
An Autonomic Framework for Service Configuration

Patcharee Thongtra
Department of Telematics

Norwegian University of Science and Technology
N-7491 Trondheim, Norway

patt@item.ntnu.no

Finn Arve Aagesen
Department of Telematics

Norwegian University of Science and Technology
N-7491 Trondheim, Norway

finnarve@item.ntnu.no

Abstract — An autonomic framework for service configuration
functionality is proposed. The framework has goals and
policies. Goals express required performance and income
measures. Policies define actions in states with unwanted
performance and income measures. All functionality is
executed by autonomic elements (AEs) that have ability to
download and execute behavior specifications during run-time.
An AE has several generic functionality components. Two
important generic components of an AE are Judge and
Strategist. A Strategist selects actions in a state with unwanted
performance and income measures to reach a state defined by
goal performance and income measures. A Judge gives
rewards to actions based on the ability to move towards a state
with goal performance and income measures. The Strategist’s
selection of actions is based on the rewards given by the Judge.
AE functionality is realized by the combination of Extended
Finite State Machines (EFSM), a Reasoning Machine (RM)
and a Learning Machine (LM). A case study of an adaptable
streaming system is presented. Using the proposed model, the
streaming system can select actions for capability allocation
adaptation more appropriately as evaluated by the
performance and income measure results.

Keywords-Autonomic; Service configuration; Policy;
Autonomic Elements.

I. INTRODUCTION

Networked service systems are considered. Services are
realized by service components, which by their inter-
working provide a service in the role of a service provider to
service users [1]. Service components are executed as
software components in nodes, which are physical
processing units such as servers, routers, switches, PCs and
mobile phones. A service framework is here defined as the
overall structural and behavior framework for the
specification and execution of services. Service
configuration comprises capability configuration, capability
allocation, service deployment and instantiation, system
performance diagnosis, fault diagnosis and service
adaptation. A capability is an inherent property of a node
required as a basis to implement services [1]. Capabilities
can be classified into resources, functions and data.
Examples are CPU, memory, transmission capacity of
connected transmission links, available special hardware, and
available programs and data.

The service configuration is done with respect to
required capabilities and capability performances as well as
required service performances. In this paper, we focus on

service configuration of adaptable service systems, here
defined as a service system that can adapt by itself related to
changes by users, nodes, capabilities, system performances
and service functionalities.

In this paper, an autonomic approach to adaptable service
systems is proposed. Autonomic systems have ability to
manage themselves and to adapt dynamically to changes in
accordance with given objectives [2, 3]. The autonomic
system is constituted by distributed components denoted as
autonomic elements (AEs). An AE is the smallest entity that
can manage its internal behaviors and relationships with
other entities in accordance with its defined behavior. A
service component as already defined is realized by one AE.
An AE is constituted by several generic functionality
components. Two important components are Judge and
Strategist. The Judge and Strategist apply defined goals and
policies. Goals express required performance and income
measures. A policy is defined by conditions, constraints and
actions, and defines accordingly actions to adapt the system
in states with unwanted performance and income measures.
The Judge gives rewards to actions based on the ability to
move towards a state with goal performance and income
measures. The Strategist selects actions based on the rewards
given by the Judge.

The reasons behind the Autonomic Element model and
the AE functionality components’ specifications (see Section
III) are service components based on the classical Extended
Finite State Machine (EFSM) approach can provides the
software update flexibility [4], and Reasoning Machine
(RM) using the policies can add the ability to cope with
various situations more flexible [5, 6].

This paper is organized as follows. Section II defines
autonomic properties. Section III defines the main concepts
of what is denoted as the Goal-based Policy Ontology. The
details of the Autonomic Element Model are described in
Section IV. Section V describes how AEs are used to realize
service functionalities that are necessary for the service
configuration. Section VI presents a case study, related
works are presented in Section VII, and finally, summary
and conclusions are presented in Section VIII.

II. PROPERTIES OF AUTONOMIC ELEMENTS

An autonomic system consists of a set of decentralized
autonomic elements (AEs), as defined in Section I. AE
functionality is realized by the combination of Extended
Finite State Machines (EFSM), a Reasoning Machine (RM)
and a Learning Machine (LM). An AE is a generic software

116

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

component that can dynamically download and execute
EFSM, RM and LM specifications. Properties can be
classified as individual AE properties and shared AE
properties, i.e., properties of the AEs constituted by the
cooperation of AEs. AEs have the following individual
properties:
 Automaticity: An AE can manage its EFSM states,

variables, actions and policies.
 Awareness: An AE is able to monitor its own EFSM

states and performances.
 Goal-driven: An AE operates and/or controls its

functions towards goals.

AEs have the following shared properties:
 Automaticity: AEs can manage capabilities and nodes,

i.e., capabilities and nodes can be added and removed.
 Adaptability: The goals, policies and EFSM behavior of

an AE can be changed.
 Awareness: An AE is able to monitor available nodes

and capabilities. Information about EFSM states and
performance measures can be made available to other
AEs.

 Mobility: An AE can move to a new node and resume
its operation.

III. GOAL-BASED POLICY ONTOLOGY

An ontology is a formal and explicit specification of a
shared conceptualization [7] containing both objects and
functions operating on instances of objects. We can define
independent concepts and relational concepts defined by
mathematical logics, e.g., if-then-else. In applications with
reasoning capability, the logic concepts can be represented
and processed flexibly as rules [1].

Figure 1 presents a simplified diagram of the concepts in
the Goal-based Policy Ontology. At the top level we have
goal, policy and inherent state, which all are related to
service and capability as defined in Section I. The
instantiated AEs have inherent states that can comprise
measures related to functionality and performance of
services and capabilities as well as income. System
performance is defined as the sum of capability performance
and service performance.

As a basis for the optimal adaptation, service level
agreements (SLA) are needed between the service users and
the service provider. An SLA class defines service
functionalities, capabilities, QoS levels, prices and penalty.
Service income includes the estimated income paid by the
users for using services in normal QoS conditions and the
penalty cost paid back to the users when the service qualities
and functionalities are lower than defined by SLA. In
general, goal, policy and inherent state concepts have the
SLA class as a parameter.

The goal is defined by a goal expression and a weight.
The goal expression defines a required system performance
or service income measure. A goal example is: “Service
response time of premium service SLA class < 2 secs”. The

goal weight identifies a goal's importance. A goal can be
associated with a set of policies.

A policy is defined by conditions, constraints and
actions. The condition defines the activation of the policy
execution. The constraint restricts the usage of the policy,
and is described by an expression of required and inherent
functionality and performance of services and capabilities,
required and inherent service incomes, available nodes and
their capabilities, as well as system time. An action has an
estimated operation cost and accumulated reward.

Figure 1. Goal-based Policy Ontology.

A policy example related to the goal example given
above is: “If CPU utilization > 95% and the time is between
18:00-24:00, ignore new service requests of users of
ordinary SLA classes that request service time > 2 mins”. It
is expressed with Conditions: CPU utilization > 95%,
Constraints: system time between 18:00-24:00 and service
time request > 2 mins, and Actions: ignore new service
requests of users of ordinary SLA classes.

Table I lists notations used for capability, service and
income concepts.

TABLE I. THE CAPABILITY, SERVICE AND INCOME CONCEPT NOTATION

ĈR Required capability performance set

ĈI Inherent capability performance set

CR¯¯ Required capability functionality set

CI¯¯ Inherent capability functionality set

ĈA,n Set of available capabilities in node n; n=[1, N]

ŜR Required service performance set

ŜI Inherent service performance set

SR¯¯ Required service functionality set

SI¯¯ Inherent service functionality set

IR Required service income

II Inherent service income

IV. AUTONOMIC ELEMENT MODEL

An AE is composed of four functional modules: i) Main
Function, ii) Strategist, iii) Judge and iv) Communicator, as
illustrated by Figure 2. The behaviors of the various modules
are explained in the following subsections IV.A-IV.D. The
life-cycle of an AE is described in Section IV.E.

117

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

Figure 2. Autonomic Element Model.

A. Main Function

Main Function coordinates the functionality of an AE.
An AE has some general behavior which is common for all
AEs, and some behavior depending on the specific role of
the AE (see Section V). In general, an AE will have
requirements with respect to capabilities and capability
functionalities and performances. The specific need depends
on the specific functionality of the AE. The Main Function
behavior is based on an Extended Finite State Machine
(EFSM) model E defined () as:

E  { SM, SI, SS, V, M, O, Q, FS, FO, FV } (1)

where SM is a set of all states, SI is an initial state and SS is a
set of stable states. V is a set of variables including the
inherent state variables. M is a set of input messages, O is a
set of output messages and Q is a message input queue. FS
is a state transition function (FS: S x M x V -> S), FO is an
output function (FO: S x M x V -> O) and FV is a set of
actions performed during a specific state transition.

An AE can move to a new node. A stable state is a state
of the Main Function where an AE’s functionality can move
safely and be re-instantiated in a new node based on the
restoration of EFSM state, variables, and queued messages.
Strategist is used by the Main Function to select appropriate
actions. The Main Function will regularly
 Compare the condition part of the policies with inherent

state variables, and will
 Activate the Strategist if a condition is met, which

returns an action to be used by the Main Function

B. Strategist

Strategist selects appropriate actions to be used by the
Main Function. The Strategist behavior is based on a
Reasoning Machine (RM) model, extended from [5, 6]. It can
be triggered by one condition at a time. It will execute all
policies related to a condition. The RM model R is defined
as:

R  { Q, F, P,  } (2)
where Q is a set of query expressions containing variables, F
is a generic reasoning procedure, P is a set of policies, and
 is the strategist data including the inherent states from the

Main Function and from other AEs, and available nodes and
their capabilities.

  (SI¯¯, ŜI, CI¯¯, ĈI, II, ĈA,n; n=[1, N]) (3)
P  { pi } (4)
pi  (Σi, Xi, Ai) (5)
Σi  Expression(SI¯¯, ŜI, CI¯¯, ĈI, II) (6)
Xi  Expression(SR¯¯, ŜR, CR¯¯, ĈR, IR,

SI¯¯, ŜI, CI¯¯, ĈI, II, ĈA,n; n=[1, N], G) (7)

A policy pi has conditions Σi, constraints Xi and actions
Ai. The condition is an expression of the inherent states from
the Main Function and from other AEs. The constraint is an
expression of required functionality and performance of
services and capabilities, required service incomes, the
inherent states from the Main Function and from other AEs,
available nodes and their capabilities, as well as system time
(G).

The reasoning procedure is applied to select appropriate
actions with maximum accumulated rewards. It is based on
Equivalent transformation (ET) [8], which solves a given
problem by finding values for the variables of the queries.
The conditions, constraints and actions can have variables.
The result of the reasoning procedure can, in addition to
actions, give instantiated variables.

C. Judge

Judge gives rewards to actions to be selected by the
Strategist. The reward is a numeric value based on the ability
to move towards a state with goal performance and income
measures. The rewards will be accumulated over a period of
time. The Judge behavior is based on a Learning Machine
(LM) model L defined as:

 L  { , , ,  } (8)

where  is a set of goals,  is a generic rewarding
procedure,  is a reward database storing the accumulated
rewards of actions, and  is the judge data including the
inherent states from the Main Function and from other AEs.
We further have:

  (SI¯¯, ŜI, CI¯¯, ĈI, II) (9)
  { gk } (10)
gk  (dk, wk) (11)

A goal gk has goal expression dk and weight wk. The sum

of the goal weights is equal to 1. At time t, the rewarding
procedure will calculate the reward of an action ai, which
was applied at time t-1 as:

reward(ai,ik,t-1,dk) =

((ik,t,ik,t-1)/(dk,ik,t-1)) * wk - cost(ai) (12)

118

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

where ik,t-1 and ik,t are an inherent state measure before and
after applying the action for an monitoring interval [t-1, t],
ik   and dk is an associated goal required measures.
(ik,t,ik,t-1) is the difference between ik,t and ik,t-1. (dk,ik,t-1) is
the difference between dk and ik,t-1. wk is the goal weight and
cost(ai) is the operation cost of ai.

The accumulated reward of an action ai, accumulated-
_reward(ai,ik,t-1,dk), is then the sum of the rewards of ai, for
an inherent state measure ik,t-1 and a goal required measure
dk.

D. Communicator

Communicator handles message sending and receiving
on behalf of the Main Function. The Communicator behavior
is based on the EFSM model in (1). Other AEs can subscribe
to the inherent state variables of an AE. The Communicator
will manage subscription messages and will send inherent
state variables to other AEs on behalf of the Main Function.

The Communicator also handles the registration function
on behalf of the Main Function. Registration message is sent
to Registry (REG) (see Section V) that is an important AE
that records the life-cycle state of AEs. The registration
message contains IP address of the AE.

The Communicator will regularly broadcast heartbeat
message, which is used to indicate that an AE is alive. The
heartbeat messages are monitored by Life Monitor AE
(LMO) (see Section V). In addition, the Communicator will
inform REG about changes in the life-cycle state of the AE
(see Section IV.E). REG will broadcast the changes to other
AEs that subscribe to such updates.

E. Autonomic Element Life Cycle

The combined states of an AE during its life-cycle are
defined follows:
 Initial state: An AE is instantiated in a node where

there are capabilities and capability functionalities and
performances as required.

 Registering state: An AE registers to REG.
 Normal-Active state: An AE provides services with

normal functionality and QoS level.
 Degraded-Active state: If in the Normal-Active-State

the capabilities are less than required and results in
degraded functionality and QoS, the life-cycle state will
change to Degraded-Active state. In this state, some
actions selected by the Strategist can be taken to
upgrade the capabilities and performances. From both
the Normal-Active state and the Degraded-Active state,
the life-cycle state can change to Moving, Suspended or
Terminated.

 Moving state: An AE’s functionality is being moved
and re-instantiated in a new node. A move can only
take place if the EFSM states are stable (see Section
IV.A).

 Suspended state: An AE is suspended, i.e., by an action
selected by the Strategist, which means that it stops
executing current behavior specifications. An AE will
release its allocated capabilities. At this state, an AE
can start executing new behavior specifications. This
makes an AE goes back to the Normal-Active state.

 Terminated state: Other AEs detect that an AE’s
heartbeat message is lost or an AE could not be reached
because of some unintentional reasons, e.g., the
hardware failure. REG is informed about this by LMO
or the other AEs, then REG records that an AE is
terminated.

V. AUTONOMIC ELEMENT-BASED SERVICE

FUNCTIONALITY ARCHITECTURE

The service functionalities required for service
configuration are constituted by AEs and repositories, as
illustrated in Figure 3. The AE responsibilities and the
repositories are described below.

Figure 3. Autonomic Element-Based Service Functionality Architecture.
Solid arrows indicate the physical connections of AEs and dashed arrows

represent the message flows between AEs.

 Primary Service (PRS) provides ordinary user services.
 Registry (REG), as already mentioned in Section IV.D,

is responsible for AE registration.
 Goal and Policy Distribution Manager (GPM)

distributes goals and policies to corresponding AEs.
 Life Monitor (LMO) observes the liveness of AEs by

listening to heartbeat messages from AEs. LMO
regularly updates the liveness of AEs to REG.

 Capability Administrator (CPA) maintains and provides
data about capabilities and their functionalities and
performances in available nodes.

 Capability Monitor (CPM) monitors capabilities and
sends updates to CPA.

 Capability Allocation Manager (CAM) generates (re-)
configuration plans for AEs to be instantiated in nodes.
CAM fetches the capability requirements and retrieves
the capabilities from CPA. A configuration plan defines
in which node an AE should execute. Configuration
plans are generated based on capability requirements
and policies. In addition, CAM allocates capabilities to
AEs. The allocation depends on the capability structure

119

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

and optimization criteria which can be specified in the
policies.

 Deployment and Instantiation Manager (DIM) executes
the configuration plan. It creates AEs in the defined
nodes and assigns the behavior specifications.

 Mobility Manager (MOM) supports an AE when it is
moved and re-instantiated in a new node. The move can
be related to failures or insufficient capability
performances. MOM broadcasts messages to inform
other AEs when an AE’s functionality is suspended or is
resumed. MOM also handles an AE’s connections by
getting input messages on behalf of an AE and
forwarding them to such AE when it is already re-
instantiated.

 Ontology Repository (OntRep) stores the goal and
policy concepts as well as the related capability and
service concepts.

 Service Specification Repository (SpcRep) stores the
AE behavior specifications and the capability
requirements.

 Capability Repository (CapRep) stores data about
available nodes and their capabilities.

VI. CASE STUDY

A music video streaming system is presented with the
intention to demonstrate the Strategist and Judge solution in
the proposed autonomic framework. The system is
constituted by the AEs as defined in Section V. The Primary
Service AEs are Streaming Manager (STM) and Streaming
Client (STC). An STM, executing on a media streaming
server (MS), streams the music video files to STCs. An STC
is associated with an SLA class, which defines required
streaming throughput, price for the service and service
provider penalties if the agreed QoS cannot be met. Two
SLA classes are applied: premium (P) and ordinary (O). An
STC is denoted by its SLA class as STCP or STCO. Each
SLA class has different required throughput (X); the STCP

required throughput (XP) can be 1Mbps or 600Kbps for high-
resolution and degraded fair-resolution videos, while the
STCO required throughput (XO) is 500Kbps for low-
resolution videos. Prices and penalties will be defined later.

Figure 4. Streaming system example.

Figure 4 illustrates the streaming system. In this case
study, CAM will accept the streaming requests on behalf of
STMs. CAM will decide which an STM can serve the
requests, or CAM may put them in waiting queues. CAM
can also instantiate a new STM in an available MS that
there is no executing STM.

The MS’s required access link capacity (CR,AL) is set to
100 Mbps. The number of STCs that can use the service at a
time is limited by the MS access link capacity. When the
required streaming throughput cannot be provided, a STC
needs to wait until some connected requests have finished
using the service. An STCO can be disconnected, while an
STCP may have to degrade the video resolution. The service
provider will pay penalties in case of waiting and
disconnection of the STC. These penalty and price functions
are given in Table II. A cost unit is the price paid by an
ordinary client for one second streaming of the rate 500Kpbs.
The price function for using the service is M(SLA_Class,X)
(cost units/second). The penalty function for waiting is
PWAIT(SLA_Class) (cost units/second), and the penalty
function for disconnection is PDISC(SLA_Class) (cost
units/connection).

Note that, the case study and all values, set in Table II,
are same as our previous work [5, 6] in order to compare
between the proposed and the previous model. The
comparison results are in subsection VI.B.1.

TABLE II. THE PRICE AND PENALTY FUNCTIONS

 STCO

(XO=500Kbps)

STCP

 (XP=600Kbps)

STCP

 (XP=1Mbps)

 M(SLA_Class,X)/s 1 1.875 2

 PWAIT(SLA_Class)/s 5 10 10

PDISC(SLA_Class)/
Connection

10 - -

The complete set of actions A in this case study is:

A = {aD, aB, aN, aI, aR, aT, aM} (13)

A subset of A, Á, is defined as: Á = A – {aM}. aD is to
disconnect the ordinary clients, aB is to decrease the
throughput of the premium clients, aN is to instantiate a MS,
aI is to instantiate a new STM, aR is to disconnect a MS, aT
is to terminate an STM and aM is to move connected client
sessions from an STM to another STM. These actions are
selected by the Strategist of CAM. CAM executes aN, aI,
aR and aT, while CAM suggests aD, aB and aM to STMs.

In this case study, the considered capability is the MS
access link. The required and inherent capability
performance sets are denoted as ĈR  {CR,AL} and ĈI 
{CI,AL}, where CR,AL is the required access link capacity, and

120

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

CI,AL is the available access link capacity. The inherent
service performance set ŜI consists of the number of
connected and waiting premium and ordinary clients (NCon,P,
NCon,O, NWait,P, NWait,O), the number of disconnected ordinary
clients (NDisc,O), the number of MS (NNode), the service time
and waiting time of premium and ordinary clients (TServ,P,
TServ,O, TWait,P, TWait,O). These values as well as the inherent
service income (II) are observed per a monitoring interval ∆.
The service income is defined as:

II = M(STCO,XO)*TServ,O + M(STCP,XP)*TServ,P –

PWAIT(STCO)*TWait,O – PWAIT(STCP)*TWait,P –
PDISC(STCO)*NDisc,O – PSer*NNode*∆ (14)

where PSer is the cost function for adding a new MS which is
150 units/second per node, while M(SLA_Class,X),
PWAIT(SLA_Class) and PDISC(SLA_Class) are as already
defined in Table II.

A. RM and LM Specification

In this case study, CAM plays an important role. Its RM
specification is defined as follows:

RCAM  { QCAM, F, PCAM, CAM } (15)

PCAM consists of five policies (p1-p5) as presented in
Appendix. A policy defines some actions in the set A in
(13).

The LM specification of CAM is defined as follows:

LCAM  { CAM, , CAM, CAM } (16)
CAM  { g1, g2} (17)
g1  (d1: IR > 0, w1: 0.8) (18)
g2  (d2: TWait < ∆, w2: 0.2) (19)

where IR is the required service income, and TWait is the sum
of the waiting time of premium and ordinary clients. These
goals are set in order to gain high income and to avoid high
waiting time. The policy p1-p5 can be used when the
required service income is not met, while the policy p1-p3 are
used when the waiting time is higher than expected.

B. Experiments and Results

Two set of experiments are presented. In B.1) Á is used
for the comparison between the proposed and a previous
model. In B.2) different action sets A and Á are used to
study the proposed model. The accumulated service income
and the accumulated waiting time results are illustrated in
both experiment sets.

The request arrivals are modeled as a Poisson process
with an arrival intensity parameter λSLA_Class. The duration of
streaming connections dSLA_Class is constant and is set to 10
minutes. The traffic per MS access link ρ is defined as:

ρ = ((λP*dP*XP) + (λO*dO*XO))/ (NNode*CI,AL) (20)

The monitoring interval ∆ is 1 minute. The STCs will stop
waiting and there is no penalty for waiting after 10 minutes.
The number of available MS = 3. Initially, only one STM is
instantiated.

1) Comparison between the proposed and a previous
model

Our previous work [5, 6] presented an adaptation
mechanism executed by a Reasoning Machine, which uses
policies and goal to manage the adaptable systems. In the
previous model, a policy consists of constraints and actions,
and it is not associated with any specific conditions. So all
defined policies will be executed when the systems are
entering a reasoning condition. There is only one reasoning
condition defined, i.e., the number of waiting clients > 0. In
addition, only one goal based on the service income is used.
The action is then rewarded by the goodness score (QoX

i
)

that is calculated by the percentage of the increased or
decreased service income.

In this section, three different cases of ρ are illustrated:
a) ρ<1, b) ρ=1 and c) ρ=1.15 (ρ>1). The STCP request
arrivals intensity (λP) is set to 25%, 50% and 80% of the total
arrival intensity.

For case a) ρ<1, both models have the same behaviors. If
ρ>0.5, they used {aN, aI} to instantiate a MS and to
instantiate a new STM, otherwise they just disconnected the
ordinary clients or decreased the throughput of the premium
clients. The accumulated service income and waiting time of
both models are almost the same.

Figure 5. The accumulated service income when ρ = 1.

Figure 6. The accumulated waiting time when ρ = 1.

121

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

For case b) ρ=1, the proposed model produced higher
accumulated service income and lower accumulated waiting
time independent of λP, as depicted in Figure 5 and 6. This is
because in the previous model {aT, aR}, which terminate an
STM and disconnect a MS consecutively, was used when
the number of waiting clients was little more than zero. So
that, the number of MS was lower than proper required
amount. It results in decreasing service income and
increasing waiting time. In the proposed model, {aT, aR}
might be used only if the inherent service income <= 0;
however, it does not happen when ρ = 1.

For case c) ρ=1.15 (ρ>1), the proposed model also
produced higher accumulated service income and lower
accumulated waiting time. Figure 7 and 8 illustrates the
accumulated service income and the accumulated waiting
time for this case. The proposed model produced better
results, because it took the actions to adapt the system more
often than the previous model. When ρ>1, the service
income could be less than 0 because of the waiting penalty.
So that, in the proposed model the actions were applied both
when the service income < 0 and when the waiting time > ∆,
while the previous model the actions were applied only when
the number of waiting clients > 0. However, when λP = 80%
the traffic was too overloaded, and the accumulated service
income was less than zero in both models.

Figure 7. The accumulated service income when ρ = 1.15.

Figure 8. The accumulated waiting time when ρ = 1.15.

2) Comparison between different action sets
In this section, we compare three cases (I-III) of the new

proposed model. In Case I the complete set of actions A is
used, while in Case II the subset Á is used. For the last case,
the complete set of actions A is also used, but there is no
Judge component in the AEs so the actions are not rewarded.
The traffics that were simulated for this scenario are relative
to a function of time. The time with ρ at a fixed level,
denoted as the ρ period, is set to 30 minutes. ρ varies from
0.2 to 1.2. λP is set to 50% of the total arrival intensity.

Figure 9 and 10 shows the accumulated service income
and the accumulated waiting time of three cases. The brown
line in these figures shows the variation of ρ. In Case I, the
system learned that {aM, aT and aR}, which move connected
STC sessions, terminate an STM and disconnect a MS
consecutively, is efficient to adapt the system when ρ drops
and then the required service income is not met. As a result,
Case I could produce the highest accumulated service
income and the lowest accumulated waiting time. For the last
case, the actions were selected randomly and they were not
appropriate to the states of unwanted service income and the
waiting time. So, the accumulated service income of Case III
was the lowest, while the accumulated waiting time was the
highest.

Figure 9. The accumulated service income for various ρ.

Figure 10. The accumulated waiting time for various ρ.

122

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

VII. RELATED WORK

Existing service system frameworks that support run-
time self-management and adaptation can be classified based
on the way in which the management and adaptation
functionalities are specified. The functionalities can be
statically or dynamically specified. Some works propose to
use templates [9] or adaptation classes [10] to statically
specify these functionalities. However, the static approach
lacks flexibility. All the possible adaptation must be known a
beginning, and if new adaptations are required, the systems
must be re-complied. Our work expresses the service
management functionality for the adaptable service systems
in the form of the EFSM, RM and LM specification, to be
dynamically modified, added and removed at run-time.
When using the EFSM specification, an update of changes is
done by deployment of the whole specification. When using
the RM and LM specification, only incremental changes of
the policies and goals are deployed. However, the complete
policy and goal based functionality need to be validated off-
line before the deployment of the incremental changes.

There are several works that use the policies to specify
the adaptation, such as [11], [5, 6], [12-15]. Accord [11] is a
framework that can formulate autonomic applications as
dynamic composition of AEs, with the use of policies to
describe the adaptation of functional behaviors of AEs and
interactions between them. However, our approach and the
rest go beyond the use of policy for the specification by
adding mechanisms to adapt policies or the way of using
policies. Such policy adaptation can be grouped into three
categories: 1) changing the policy parameters, considered in
[5, 6, 12, 13]; 2) enabling/disabling a policy, found in [5, 6,
12]; 3) using techniques to select the most suitable policy
and action; for instance, rewarding policies and their actions,
presented in [14, 15].

Our approach is an instance of the first as well as the
third category as [14, 15]. Tesauro et al. [14] presented a
hybrid reinforcement technique used for resource allocation
in multi-application data centers. This technique is to select
optimal policies that can maximize rewards. Mesnier et al.
[15] used decision trees to select accurate policies in storage
systems. These policy adaptation techniques have only been
applied to a single element, while our approach is potentially
used in multi-autonomic elements.

VIII. CONCLUSIONS

This paper proposed an autonomic framework for
adaptable service systems. The framework solution consists
of Goal-based Policy Ontology and Autonomic Element (AE)
Model. The Ontology defines common concepts of goal,
policy and inherent state. AEs are generic component that
can be used to realize any functionality. An AE is constituted
by Main Function, Strategist, Judge and Communicator
modules. The functionality of an AE is realized by two
Extended Finite State Machines (EFSM), one Reasoning

Machine (RM) and one Learning Machine (LM). EFSM
behavior, as well as goals and policies can be modified
flexibly during run-time. For attaining a specific
functionality, specific EFSM, RM and LM functionality
must be defined. In this paper, specific AEs handling service
management functionality is proposed.

A case study is presented with focus on the Capability
Allocation Manager (CAM). The experimental results show
that the proposed model can produce higher service income
and less waiting time than a previous model. In the proposed
model, the actions are used appropriately under the
associated goals and required goal measures. Moreover, it is
possible to apply several goals, which each are weighed
differently, depending on its importance. New actions can be
added, and when there are more actions the system may
reach the goals quicker.

REFERENCES
[1] P. Thongtra and F. A. Aagesen. Capability Ontology in Adaptable

Service System Framework. In Proc. of 5th Int. Multi-Conference on
Computing in the Global Information Technology, Spain, Sep 2010.

[2] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing.
IEEE Computer Society, January 2003, pp. 41-47.

[3] S. White, J. Hanson, I. Whalley, D. Chess, and J. Kephart. An
architectural approach to autonomic computing. In Proc. of 1st IEEE
Int. Conf. on autonomic computing, New York, May 2004, pp. 2–9.

[4] P. Thongtra and F. A. Aagesen. An Adaptable Capability Monitoring
System. In Proc. of 6th Int. Conference on Networking and Services
(ICNS 2010), Mexico, March, 2010.

[5] P. Supadulchai and F. A. Aagesen. Policy-based Adaptable Service
Systems Architecture. In Proc. of 21st IEEE Int. Conf. on Advanced
Information Networking and Applications (AINA’07), Canada, 2007.

[6] P. Supadulchai, F. A. Aagesen and P. Thongtra. Towards Policy-
Supported Adaptable Service Systems. EUNICE 13th EUNICE Open
European Summer School and IFIP TC6.6 Workshop on Dependable
and Adaptable Networks and Services. Lecture Notes in Computer
Science (LCNS) 4606, pp 128-140.

[7] R. Studer, V. R. Benjamins, and D. Fensel. Knowledge Engineering:
princicples and methods. Data & Knowledge Engineering, vol. 25,
pp. 161-197, 1998.

[8] K. Akama, T. Shimitsu, and E. Miyamoto. Solving Problems by
Equivalent Transformation of Declarative Programs. In Journal of the
Japanese Society of Artificial Intelligence, vol. 13, pp. 944-952,
1998.

[9] F. Berman, R. Wolski, H. Casanova, et al. Adaptive computing on the
grid using AppLeS. In IEEE Trans. Parallel Distrib. Syst., vol. 14, no.
4, pp. 369–382, Apr. 2003.

[10] P. Boinot, R. Marlet, J. Noy´e, G. Muller, and C. Cosell. A
declarative approach for designing and developing adaptive
components. In Proc. of the 15th IEEE Int. Conf. on Automated
Software Engineering, 2000.

[11] H. Liu and M. Parashar. Accord: a programming framework for
autonomic applications. In IEEE Trans. on System, Man, and
Cybernetics, vol. 36, pp. 341–352, 2006.

[12] L. Lymberopoulos, E.C. Lupu and M.S. Sloman. An Adaptive Policy-
Based Framework for Network Services Management. In Journal of
Networks and Systems Management, vol. 11, pp. 277–303, 2003.

[13] K. Yoshihara, M. Isomura, and H. Horiuchi. Distributed Policy-based
Management Enabling Policy Adaptation on Monitoring using Active
Network Technology. In Proc. of 12th IFIP/IEEE Int. Workshop on
Distributed Systems: Operations and Management, France, Oct 2001.

123

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

[14] G. Tesauro, R. Das, N.K. Jong, and M.N. Bennani. A Hybrid
Reinforcement Learning Approach to Autonomic Resource
Allocation. In Proc. of 3rd IEEE Int. Conf. on Autonomic Computing
(ICAC’06), Ireland, Jun 2006, pp. 65–73.

[15] M. Mesnier, E. Thereska, D. Ellard, G.R. Ganger, G.R., and M.
Seltzer. File classification in self-* storage systems. In Proc. of Int.
Conf. on Autonomic Computing (ICAC-04), pp. 44–51.

[16] W3C, “OWL Web Ontology Language Overview,” 2004 Available
at: http://www.w3.org/TR/owl-features/

[17] V. Wuwonse and M. Yoshikawa. Towards a language for metadata
schemas for interoperability. In Proc. of 4th Int. Conf. on Dublin Core
and Metadata Applications, China, 2004.

APPENDIX

The appendix includes the policy specifications and a list
of mathematical expressions found in this paper.

A: POLICY SPECIFICATIONS

The policies as well as goals are expressed in OWL (Web
Ontology Language) [16] and OWL/XDD (XML Declarative
Description) [17], where the variables can be integrated with
ordinary OWL elements. The variables are prefixed with the
$ sign. In this paper, the policy is written in the form:
 Conditions: Expressions_for_conditions,
 Constraints: Expression_for_constraints,
 Actions: {Action_ID},
 Operation cost: Expression_for_operation_cost

Five policies (p1-p5) used in the case study are listed in Table
III. The conditions can be the inherent service income $II <=
0 and the waiting time $TWait >= ∆, where $TWait = $TWait,P +
$TWait,O.

TABLE III. THE POLICY SET

p1

Conditions: $II <= 0 or $TWait >= ∆,
Constraints: PWAIT(STCO) < PWAIT(STCP),
Actions: {aD},
Operation Cost: PDISC(STCO)

This policy can be read as: aD should be used to disconnect a list of
STCO when PWAIT(STCO) < PWAIT(STCP), and the number of STCO

being disconnected is calculated from XP,1Mbps * $NWait,P / XO. aD

costs PDISC(STCO) units.

p2

Conditions: $II <= 0 or $TWait >= ∆,
Constraints: PWAIT(STCO) > M(STCP,XP,1Mbps)-M(STCP,XP,600Kbps),
Actions: {aB},
Operation Cost: M(STCP,XP,1Mbps) - M(STCP,XP,600Kbps)
This policy can be read as: aB should be used to decrease the
throughput of a list of STCP when PWAIT(STCO) >
M(STCP,XP,1Mbps) - M(STCP,XP,600Kbps), and the number of STCP to
decrease the throughput is calculated from XO * $NWait,O / (XP,1Mbps -
XP,600Kbps). aB costs M(STCP,XP,1Mbps) - M(STCP,XP,600Kbps).

p3

Conditions: $II <= 0 or $TWait >= ∆,
Constraints: (XP, 1Mbps * $NWait,P + XO * $NWait,O) / CR,AL > 0.1,
Actions: {aN, aI},
Operation Cost: PSer * ∆
This policy can be read as: aN and aI should be used to instantiate a
MS and to instantiate a new STM consecutively, when (XP, 1Mbps *
$NWait,P + XO * $NWait,O) / CR,AL > 0.1. These actions {aN, aI} cost
PSer * ∆.

p4

Conditions: $II <= 0,
Constraints: (XP, 1Mbps * $NWait,P + XO * $NWait,O) / CR,AL < 0.1,
Actions: {aT, aR},
Operation Cost: PDISC(STCO) + PWAIT(STCP) – PSer * ∆
This policy can be read as: aT and aR should be used to terminate an
STM and to disconnect a MS consecutively, when (XP, 1Mbps *
$NWait,P + XO * $NWait,O) / CR,AL < 0.1. These actions {aT, aR} cost
PDISC(STCO) + PWAIT(STCP) – PSer * ∆.

p5

Conditions: $II <= 0,
Constraints: (XP, 1Mbps * $NWait,P + XO * $NWait,O) / CR,AL < 0.1,
Actions: {aM, aT, aR},
Operation Cost: - PSer * ∆
This policy can be read as: aM, aT and aR should be used to move
connected STC sessions, to terminate an STM and to disconnect a
MS consecutively, when (XP, 1Mbps * $NWait,P + XO * $NWait,O) / CR,AL

< 0.1. These actions {aM, aT, aR} make profit = PSer * ∆.

B: MATHEMATICAL EXPRESSIONS

Table IV lists all mathematical expressions. This table
also expresses the relations to others expressions (Rel. to
exp.) as well as the references to table (Ref. to tab.), where
the notification used in the expression are defined.

TABLE IV. MATHMATICAL EXPRESSIONS.

No. Mathematical expressions Rel. to exp. Ref. to tab.

1 E{ SM, SI, SS, V, M, O, Q, FS, FO, FV } - -

2 R{ Q, F, P,  } - -

3 (SI¯¯, ŜI, CI¯¯, ĈI, II, ĈA,n; n=[1, N]) 2 I

4 P{ pi } 2 -

5 pi(Σi, Xi, Ai) 4 -

6 ΣiExpression(SI¯¯, ŜI, CI¯¯, ĈI, II) 5 I

7 XiExpression(SR¯¯, ŜR, CR¯¯, ĈR, IR, SI¯¯, ŜI,

CI¯¯, ĈI, II, ĈA,n; n=[1, N], G)
5 I

8 L  { , , ,  } - -

9   (SI¯¯, ŜI, CI¯¯, ĈI, II) 8 I

10   { gk } 8 -

11 gk  (dk, wk) 10 -

12 reward(ai,ik,t-1,dk) =

((ik,t,ik,t-1)/(dk,ik,t-1))*wk -cost(ai)

8

13 A = {aD, aB, aN, aI, aR, aT, aM} 5 -

14 II = M(STCO,XO)*TServ,O +

M(STCP,XP)*TServ,P –

PWAIT(STCO)*TWait,O – PWAIT(STCP)*TWait,P

– PDISC(STCO)*NDisc,O – PSer*NNode*∆

3, 6, 7,

9

II

15 RCAM  { QCAM, F, PCAM, CAM } 2 -

16 LCAM  { CAM, , CAM, CAM } 8 -

17 CAM  { g1, g2} 10, 16 -

18 g1  (d1: IR > 0, w1: 0.8) 11, 17 -

19 g2  (d2: TWait < ∆, w2: 0.2) 11, 17 -

20 ρ = ((λP*dP*XP) + (λO*dO*XO))/ (NNode*CI,AL) - -

124

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

