in many credit scoring systems [14], [15], [16], [17], and 
[18].  However, the superiority of the SVM when compared 
to other classifiers remains debatable, as Van Gestel et al. 
[16] found that even though SVMs showed improved 
performance, there was no significant difference between 
SVMs, LR and LDAs. This finding supports a widely held 
view that modern learning algorithms approximate each 
other’s performance when given large datasets [19]. 
Consequently, although we use SVMs to implement our 
credit scoring system we suspect that other classification 
techniques may approximate or even outperform our system 
once designed to minimise Expected Misclassification Cost. 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 

  

B. SVMs Development for Credit Scoring  
When a financial institution is presented with a new 

credit applicant, in order to make the credit approval 
decision the institution seeks to classify the applicant as 
either “good” or “bad” according to the SVM score. In the 
case of a linear SVM this score can be represented as the 

linear combination of the applicant’s characteristics 
(features) multiplied by some weights, as in (8). 
 

𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯+ 𝑤𝑛𝑥𝑛 + 𝑏  (8) 
 

Where n represents the number of client features, the w’s 
and b are learnt parameters, and the x’s are client features. 
Transforming the w’s and x’s into column vectors, (8) can 
be written more concisely as; 
 

𝑧 = 𝑤𝑇𝑥 + 𝑏.                                 (9) 
 

       The SVM learns the parameters w and b from training 
examples of historic client data that the financial institution 
collected over time. This training dataset will normally 
consist of a number of example clients; as a result, from a 
geometric perspective, calculating the value of w and b 
means looking for a hyperplane which best separates “good” 
clients from “bad”. To do this, the SVM maximises the 
margin between the two clouds of data. As a result, when 
given a training example (x(i), y(i)

 ), such that y ∈ {-1,1}, the 
functional margin γ� , of (w, b) can be defined with respect to 
the training example as; 
 

γ� = 𝑦(𝑖)(𝑤𝑇 𝑥 +  𝑏).                         (10) 
 

In order to confidently predict the class of the training 
example the functional margin needs to be large. Thus, if y(i) 
= 1, then for the functional margin to be large wT x + b must 
be a  large positive number. As a result, if  y(i) = -1, then wT 
x + b needs to be a large negative number. Accordingly, 
given a training set S = {(x(i)

 , y(i) ); i = 1,…, m}, the function 
margin of (w, b) with respect to S is defined as the smallest 
of the functional margins of the  training examples, as in 
(11).  
 

γ� =  min𝑖=1,…,𝑚 γ�(i)                                         (11) 
 
 
        To find the geometric margin, γ, consider the case of a 
positive training example where x(i) corresponds to the label 
y(i) = 1. The distance from this point to the decision 
boundary, γ(i), is a straight line (vector) orthogonal to the 
hyperplane (Fig. 1). To find the value of  γ (i)  the 
corresponding point on the decision boundary is found. This 
can be easily determined since w/||w|| is a unit-length vector 
pointing in the same direction as w. Therefore, the 
corresponding point on the hyperplane is given by the 
equation x(i) - γ(i) ∙ w/||w||, and because this point lies on the 
decision boundary, it satisfies the equation  wT x + b = 0 
(Fig.  1), as in (12).  
 

𝑤𝑇 �𝑥(𝑖) −  γ(𝑖) 𝑤
∥𝑤∥
� + 𝑏 = 0                 (12) 

 
We can simplify (12) as following: 

 
Figure 1: Simplified Depiction of SVM Classification 
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𝑤𝑇𝑥(𝑖) − γ(𝑖) 𝑤

𝑇𝑤
∥𝑤∥

+ 𝑏 = 0 .                   (13) 
 

Since, wTw/||w|| = ||w||2/||w|| = ||w||, we solve for γ(𝑖), as is 
shown in (14);   
 

γ(𝑖) =  ( 𝑤
∥𝑤∥

 )𝑇𝑥(𝑖) +  𝑏
∥𝑤∥

.                      (14) 
 
 Generalising this representation to account for negative 
training examples, we have; 
 

γ(𝑖) = 𝑦(𝑖) [( 𝑤
∥𝑤∥

 )𝑇𝑥(𝑖) + 𝑏
∥𝑤∥

].                (15) 
 
Here, if ||w|| = 1, then the geometric margin is equal to the 
functional margin, In addition, the geometric margin is 
invariant to rescaling of the parameters (w, b).  As a result, 
given a training set S = {(x(i),  y(i) ), i = 1,…,m}, the 
geometric margin is the smallest of the geometric margins 
on the individual training examples (16). 
 

γ =  min𝑖=1,…,𝑚 γ(i)                                        (16) 
 
       Accordingly, when given a training dataset of past 
clients, it seems natural that the financial institution would 
want to find a decision boundary that maximises the 
geometric margin, since this would reflect a very confident 
set of predictions on the training data. Specifically, this will 
result in a SVM classifier that separates “good” and “bad” 
past clients effectively, thus giving the institution reliable 
information with which to make judgments about future 
credit applications. As a result, to find the hyperplane that 
achieves the maximum geometric margin the following 
optimisation problem is posed: 

 
max γ,𝑤,𝑏 γ, 

 
𝑠. 𝑡.  𝑦(𝑖)�𝑤𝑇𝑥(𝑖) + 𝑏� ≥ γ, 𝑖 = 1, … ,𝑚,         (17) 

 
∥ 𝑤 ∥= 1. 

 
However, because the ||w|| = 1 constraint is non-convex, the 
problem is transformed into one more suited for 
optimisation, as in (18). Here, if, γ� =1, then γ�/||w|| = 1/||w||, 
and maximising this is the same thing as minimising ||w||2. 
 

min γ,𝑤,𝑏   1
2
∥ 𝑤 ∥ 2, 

 
𝑠. 𝑡.  𝑦(𝑖)�𝑤𝑇𝑥(𝑖) + 𝑏� ≥ γ� , 𝑖 = 1, … ,𝑚.             (18) 

 
At this point, a regularisation term  ξ , is added to the 
optimisation problem posed in (18) to modify the algorithm 
so that it works for non-linearly separable datasets, as is 
often the case with credit scoring data. The term C is a 

turning parameter which weights the significance of a 
classification error to the overall model.   
 

minγ,𝑤,𝑏   1
2

 ∥ 𝑤 ∥2+  𝐶 ∑ ξ𝑖𝑚
𝑖=1 , 

 
𝑠. 𝑡.  𝑦(𝑖)�𝑤𝑇𝑥(𝑖) + 𝑏� ≥ 1 − ξ𝑖 , 𝑖 = 1, … ,𝑚,         (19) 

 
ξ𝑖 ≥ 0, 𝑖 = 1, … ,𝑚. 

 
      Equation (19) represents the primal from of the 
optimisation problem for finding the optimal margin 
classifier to separate “good” and “bad” clients. Given that 
this equation satisfies the Karush-Kuhn-Tucker (KKT) 
conditions, the condition 𝑔𝑖(𝑤) ≤ 0  is an active constraint. 
As a result, the constant to the primal problem can be 
rewritten as follows: 
 

𝑔𝑖(𝑤) =  −𝑦(𝑖)�𝑤𝑇𝑥(𝑖) + 𝑏� + 1 − ξ𝑖 ≤ 0.         (20) 
 
       To develop the dual form of the problem, the 
Lagrangian for the optimisation problem is constructed, as 
in (21). Where the  α𝑖 ’s and the ri’s  are Lagrangian 
multipliers. 
 
𝐿(𝑤, 𝑏, ξ,α, 𝑟) 1

2
∥ 𝑤 ∥2− 𝑐 ∑ ξ𝑖 −𝑚

𝑖=1 ∑ α𝑖�𝑦(𝑖)�𝑤𝑇𝑥(𝑖) +𝑚
𝑖=1

𝑏) − 1 + ξ𝑖� − ∑ r𝑖𝑚
𝑖=1 ξ𝑖                       (21)                                

 
Equation (21) is minimised with respect to w and b by 
taking partial derivatives with respect to w and b and setting 
them to zero. The equations derived are as follows: 
  

𝜕
𝜕𝑤
𝐿(𝑤, 𝑏, ξ,α, 𝑟) = 𝑤 − ∑ α𝑖𝑦(𝑖)𝑥(𝑖) = 0𝑚

𝑖=1 ,             (22) 
 

𝜕
𝜕𝑏
𝐿(𝑤, 𝑏, ξ,α, r) = ∑ 𝛼𝑖𝑦(𝑖) = 0𝑚

𝑖=1 .                (23) 
 
Solving (22) for w produces; 
 

𝑤 = ∑ α𝑖𝑦(𝑖)𝑥(𝑖)𝑚
𝑖=1 .                              (24) 

 
Therefore, substituting the definitions of w (24) and b (23) 
in (21) and including the constraints 0 ≤  αi ≤ C and 
∑ α𝑖𝑦(𝑖) = 0𝑚
𝑖=1  the dual optimisation problem is derived as; 

 
𝑊(α) = ∑ α𝑖𝑚

𝑖=1 − 1
2
∑ 𝑦(𝑖)𝑦(𝑗)α𝑖α𝑗 < 𝑥(𝑖), 𝑥(𝑗)𝑚
𝑖 ,𝑗=1 >, 

 
𝑠. 𝑡.  0 ≤ α𝑖 ≤ 𝐶, 𝑖 = 1, … ,𝑚,                     (25) 

 
∑ α𝑖𝑦(𝑖) = 0𝑚
𝑖=1 . 

 
This dual form (25) can be solved in lieu of the primal 
problem, in order to derive the parameters αi's that maximise 
W (α) subject to the constraints. These parameters can then 
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be used in (24) to find the optimal w's. Having found w*, the 
primal problem can be used to find the optimal value for the 
intercept term b. 
       Accordingly, after the classification model has been 
trained, when presented with a new credit applicant the 
equation wT x + b, would calculate and predict y = 1 if and 
only if this quantity is bigger than zero. 
 

(𝑤𝑇 𝑥 +  𝑏) = (∑ α𝑖𝑦(𝑖)𝑥(𝑖)𝑚
𝑖=1 )𝑇𝑥 + 𝑏          (26) 

 
Equation (26) can be rewritten as; 
 

∑ α𝑖𝑦(𝑖) < 𝑥(𝑖),𝑚
𝑖=1 𝑥 > +𝑏.                (27) 

 
This representation allows for the inclusions of kernels to 
deal more effectively with datasets which have multiple 
dimensions. Kernels map attributes to higher order feature 
spaces, and this is represented by replacing the x’s in the 
equation with the feature vector ϕ(x), as shown in (28). 
 
 

∑ α𝑖𝑦(𝑖)𝐾(𝑥(𝑖),𝑚
𝑖=1 𝑥) + 𝑏                       (28) 

 
Where, 

𝐾�𝑥(𝑖), 𝑥(𝑗)� =< ϕ(𝑥(𝑖)),ϕ(𝑥(𝑗)) > .             (29) 
 

IV. DATA  
A German credit scoring dataset was taken from the UCI 

Machine Learning Repository [20]. This dataset was 
provided by Prof. Hofmann of Hamburg University and 
consists of 700 examples of creditworthy applicants and 300 
un-creditworthy applicants. This dataset has been widely 
used in credit scoring research to evaluate the performance 
of classification models. The dataset measured twenty (20) 
features for each credit applicant comprising the following 
categories: the status of the client’s existing checking 
account, the duration of the credit period in months, the 
client’s credit history, the purpose for the credit, the credit 
amount requested, the client’s savings account/bonds 
balance, the client’s present employment status, the client’s 
personal (marital) status and sex, whether the client is a 
debtor or guarantor of credit granted by another institution, 
the number of years spent at present residence, the type of 
property possessed by the client, the client’s age in years, 
whether the client has other installment plans, the client’s 
housing arrangements (whether they own their home, rent, or 
live for free), the number of existing credits the client has at 
the bank, the client’s job, the number of people for whom the 
client is liable to provide maintenance for, whether the client 
has a telephone, and whether the client is a foreign worker.  

The data was pre-processed so as to transform all 
categorical data into numerical data for analysis. In addition, 
the data was normalised so as to improve the performance of 
the SVM. 

 
 

V. ALGORITHM AND METHODOLOGY 

A. Parameter Tuning Algorithm 
Begin  
1. Randomly sort sample applicant dataset. 
2. Split sample dataset into 3 sub datasets. 

a. Sub-dataset 1: Training (60%) 
b. Sub-dataset 2: Cross Validation (20%) 
c. Sub-dataset 3: Test (20%) 

3. For the # of parameters conduct grid-search 
 Select the pair of parameters (C and 

Gamma) based on how well they minimise 
expected misclassification cost on the 
Training dataset using the CV dataset. 

End for 
4. Use the pair of parameters from part 3 to train the 

model using Training dataset. 
5. Test the model for overall Test, Type I, and Type II 

accuracies using the Test dataset (reported results). 
6. Re-train the model using the full dataset and the 

pair of parameters selected in part 3. 
End 
 

B. Method 
Our empirical testing began by randomly sorting the 

dataset before splitting it into 3 sub-datasets; the training 
dataset, the cross validation dataset, and the test dataset. The 
initial step of randomly sorting the dataset was done in order 
to increase the probability of an equal distribution of clients 
across the 3 sub-dataset. To train for the minimisation of the 
components of the Expected Misclassification, we further 
subdivided the cross validation dataset into two data-files, 
each only containing positive or negative examples. To test 
for Type I and Type II accuracy the test dataset was also 
subdivided into two data-files, one with all positive and 
another with all the negative test examples. 

We implemented our system in OCTAVE 3.2.4 and used 
it to repeatedly train models using the LIBSVM package 
fitted with a RBF Kernel. These models where built using 
the training dataset and certain values for the parameters 
Gamma and C.  We used a grid search technique to find the 
parameters Gamma and C which minimised Expected 
Misclassification Cost using the cross validation dataset. 
When deciding on the search ranges for C and Gamma care 
was taken to ensure that ∃ C  and ∃ Gamma, within the 
search ranges, which produced models that have zero Type I 
error, and zero Type II error (on two separate models). This 
was an important step to ensure that each component of 
Expected Misclassification Cost could be minimised to zero. 
The usual approach when selecting the parameter ranges is to 
use known benchmarks.  However, these ranges may not be 
well-suited to every dataset and do not guarantee perfect 
Type I or Type II accuracy on any of the possible models. 

Having found the pair of parameters which minimised 
the Expected Misclassification Cost on the cross validation 
dataset, we used them to build our models. Three models 
were built using varying assumptions for Default Cost and 
Opportunity Cost. This was done in order to illustrate the 
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dynamic nature of our system. The results are presented in 
TABLE I. 

VI. RESULTS AND ANALYSIS 
The first model shown in the TABLE I was built 

weighting Default Cost and Opportunity Cost equally. As a 
result, the minimisation of Expected Misclassification Cost 
equated to the minimisation of overall test accuracy. We use 
this model as a control to illustrate the variations in 
performance achievable if different weights are used when 
setting Default Cost and Opportunity Cost. This first model 
surpassed most contemporary classifiers in terms of Type I 
accuracy on this dataset (TABLE II). This performance is 
interesting because many existing SVM classifiers that have 
reported results on this dataset were highly optimised for 
performance while our system is not. The reason for our 
relatively superior performance could be attributed to the fact 
that we selected the parameter ranges to ensure that errors on 
both Type I and Type II error metrics could be minimised as 
low as possible. However, further investigation into this 
hypothesis needs to be conducted to confirm our intuition.  

 
 

TABLE I.   MODELS AND ACCURACIES 
 

Model Parameters Accuracies (%) 

 Gamma C Train   CV Type 
 I 

Type 
II 

Test 

 
1 

 
2-50 

 
257 

 
74.83 

 
73.13 

 
66.66 

 
73.24 

 
71.36 

 
2 

 
2-50 

 
249 

 
71.16 

 
69.84 

 
75.45 

 
66.20 

 
68.84 

 
3 

 
2-50 

 
241 

 
76.66 

 
76.12 

 
40.35 

 
90.14 

 
75.88 

 
 

TABLE II.   PERFORMANCE COMPARISONS  
 

Models Accuracies (%) 

 Type I Accuracy  Type II Accuracy Total Accuracy 

 
Model 1 

 
66.66 

 
73.24 

 
71.36 

 
Model 2 

 
75.45 

 
66.20 

 
68.84 

 
Model 3 

 
40.35 

 
90.14 

 
75.88 

 
 Yu et al. [10] 

 
53.57 

 
90.33 

 
78.46 

  
Wang et al. [15] 

 
45.62 

 
89.44 

 
76.30 

  
Ahmad et al .[21] 

 
66.66 

 
88.08 

 
81.42 

 
 
The second model (TABLE I) was built with the 

objective of reducing Expected Default Cost (weighted Type 
I error), while placing less emphasis on Expected 
Opportunity Cost (weighted Type II error). To achieve this, 
Default Cost was set to one while Opportunity Cost was set 

to one-half. As a result, when the system selected parameters 
to minimise Expected Misclassification Cost, the Expected 
Default Cost was weighted twice as significant as the 
Expected Opportunity Cost. This process successfully 
achieved better performance (75.45%). As shown in TABLE 
II, this result surpassed the performance in terms of Type I 
accuracy of many of the known published SVM systems on 
this dataset, while still remaining relatively generalisable  at 
68.84%  test accuracy. We attribute this performance to the 
fact that when given the input values for Default Cost and 
Opportunity Cost our system selected parameters for the 
model which placed more emphasis on the reduction of 
Expected Default Cost which is calculated based on Type I 
error. Focus was placed on Expected Default Cost because it 
was the primary contributor to Expected Misclassification 
Cost in this model. 

The third model presented in TABLE I was built with the 
intention of reducing Expected Opportunity Cost (weighted 
Type II error), while weighting the impact of Expected 
Default Cost (weighted Type I error) with less importance. 
To achieve this, Default Cost was set to one-half, while 
Opportunity Cost was set to one. As a result, this model 
showed a 16.9% improvement in terms of Type II accuracy 
when compared to the control (Model 1). In addition, this 
model showed an improvement of 4.52% over the Model 1 
in terms of test accuracy (75.88%). However, this model 
resulted in a 26.31% fall in terms of Type I accuracy. We 
attributed this occurrence to the fact that the model is 
weighted to select those parameters for C and Gamma which 
minmise the Expected Opportunity Cost since it had a 
greater impact on Expected Misclassification Cost in this 
model.  

VII. CONCLUSION AND FUTURE WORK 
In this paper, we presented a system for the minimisation 

of the expected cost to financial institutions when making 
credit granting decisions. We showed that the minimisation 
of this cost, which is referred to as the Expected 
Misclassification Cost, can be achieved by considering its 
components when building classifier models. In addition, we 
showed that this approach can lead to performance gains by 
increasing Type I and Type II accuracy. 

Future work will consider the generalisablity of this 
approach to other classifiers and classification problems. In 
addition, other studies will investigate the advantages and 
disadvantages of using Expected Misclassification Cost as 
the primary model evaluation metric in combination with 
ensembles, bagging, boosting and other SVM performance 
enhancing techniques. 
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