ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Porting of C library
Testing of generated compiler

Ludek Dolihal

Department of Information systems
Faculty of information technology, BUT
Brno, Czech Republic

idolihal@fit.vutbr.cz

Abstract— For testing the automatically generated C compilefor

embedded systems on the simulator, it is necessaty have
corresponding support in the simulator itself. Testhg programs
written in C very often use 1/O operations. This camot be done
without support of C library. Hence the simulator must provide
an interface for calling the functions of the operion system it
runs on. In this paper we provide a method that eables
programs to run, which use functions from the standrd C

library. After the implementation of this approach we are able to
use the function provided by the C library with limitations given
by the hardware.

Keywords - Porting of a library; C library; compiler testing;
simulation.

. INTRODUCTION

One of the goals in our research group is an automa

generation of C compilers for various architectu@srrently,

Tomas Hruska

Department of Information systems
Faculty of information technology, BUT
Brno, Czech Republic
hruska@fit.vutbr.cz

we want to provide the C compiler for a given patf as C is
one of the main development languages for embesigidms.
The C compiler is automatically generated fromadhecription
file. Besides the C compiler there are a lot ofddbat are also
generated from the description file. The toolstidel mainly:

« simulators,

« assembler,

- disassembler,

« profiler,

- hardware description.

Simulators can be either cycle accurate or intSbon
accurate. The profiler was thoroughly describedhia article

(2].
The description file is written in ISAC [3] langge. The

we are working on Microprocessor without Interlodke ISAC language is an architecture description laggu@DL).

Pipeline Stages (MIPS). To minimize the number roérs in

the automatically generated compilers, it is nesbgs® put the
generated compilers under test. Because the vgnotess of
compiler generation is highly automatic and we dohave all
the platforms, for which we develop, available festing, we
use simulators for compiler testing instead of tiéps or
development kits. If one wants to test the C cdenpiithin

any simulator, it is necessary to add the supparttiie C
library functions into the simulator, which is uded testing.

The support of the library is crucial in our prdjed/e need

to use tests written in C for the compiler testargl the tests
memory

commonly use 1/O functions, functions for
management, etc. This paper presents the idedtiof fithe
simulator, where the testing is performed, withprpof the C
library and later on the implementation of this huet.

The paper is organized in the following way; theoswl
section provides the position of the testing in thiesom
project, then a short overview of related workiigeg, section
four discusses the reasons for choosing the libri&ections
five and six discuss the theoretical and practisiale of
adding the library support into the simulator. &sttseven
concludes the paper.

Il. POSITION INLISSOM PROJECT

In the Lissom project [1], we focus mainly on hagdes
software codesign. In order to deliver the bessides services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

It falls into the category of mixed architecturesdeaption
languages.

We would like to produce the whole
development environment (IDE) for
codesign. This IDE should provide all the necessagys for

integrated

developers when designing embedded systems from the

scratch. The simulators are part of the IDE andQHibrary is
part of the simulators.

The tool for generating compilers is called backmmdand
is also embedded in the
programmed manually; it is not generated. The gualf a
compiler is crucial for the quality of software tha compiled
by the compiler. Hence it is very important to tiésst compiler
that is generated by the backendgen. Through fogatie
errors in the compiler itself we can afterwardsiifg and fix
problems in the generation tools and in the wheleetbpment
process.

The primary role of the C library is to enlarge thege of
constructions that can be used during the procégssting.
Without all doubts it is important to test the ltasbnstructions
such as if statement loops, function calls, etc. tte other
hand it is highly desirable to have a possibilify ppinting
outputs or the exiting program with different exdlues and
this can not be done without C library support.tEzglues are
the basic notification of program evaluation anduwiging
dumps are also one of the core methods of debugdiote

125

hardware software

IDE. The backendgen was

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

that all the tests are designed for the given exhidystem,
and the tests are run on the simulator.

Secondary role of the library in the whole proceds
development is providing additional functions foritimg
programs. One of the most used groups of functiare
functions for allocating memory, string comparis@md
parsing, input/output methods, etc.

As it is possible to generate several types of kitots in
Lissom project, it will be necessary to add thedily support
into all types of simulators. It should not includeny
substantial changes to the process of generation.

Il. RELATED WORK

Simulators in general are one of the most popuhutisns
as far as embedded system development is concérnegare
very often used for testing. We tried to pick upvesal
examples that are connected to embedded
development, and were published in the form ofréiole. The
Unisim project is not aimed at embedded systempimyides
an interesting idea.

In [4], a system very similar to the one that iveleped
within our project is suggested. It is called Upfashe article
describes system that generates different toolsn fra
description file such as we do. The article mergidimat C
libraries were developed, but no closer informat®given. It
seems that in the simulator of the Unisim projéet support
for C language library has been right from the beigig.
Unfortunately, this is not our case. Porting of fibrary is
critical for us, because without the support iésy difficult to
test and evaluate the results of any tests.

Another interesting system including a simulator
described in [5]. The project is called Rsim andoisused on
the simulation of shared memory multiprocessorsie Rsim
project works under Solaris. The Rsim simulator oah use
standard system libraries. Unfortunately, it is eaplained
why. Instead the Rsim provides commonly used liesaand
functions. The Rsim simulator was tested for suppbra C
library. All system calls in the Rsim are only emated, no
simulation is performed. In our system we will slate the
calls when necessary. The Rsim does not suppoetnaigally
linked libraries and our system also does not camgiynamic
linking at the current state. Unfortunately, in #icle [5] is
not mentioned how the support for C library funotiowas
added into the simulator.

The articles above are all related to simulatiofise C
programming language is not a new one and it ispossible
to list all the articles that are in any way rethte any library
of C language. The simulator is either created way that it
already contains the library or it has at least esanterface
which makes it easier to import the library in ciss wrapped
in a module. Unfortunately, our simulator does nohtain
such an interface.

IV. CHOOSING THE LIBRARY

As we are focused mainly on embedded systems and we

design the whole process of compiler developmantiem we
dedicated quite a lot a time to choosing the coribrary. It

was clear right from the beginning that glibc i®diessly large
and therefore not suitable for use in embeddedeByst We
need a library that satisfies the following crigeri

minimalism,

systems

- support for porting on different architectures,
well-documented,

+ new release at least once a year,

« compatibility with glibc,

« modularity.

All these conditions were satisfied by very fewrdibes.
Amongst those we chose uClibc [7]. This librarylasgely
minimalistic. It does not contain certain modulégcause,
according to the authors, it would be against theciple of
minimalism. In certain areas it sacrifices betterfgrmance in
favor of minimalism. For example, functions for I&duld be

isoptimized for different platforms, but there istjose version

for all platforms written in portable C that is opized for
space.

V. THEORY OF PORTING

The main reason for porting the library into a deor is
the fact that we need to add the support for Ctfons into the
simulator itself. To be precise, we want to use tiee
functions such as printf, malloc, free, etc. in flnegrams that
will be used for testing of the compiler. And besauve do not
posses the development kits for all the platformsvbich we
run our tests we use simulators instead.

If one does not grant libc library support in theudated
environment, the number of constructions we canamsktest

The Unisim project [6] was developed as an openg very limited.

simulation environment which should deal with saVerucial
problems of today simulators. One of the problesns lack of
interoperability. This could be solved, accordinghe article,
by a library of compatible modules and also by abdity to
inter-operate with other simulators by wrapping nthénto
modules. Though this may seem to be a little outoof
concern, the idea of an interface within the sirnuslahat

Consider the following simple example written in C:

int main(int argc, char **argv)

{

if(stremp(“alpha”,”beta”)==0)

allows adding any library, is quite interesting.dar case we {return 1;}

will have the possibility to add or remove modufesmm the
library in a simple way. But the idea from the Umsproject
would make the import of any other library far @aghan it is
now.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

else

{return 0;}

126

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Even this simple program can not be executed, lsecdu
uses function strcmp that is part of the C librdrgis program
can not be compiled unless the inclusion of sthingnd
possibly some other header files is performed.

On the contrary the main aim of testing is to casmwide
an area as possible and also try as many diffecembinations
of functions as we can. However, this goes agdinesidea of

embedded solutions. And because we focus espeaally
embedded systems, we do not even try to cover hall t

functions provided by glibc, or in our case, uClibt fact we
will use and hence test only functions that can woder the
simulated environment and are useful for the prograhat
will be executed on the given platform. Moreoverbeaded

systems are not designed for use of vast numbers of

constructions that programming languages offer. iGally
there is just one task, usually quite complicatdtht is
launched repeatedly. The functions we will use ®rjost a
small part of uClibc. The functions that are moportant to us
can be easily removed via a configuration interfame

manually. The following categories are examples of

unimportant functions:

- threads, we assume that in simple programs for

embedded systems one will not use threads,
« locales, all the locales were removed from thealiar

« math, functions for computing sin, cos, etc.

- inet module, even though networking plays an
important part in modern embedded systems the

whole module was removed,

- files and operations with files, our applicationedo
not need an interface for working with files.

Now we come to the important parts of the libré&imply
spoken all that really has to remain from the liprare the
sysdeps, this is the core of the whole system (twowadlocate
more memory, etc.), then important modules sucstdie (for
outputs, inputs) and other modules we wish to pwesén our
case we wished to preserve the following partshef uClibc
library:

- stdio, this was the main reason for porting theali,
to get in human readable form output from the &ihou,

There are several ways of building the library aiso
different methods of using it. There is a posdipitif building
a position independent code (PIC). Even though ihigan
interesting solution we decided against it. Inste&dPIC we
are going to compile the library into a single @bjand then
link it to the program statically. The position thie library in
the whole process of testing is shown in figure 1.

Program S uClibc
il

Simulator

I

Operation System

g

Hardware

Figure 1. Position of the library in testing system.

Let's return to the functions that remain in thardiry. They
can be divided into two groups. The first group sists of
functions that are completely serviced within theuwated
environment. For example, function strcmp fallsoirthis
category. This function and its declaration remaimthanged
within the simulator if it is written in portable .CThese
functions are not tied with kernel header filestisere is no
need to change them.

The second group of functions consists of functitrad are
translated to the call of system function. Furrciiointf can be

. amodule for working with strings and memory, i ou used_as an examplg of t_his group of functions. Gettieof printf
applications we would like to use functions such adunction can be divided into three phrases thaillrsirated at

memcpy, strcpy, strcat, etc.,
« memory functions, for example malloc, free, realloc

. abort, exit,

« support for wchar, but without support of different

encodings.

Some parts of the library could not be removed bseaf
the dependencies. According to our estimations lye&d
percent of the library was disabled or removed, sugal by
the size of the library.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

the following picture.

In the beginning the call of printf function is tidated into
the call of the system function, with the highesthability it is
going to be the call of function write. Write, bgithe POSIX
function is offered by the operation system. Butvaswant to
use the simulator on Unix platform as well as omdéws
systems we have to get rid of these dependenaedoBo we
will use the special instruction principle.

A. Useof ported library of Unix and Windows systems

Before we get to the principle of a special ingdiarc
method we should explain why we need to use thigooke

127

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

The main reason why we should oust the dependennid¢ise
kernel header files is the fact, that we must be &b use the
library under Unix like, and also under Windowsligperation
systems.

Printf

{

Write

|

OS/Header files

Figure 2. Scheme of calling the printf function

mechanism in special source file. This syscall raagm
differs, as they usually are platform dependent. i386
architecture will have different syscall mechanttan arm.

s

Program call uC]itﬂ

Syscall mechanism

1l

Simulator

Figure 3. Scheme of calling the simulator via uClibc layer

We wish to preserve the mechanism. The syscalls wil

remain in the library, but with a different meaninthe file
containing syscall will be changed in the followingy: in the
beginning the parameters of the syscall will becgdhat the
given addresses in the memory and we will alsondefihere
the syscall return value will be placed. Afterwatte call of
the instruction, which was designed for this pugyasill be

As long as we use the library under Unix systemgerformed. It is also possible to put the paransetieto

everything should be all right. Though even on Usystems
there might be differences amongst the differengivas of the
header files. But once we use the Windows base@rayse
can not use header file functions any more. It @aoallmost
certainly result in a crash of the system.

registers, but some platforms have a limited numbér
registers, hence this method could cause problems.

C. Smulators
This brings us back to the simulators. As was roewetl

In our project we currently support several Unix before, all the simulators, where the testing ifgumed, are

distributions as well as Windows. Use of other afieg
systems is not considered.

B. Special instruction principle

The special instruction principle means, that wd uge
instruction with the operation code (opcode) tanot used
within the instruction set of given microcontroléor the
special purpose. We can do so, because we desigohip
from the scratch. Usually the microcontroler hagwven set of
instructions. There is a defined bahaviour for easfruction.
We describe the instruction set by our languagedSh
ISAC, every instruction has an opcode and defirehbiour.
So if there is any spare opcode we can model aimgwiction
with behaviour that suits our needs.

So far, all architectures that were modeled witkie
Lissom project had several free opcodes. It iscglpihat the
instruction sets do not use all operation codetsateaprovided.
But in case of no free opcode this method can eatsed. The
special instruction principle will be used for dogt the
dependencies on kernel header files.

Functions provided by operation system are calledhle
system call (syscall) mechanism. The system caltsbe quite
easily detected. Each library should have defirresd dyscall

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

generated automatically. The generation is basedthen
instruction set description file, where our spedaiatruction is
modelled. In the beginning all the source files generated by
specialized tools. When the generation phase ishféd the
simulator is built by a Makefile from the generaféels. It will
be necessary to add into this process the followifagmation:

* information about which instruction (opcode) célie
system function,

* the simulator will have to know the convention for
storing parameters,

e the simulator will have to recognize which system
function is going to be called,

e the simulator will have to perform the call of the
correct system function.

The first three points will be solved withimet model of
an instruction set. The instruction with the opcadkiat is not
used will be declared. The instruction behavidl be defined
in the following way: it will locate the positiom ithe memory
where the parameters are stored and accordingetodine of
one of the parameters it will call the correspogdsaystem
function. The simulator will have to recognize thgstem it
runs under and call the correct function. For examp Unix

128

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

system, it will be function ‘write’, and in Windoveystem,
WriteFile. This should be solved by the libc librarf the given
platform. The following figure demonstrates thé oaspecial
instruction.

Call of special instruction

!

Identify the system function

Il

Call the system function

d 4

Win Unix

Figure 4. calling sequence of specialized instruction

The parameters that were placed at the given posith
the simulated memory can remain unchanged. Thdylatdr
be passed to the specific system call.

One important issue is connected with the simulate
memory. As we would like to correctly simulate thgerations
with memory such as malloc, realloc, etc. we neetell the
simulator how much memory it can simulate. Thidl we
done most probably by the special file that willjzessed to the
linker. This file will contain symbols that willettlare how
much memory can be used. It is necessary to statenfuch
memory can be allocated. The symbol that denoteshéap
end will be used in the sbrk function.

VI. PROCESS OF PORTING

Before the whole process of porting begins we nted
download the uClibc. There are two possibilitiegs Ipossible
to download only the library or there is a wholelthain for
development of embedded system for a given arc¢bitecthe
so-called buildroot.

The main advantage of downloading the whole budtis
that once it is built you get a whole set of depehent tools
including various compilers, linkers, debugersipgrograms,
etc. You also get the build of uClibc. These toats quite
useful in the beginning when you remove useless utesd
from the library, because they can be used forildibhg the
library.

One of the problems we faced is that we need te hiag
compiler for the architecture we are developing far other

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

words, if we want to create a library for testinG @ompiler on
a given platform we need a compiler for the sara¢fqrim that
is already created. The compiler will be used foilding the
uClibc. Moreover the compiler must have exactly Hzne
instruction set. In the future we would like to ke generated
compiler for building the library. This requirei@h quality of
backendgen and generated backend.

Because we are going to use the library in the Isitouand
the simulator can handle only instructions of theecified
instruction set, then the library must be translate the
instruction set that is recognized by the simulafar building
the simulator, we can use common gcc for Windowbs i,
because it runs under common system such as Windows
Unix.

This may be the first big problem in the whole Esg of
porting. It is not hard to find a compiler for avgh platform.
Nowadays, there are specialized compilers for peail
architectures used in embedded systems. The boiildoy
uClibc contains more than a dozen different archites such
as MIPS, arm, mipsel, sparc, etc. There are evéarelit
versions of the micro-architectures in case of bjicocessor
without Interlocked Pipeline Stages (MIPS), for rexde.

The problem is that, thanks to the aim of the whaésom
project, we usually use specialized instructiors s@twe use
some generic instruction set and add certain SiEszia
instructions. After this customization it is usyalnpossible to
use a generic compiler for building the library.

We could use the compiler that we want to tesbfalding
the library but currently it is not stable enougir building
large programs. The best solution of this problsnusually
building a specialized toolchain including GNU Hitsi and
éSNU compiler collection [8]. As it was mentionedhae the
generated backend is stable enough it will be fmeduilding
the library.

Several issues we faced during the process arelglos
related to the buildsystem of the library. Thedityrcontains a
system of makefiles. This system is hierarchical asually the
makefiles from the upper levels are included. Sofor
example we would like to compile any test exampled are
included in the uClibc we switch to the given diceg and call
make. This will call all the makefiles from the afeadirectory.
This is very effective, because only the makefilethe root
directory contains variables defining which compile
assembler, linker will be used. On the other hanis very
difficult to modify this system in case we want haild the
different parts of the library using different teol

Currently, we are using for development the setuftools
containing archiver, linker, asembler and compil@he
currently used compiler is called mips-elf-gcc. it not
generated automatically but was created specially this
purpose as our generated compiler is not stableigitndor
compiling the library. Our compiler has in the @t version
problems with floating point number, so it usuafbils to
compile them. Linker and archiver are not generated
automatically for each platform but were developedthe
Lissom project.

129

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Our tools are not compatible with the tools thatreve simulator.

originally used for building the library. Our tooldo not

support such a wide variety of parameters so sdrtieem had
to be erased from the configuration files and saeveee just
changed to suit our needs. There are two main nsaso this.

The first is that we simply do not need all thegmaeters. For
example we always build files in elf format, so de not need
parameter to specify this. The second reason tsatmafiles

have different (usually text) format, that allows 10 debug
more effectively.

Currently, we use a set of scripts, which preprecie
flags. In the scripts we erase the flags we daeetl and make
necessary substitutions.

The buildsystem of the library starts by parsing th

configuration file and accord to the content of five are set
different macros and variables. When doing manbahges to
the buildsystem we have basically two possibilities

» change the configuration file or,
» do the changes later in the Makefiles.

The first possibility is cleaner but the Makefileften check
if the option is present in the configuration fded ends with
an error if the option is missing. Hence it is m@onvenient
to make the necessary changes in the Makefilesikshim the
hierarchical structure it is in most cases suffiti® make the
change in just one place.

In the theoretical part, we mentioned the needirth &
special file containing information on how much nmegncan
be used. The file will contain symbols defining theginning
and the end of memory space that can be usedill lave the
following syntax:

#file defining memory boundaries
define start 256
define stop 768

Given that the numbers are in kB the simulatorsiamlate
up to 512 kB of memory. Character # denotes comment

For storing the parameters we have chosen thewfioidp
approach: the first parameter says which systenatitum is
going to be called. In the uClibc it is a list g6tem functions
for Unix systems. The rest of the parameters, thate
numbers 2-7, are passed to the function call. Tdrarpeters
remain unchanged. They are passed to the systertidiinn
exactly the same state which were saved in the mebejore
calling the special instruction. The special instion itself has
no parameters. When the instruction is called, thk
parameters have to be stored in the memory at giddresses.

A. Automation of the porting process

For the first time, all the steps were performedhoadly. In
the future we would like to automatize this procassnuch as
possible. Without doubt we could remove the nesdbests of
the library automatically. The needless parts wolld
identified by the configuration file and also th@esial
instruction principle could be highly automatic. wWe have
spare instruction we will choose it and composétiv the

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

Unfortunately, there are steps thatdné&z be
performed manually, for example, we need to provide
runtime file for the simulators and the correspagdsections
need to be specified in the ISAC file.

File with the runtime is also one of the files tiatvritten
by hand in the assembler. There are also othey Vititten in
assembly language and hence are platform deperidecdse
of mips platform there were 8 files that contairestembly
language. For example syscalls or memcpy functiares
implemented in the assembler. In order to mininmaeber of
files written by hand we decided to provide as méilgs
written in portable C as possible. We managed pdace all
but two files by C implementations. All that has® provided
is the runtime and syscall mechanism.

VII.

In this paper, was sketched the idea of portinglitrary
into the simulator. The motivation is quite cletar:be able to
use the library functions in the tests that are om the
simulator of the given micro-controller. The spédaistruction
principle was proposed which enables us to forvihedcall of
system function. It also allows us to identify whisystem
function is called. This principle is quite univarand can be
used for the majority of platforms. After implemation of this
method, we are able to run all the functions thatcammonly
used, such as I/0O functions, memory managementstimt)
functions, etc. Moreover we can adjust the libracgording to
our needs. Thanks to the modularity we can enabbiisable
any module. This may turn out to be an advantageaise the
complete library has tens of megabytes and conguilaand
linking such a library can be time consuming.

CONCLUSION

ACKWNOWLEDGEMENTS

This research was supported by doctoral grant GA CR

102/09/H045, by the grants of MPO Czech Republic FR
T11/038, by the grant FIT-S-11-2 and by the redeglan no.
MSM0021630528.

REFERENCES
[1] Lissom Project, doi _:http://www.fit.vutbr.cz/resehfgroups/lissom
[online, accessed 19. 4. 2011] .

[2] z. Prikryl, K. Masarik, T. Hruska, and A. Husar, é@erated cycle-
accurate profiler for C language,” Proc. 13th EURORO Conference
on Digital System Design, DSD'2010, pp. 263—26&ress.

[3] ISAC language, doi:http://www.codasip.condnline, accessed 19. 4.

2011].
[4] S. Onder, and R. Gupta, "Automatic generation afroarchitecture
simulators,” Proc. 1998 International Conference @omputer

Languages, May 1998, pp. 80-89, in press.

[5] C.J. Hughes, V.S. Pai, P. Ranganathan, and S.V.eAdRsim:
simulating shared-memory multiprocessors with ILFPocpssors,”
Computer , vol.35, no.2, Feb. 2002, pp. 40-49r@sg.

[6] D. August, J. Chang, S. Girbal, D. Gracia-Perez,M&uchard, D.
Penry, O. Temam, and N. Vachharajani, "UNISIM: Areo simulation
environment and library for complex architecture sige and
collaborative development," Computer Architectusdtérs , vol.6, no.2,
Feb. 2007, pp. 45-48, in press.

[7]1 Uclibc, doi:http://uclibc.org/[online, accessed 19. 4. 2011].

[8] GNU Operating System, doi:http://www.gnu.org/softé/a [online,
accessed 19. 4. 2011].

130

