
Transforming Source Code Examples into Programming Tutorials

Roger Rudolph Gajraj

Department of Computing & Information Technology

The University of the West Indies
St. Augustine, Trinidad

roger.gajraj@uog.edu.gy

Margaret Bernard

Department of Computing & Information Technology

The University of the West Indies

St. Augustine, Trinidad

margaret.bernard@sta.uwi.edu

Malcolm Williams

Department of Computer Science

The University of Guyana

Turkeyen, Guyana

malcolm.williams@uog.edu.gy

Lenandlar Singh

Department of Computer Science

The University of Guyana
Turkeyen, Guyana

lenandlar.singh@uog.edu.gy

Abstract—One popular approach to teaching computer

programming is to use example programs to demonstrate

programming concepts. We propose to increase the

pedagogical value of example program source code by

transforming them into self-explaining tutorials within a

learning integrated development environment. In this paper,

we present a stepwise instructed implementation of annotated

example code. Source code with instructor comments is parsed

and processed to create an intelligent learner environment.

Students are guided step by step to develop the program

solution. Explanations are auto-generated for each line of code;

these come from an author’s comments as well as extended

explanations dynamically generated for certain coding

constructs. Explanations are presented to the learner in

multiple modes using the full range of multimedia displays.
Source code examples can be used as self-contained tutorials.

Keywords-e-learning; educational technologies;

programming pedagogy; source code examples; integrated

development environment

I. INTRODUCTION

Teaching by example is a well established method for
teaching computer programming. Experienced teachers of
programming prepare suitable examples of program code
which illustrate the particular programming construct that is
being taught; students learn from these examples by seeing
how the construct is used in problem solving as well as
familiarizing themselves with syntax and semantics of the
language. These example programs may be made available
to the student in digital form and students may be
encouraged to run the code in some IDE. Many
programming textbooks use this approach of teaching by
example.

In this paper, we present a computer aided example-
based approach to teaching and learning programming.
Students are guided step-by-step to construct the examples
that the instructor has already prepared. We also present a
learner‟s integrated development environment (L-IDE),

called CSmart, which facilitates this guided instruction. The
instructor creates annotated example programs which can
illustrate the use of a programming concept. When the
student selects that example problem, he is not shown the
solution code immediately; rather he is guided through step-
by step instructions so that he can develop the program
solution which the instructor/expert has prepared. This is
done dynamically, in real time, where the example source
code with instructor‟s annotation is parsed and used to
generate explanations of the programming construct in focus.
The explanations generated are a combination of text and
visual representations. The intelligence is built into CSmart
so that instruction is not static but relates to the point in the
program that the student is working on. CSmart stores values
of variables in the program and is able to present to the
learner exactly what is happening with the code that he is
typing in.

This example-based pedagogical approach for teaching
and learning programming actually combines the traditional
approach of learning by example with learning by doing and
learning using visualization. It can be used for novice
programmers where the instructor examples are simple one-
task programs, with possibly just one construct (a FOR loop,
for example). The approach can also be used to develop
more experienced programmers where the instructor
examples focus not so much on syntax but on expert
techniques for problem solving. Most instructors have a bank
of example programs that they reuse with different student
groups. The CSmart environment allows the instructor to
create a repository of annotated examples, categorized and
sequenced in any manner that the instructor prefers.

In the following sections, we present our pedagogical
approach after highlighting related work and discussing their
approaches. The CSmart environment is then detailed to
show how it embodies our novel pedagogical concept by
processing source code examples as tutorials themselves.

160

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

II. BACKGROUND

A. Related Literature

In a study of difficulties faced by novice programmers,
both students and teachers valued example programs as the
most useful type of learning material [1]. Most sources of
static examples are accompanied by explanations in varying
degrees of detail and usefulness. Programmers
conventionally seek example code in resource repositories
such as tutorial web-pages, forums and books. These
examples can then be implemented in a separate integrated
development environment (IDE) and then compiled to run
the resulting executable program. This is done to gain deeper
understanding of what example code really does at runtime
execution.

Using source code to aid in the learning of programming
has been explored by environments such as „WebEx‟ [2],
„Jeliot‟ [3] and „BlueJ‟ [4]. „WebEx‟ presents example
source code with annotations explaining relevant lines of
code. A read-only exploration of an example is done by
altering the visibility of annotations. „Jeliot‟ focuses on auto-
generating visualizations of source code‟s execution at run-
time. „BlueJ‟ also parses source code like „Jeliot‟ but to
produce visualizations promoting object oriented concepts
only. In addition, „BlueJ‟ is a simple IDE that provides
graphical and textual editing of source code which can be
further compiled.

Of the aforementioned environments, only „WebEx‟
focuses on directly leveraging pedagogical value from
example source code by presenting textual explanations of
individual lines of code. However, „WebEx‟ hardly differs
from reading static commented source code because it only
allows interactivity with reading annotations which is similar
to reading extended comments. Also, there is no IDE support
for a user to gain insight from the experience of an example
program‟s behavior at run-time.

None of the environments mentioned provide guidance
for the actual activity of programming implementation. In
addition to an instructor explaining example code in
traditional lab environments, students are often guided to
implement the example and encouraged to change and apply
the example in order to solve a similar problem. Guided
implementation of example code could assist in reducing
cognitive overheads while learning to program.

B. Pedagogical Approach

We propose to increase the pedagogical value of source
code by transforming them into self-explaining tutorials
within an integrated development environment. This
pedagogical approach to teaching and learning programming
actually combines the traditional approach of learning by
example with learning by doing and learning using
visualization. This 3-pronged approach combines strategies
which individually are well established in the literature as
being effective for teaching and learning programming [1, 5].

Each line in a source code example can be presented as
an instruction for a learner to actually type into the
environment. We posit that this instructed implementation
activity promotes learning by doing. In addition, the

guidance to implement working code may reduce cognitive
overheads that may hinder the learning process.

Teachers and books often try to explain source code
examples line-by-line. Comments belonging to selected lines
of source code can store an author‟s explanation of its
intended purpose. As a result, we propose to use comments
to annotate lines of source code. These annotations can be
positioned strategically within an IDE at the same time the
instructed implementation activity is carried out by the
learner.

Visualization is also used as an effective pedagogical
technique [5]. Visualization of what certain code constructs
are doing can be provided as graphical annotations alongside
the textual annotations. The approach taken is different from
algorithm visualization, which focuses on visualizing an
entire algorithm. We rather focus on visually explaining a
line of code by itself. Visuals are presented as metaphorical
representations of code semantics.

We call this entire pedagogical approach “stepwise
instructed implementation of annotated example code”.

III. LEARNER INTEGRATED DEVELOPMENT

ENVIRONMENT

Traditional IDEs provide little support for novice
programmers who attempt to learn programming from
example code. Beginners may have to type example code
into an IDE either from book sources or “copy and paste”
from electronic media sources. We propose a “learner‟s
integrated development environment” (L-IDE) concept
which supports the use of example code to aid in the learning
process.

We have created a L-IDE model which parses actual
source code files into a presentable format more amenable to
learning. A beginner is guided through implementation of an
example program. Code comments are extracted and
provided as annotations for respective lines of code.
Visualizations are generated dynamically from code which
attempt to give a graphic representation to aid understanding
of abstract programming concepts. After guided
implementation of example code, a beginner programmer
has the option to edit the example and/or compile and
execute the code with possible error feedback.

The following sub-sections describe the features of our
L-IDE called „CSmart‟. Currently, CSmart is limited to
parsing source code of the C programming language.

A. Information Extraction

Tutorials are created dynamically where example source
code files are parsed and presented in a richer format that
aids learning. Figure 1 shows how an actual line of code and
relating comment is parsed from a source code file and
displayed to the learner as an informal instruction within
CSmart‟s editor.

B. Stepwise Guided Implementation

In applying the step-wise guided technique, the learner is
instructed to type out each line of code in an example. This
stepwise approach fosters learning through learning by
doing. In the „CSmart‟ L-IDE, the example code that is to be
typed out, as part of encoding the program, is placed under

L-IDE editor

161

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

the cursor – within a tooltip – in full view of the
programmer, while they type the code on the line above the
tooltip guide (see Figure 1 and Figure 2).

Figure 1. Code and comment extraction from source code

Similarly, the comments that explain a line of code are
placed just beneath the line of code. This allows very little
overhead of copying code because it is very close to the
input area, specifically, where the cursor is located within the
editor area. We posit that the strategic presentation all of
these pieces of information (i.e. presenting a lot of
information in a small space without overloading the user)
increases the information content of the user interface, and
facilitates learning.

C. Explanation of Code

Example source code demonstrates select programming
concepts which can be explored by the learner in order to
foster learning and understanding. A line by line explanatory
approach was used to explain example code. This allows
learners to focus on the semantics of the programming
language. To best explain examples visually and textually,
Clark & Mayer provide the following tested guidelines in [6]
which were considered and incorporated into the design:

 “multimedia principle” which involves appropriate
use of text, audio and graphics

 “contiguity principle” ensuring words align to
graphics

 “segmenting principle” where small manageable
chunks of data are presented at a time to the user

These principles were applied to explain lines of code

visually, textually and audibly. These techniques are further
illustrated in the proceeding sub-sections.

1) Annotation from Comments

Comments from source code files are used to provide
auto-generated annotation of the corresponding lines of code
that the learner types out in the L-IDE text editor. Where no
comments exist in the example source code, no auto-
generated explanation for those lines of code is generated.
Authors of tutorials (example code) are encouraged to create
better tutorials by including comments in each line of code.
It is the human tutor‟s responsibility to ensure
appropriateness of explanation of lines of code.

In addition, there is an automatic display of extended
explanations of certain coding constructs. Certain coding
constructs may be keywords or popularly used functions of
the C programming language. These extended explanations
intelligently appear next to the editor area whenever certain
coding constructs are used in a line of code in order to
augment the learning process.

For example, a line of code and comment within a source

code file may be:
int x = 9; //declare a variable and initialise

From the previous line of code above, Figure 2 shows

how the comment – as an explanation – is displayed just
under the instructed line of code to be typed out.

2) Information pane for Keywords and Functions

The CSmart environment displays additional information
when keywords and functions from the C standard library are
found while parsing lines of code. This intends to give a
learner a better understanding of how to use keywords and
functions.

Figure 2. Textual explanation of instructed line of code to be typed out

For example, the left pane in Figure 2 beside the editor
dynamically displays additional information on the „int‟ -
integer - data type that is found in the line of code.

3) Visual explanation of source code

Visual explanations of code constructs are automatically
generated just under comments that explain an instructed line
of code that is being typed out. Visuals attempt to explain
coding constructs with very little prerequisite of
programming concepts. Beginners may understand
programming concepts easier by being able to relate to
visuals.

Figure 3. Visualization for output function „printf‟

For example, the popular „printf‟ statement for output to
screen is portrayed (see Figure 3) by showing the output on

source code file

L-IDE

Source code

162

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

an image of a computer monitor. The intention is to get the
learner to understand what printf does – it outputs text to
screen. In another example (see Figure 4), variables are
portrayed as containers because a container can hold an item
like a variable holding data.

Calculation and assignment based visuals are
dynamically generated from a trace-table data structure that
keeps track of the data in variables. The trace table is used to
show what data is moved and/or replaced within variables
during calculations and assignments. An extension of the
java programming language called „Groovy‟ [7] was used to
evaluate loop and conditional expressions and to provide the
inputs into the visualization module. Figure 4 shows a
calculation where the data in variable „x‟ is added to the
number seven (7) to give the sum of sixteen (16) that is
further animated by moving the number sixteen (16) into the
„y‟ container representing the „y‟ variable. This animated
path is represented by the broken line in Figure 4.

Figure 4. Visualization of calculation and assignment of data to variable

D. Compilation and Execution

The „CSmart‟ L-IDE provides the opportunity to compile
and execute implemented source code during a tutorial.
Learners can see how a program behaves from its
implemented example code.

Additionally, users may experiment with example code
in terms of changing literals and variables in the original
example. Compilation of modified code with error feedback
is possible with additional support from an incorporated C
compiler.

IV. DISCUSSION

The learner integrated development environment‟s ability
to create tutorials directly from source code infers a high
ease of adoption by instructors as a teaching tool. There is
neither a new method nor syntax to learn in order to create a
tutorial. Tutorials are source code examples themselves and
the quality would vary based on how instructors annotate
lines of code with comments. Repositories could store high
quality source code examples for re-use.

Instructors can focus on helping students individually
instead of losing time to write and explain examples
verbally. Students are able to go through tutorials at their
own pace via a computer based pedagogical resource which
could promote better learning.

As classroom sizes increase, students gain less attention
from instructors. However, all students will be exposed to
the same quality of pedagogy via a L-IDE such as „CSmart‟.

V. CONCLUSION AND FUTURE WORK

This paper presents a work in progress, where a
development environment is being used to deliver
programming tutorials from source code examples.
However, the pedagogical presentation of visual and textual
explanations together with interactive implementation is
constrained by the content within a source code example.
Therefore, the quality and context of a tutorial is controlled
by an example source code‟s content; code is instructed to be
typed in an editor while it‟s relating comments are presented
as annotations.

Experimental evaluation of the combined pedagogical
approach, within the L-IDE, is the next step for future
research. Initial evaluation of this pedagogical approach,
within the „CSmart‟ environment, was encouraging as
reported in [8]. Participants in the evaluation rated their
understanding of tutorials at a mode of eighty percent (80%).
All participants reported that the L-IDE was helpful and they
felt that they learnt some programming. These results were
further supported by the following unsolicited comments
from the participants:

 “made concept simple”

 “it helped to make things a little more understandable”

 “at least I learnt something by doing the tutorials”

 “boosted my knowledge”

Visualization could be enhanced by fading from a

metaphorical representation of source code execution to a
machine level representation in order for learners to gain a
deeper understanding of how a program works at run-time.

If future evaluations show a positive effect of the

pedagogical approach in a real learning process, students can
use a L-IDE environment to learn programming on their
own, just as if an instructor is there to guide them in person.

REFERENCES

[1] E. Lahtinen, K. Ala-Mutka, and H. Järvinen, “A study of the
difficulties of novice programmers,” Proc. 10th annual
SIGCSE conference on Innovation and technology in
computer science education (ITiCSE '05), ACM, 2005, pp.
14-18, doi:10.1145/1067445.1067453

[2] P. Brusilovsky, I. Hsiao, and M. Yudelson, “Annotated
program examples as first class objects in an educational
digital library,” Proc. 8th ACM/IEEE-CS joint conference on
Digital libraries (JCDL '08), ACM, 2008, pp. 337-340,
doi:10.1145/1378889.1378946

[3] A. Moreno, N. Myller, M. Ben-Ari, and E. Sutinen, “Program
animation in jeliot 3,” Proc. 9th annual SIGCSE conference
on Innovation and technology in computer science education
(ITiCSE '04). ACM, 2004, pp. 265-265.
doi:10.1145/1007996.1008099

[4] M. Kolling, B. Quig, A. Patterson, and J. Rosenberg, “The
BlueJ System and its Pedagogy,” Journal of Computer
Science Education, Special Issue on Learning and Teaching
Object Technology, Vol 13, No 4, Dec 2003.

[5] J. Bergin, K. Brodie, and M. Patiño-Martínez, “An overview
of visualization: its use and design: report of the working
group in visualization,” Proc. 1st conference on Integrating
technology into computer science education (ITiCSE '96),
ACM, 1996, pp. 192-200, doi:10.1145/237466.237647

163

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

[6] R. Clark and R. Mayer, “E-learning and the science of
instruction,” 2nd ed., San Francisco: Pfeiffer, 2008.

[7] D. Koenig, A. Glover, P. King, G. Laforge, and J. Skeet,
“Groovy in Action,” Manning Publications Co., Greenwich,
CT, USA, 2007.

[8] R. Gajraj, “A Computer Based Programming Pedagogy:
stepwise instructed implementation of explained example
code,” Thesis, unpublished.

164

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

