
Mining Association Rules Inside a Relational Database – A Case Study

Mirela Danubianu, Stefan Gheorghe Pentiuc

Faculty of Electrical Engineering and Computer

Science

“Stefan cel Mare” University of Suceava

Suceava, Romania

mdanub@eed.usv.ro, pentiuc@eed.usv.ro

Iolanda Tobolcea

Faculty of Psychology and Educational Sciences

“A.I.Cuza” University of Iasi

Iasi, Romania

itobolcea@yahoo.com

Abstract - In the context of the necessity to find new

knowledge in data, last decade, data mining has become an area
of great interest. Although most data mining systems work
with data stored in flat files, sometimes it is beneficial to
implement data mining algorithms within a DBMS, in order to
use SQL or other facilities provided, to discover patterns in
data. In this paper we consider a way to discover association
rules from data stored into a relational database. We make also
a comparative study of performances obtained by applying the
following methods: stored procedures in database or candidate
and frequent itemsets generated in SQL using a k-way join and
a subquery-based algorithm. This study is used to choose the
best solution to implement in the particular case of building a
dedicated data mining system for personalized therapy of
speech disorders optimization.

Keywords-data mining method, association rules, relational
database, SQL , stored-procedures

I. INTRODUCTION

The most common way to store data collected in various
areas is in relational databases. Information and
Communication Technology development has lead to a huge
volume of data stored and to the inability to extract useful
information and knowledge from this data by using the
traditional methods. For this reason, data mining has
developed as a specific field. Mining association rules is one
of the commonly used methods in data mining. Association
rules model dependencies between items in transactional
data. Most data mining systems work with data stored in flat
files. However, it has been shown it is beneficial to
implement data mining algorithms within a DBMS, and
using of SQL to discover patterns in data can bring certain
advantages.

There is some research focused on issues regarding the
integration of data mining with databases. There have been
proposed language extensions of SQL to support mining
operations. For instance, in [1], DMQL extends SQL with a
series of operators for generation of characteristic rules,
discriminant rules and classification rules.

This paper aims to present some aspects of coupling data
mining algorithms with database management systems.

Section II shows the reasons to try to mine data directly
in databases and a possible architecture for such data mining
system. In Section III, there are defined association rules,

presents the methods and some algorithms that find
association rules in data. In Section IV, we focus on the
possibility to use SQL in order to generate the frequent
itemsets. Section V contains a case study.

II. PERFORMING DATA MINING INTO A DATABASE

MANAGEMENT SYSTEM

As we have noted above, sometimes it is useful to
implement data mining algorithms in database management
systems (DBMS).

First, one can use the database indexing capability and
query processing and optimization facilities provided by a
DBMS. Second, for long running mining applications it can
be useful the support for checkpointing and last, but not least
one can exploit the possibility of SQL parallelization,
especially for a SMP environment.

This involves the development of data mining
applications tightly–coupled with a relational database
management system. In [2], a methodology to achieve this
goal is presented.

Accordingly to this methodology, the records of a
database are not fetched into the application, but modules of
the application program that perform various operations on
the retrieved records, are pushed in the database system.

Although in this case the core of data mining is found in
the database, no changes were made on database
management software, and appropriate functionalities were
provided by user-defined procedures and functions stored in
the database.

A possible architecture for such data mining approach is
presented in Figure 1.

The graphical interface allows users to formulate the data
mining problem and to establish parameters, such as:
minimum thresholds for support and confidence for
association rules, or minimum value for accuracy for
classification.

Preprocessing module aims to translate the mining
problem in the corresponding SQL instruction set. We
consider the Oracle 9i SQL dialect because it contains object
relational capabilities and it allows user-defined function and
functions table.

Finally, the processing results are converted and
presented to the user in an intelligible form through the
graphical interface.

14

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

Figure 1. A proposed architecture for data mining in a DBMS

III. ASSOCIATION RULES: DEFINITION, METHODOLOGY,
ALGORITHMS

Association rules aims to discover the dependencies
between the items in transactional databases.

Briefly, one can define association rules as follows: if we
have a set of transactions, where each transaction is a set of
items, an association rule [3] is an implication A->B, where
A and B are disjoint sets of items. It means that if a
transaction contains the items in A, it tends also to contain
the items in B. A is called the antecedent of rule and B is
called its consequent.

In terms of association rules, a set of k items is called k-
itemset. In a transactional database, for an itemset A we can
define a measure called support, that represents the fraction
of transaction that contains A. If we note the database with
D, the expression for the support for A is:

sup(A)= |A| / |D| (1)

where |A| is the number of transaction containing A, and

|D| is the cardinality of the database.
The support for the rule A-> B is defined as:

sup(A→B) = sup(A∪B) (2)

and represent the percentage of all transactions that

contain both A and B.
The rule holds in the transaction database with

confidence calculated with the following expression:

()

)sup(

sup
)conf(A

A

BA
B

∪
=→ (3)

The problem of finding association rules is to generate all

association rules that have support and confidence greater
than two user–specified thresholds called minsupp and
minconf.

The mining process for association rules can be
decomposed in two phases: first find all combination of
items whose support is greater than minsupp, called frequent
itemsets and second, use these frequent itemsets to generate
the rules.

Since the generation of frequent itemsets is the most
expensive part in terms of resources and time consuming, a
lot of algorithms for this task were developed. Most
algorithms use a method that build candidate itemsets, which
are sets of potential frequent itemsets, and then test them.
Support for these candidates is determined by taking into
account the whole database D. The process of generating
candidate itemsets considers the information regarding the
frequence of all candidates already checked. So, the
procedure is the following: the closure of frequent itemsets
assumes that all subsets of a frequent itemset are also
frequent. This allows remove those sets that contain at least
one set of items that is not frequent, from candidate itemsets.
After generating, the appearance of each candidate in the
database is counted, in order to retain only those having the
support greater than minsup.

Then we can move to the next iteration. The whole
process ends when there are no potential frequent itemsets.

The most known algorithm, which uses the above
mechanism, is Apriori [4]. On this basis some variants such
as Apriori Tid, Apriori All, Apriori Some or Apriori Hibrid
were developed. Figure 2 presents the Apriori algorithm. We
use the following notation:
D- the transaction database (transaction table)

t- tuples in D

k-itemset-set of k items

Fk- frequents k-itemsets

Ck- k-itemsets candidates (potential frequents)

c.count – number of transactions containing each c

candidate set of items

1 F1 = [frequent 1-itemsets]

 2 k=2

 3 while Fk-1≠Φ do
 4 Ck=gen_apriori(Fk-1) &&generating new candidates

 5 for each t∈ D do

 6 Ct={Ck|Ck⊂t) &&candidates in t

 7 for each c ∈ Ct do
 8 c.count=c.count+1

 9 end

10 Fk = {c ∈ Ck | c.count ≥ minsup}
11 k=k+1

12 end

13 end

Figure 2. The Apriori algorithm

GUI

Preprocessing

Relational

engine

Postprocessing

DB

15

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

Once found all frequent k-itemsets one can generate rules
having minimum confidence minconf. In order to do that, we
consider all non-empty subsets of every frequent itemset f.
Then, for each subset x, we find the confidence of the rule x-
> (f-x), and if it is equal or greater than minconf, we output
the rule.

Figure 3 presents in pseudo code the procedure for
finding the association rules. We use the following notation:
Fk- frequents k-itemsets

Ai– a subset of j items from Fi (i<k,j<i)

B–the remaining subset of (i-j) items from Fi

1 F2 = [frequents 2-itemsets]

2 k>2

3 for i=2,k do
4 for j=1,i-1 do

5 Ai-1={aj|aj∈Fi}

6 B={b|b∈Fi ^ b≠aj}

7 conf(Ai-1→B)=supp(Ai-1∪B)/suppAi-1

8 Rij={Ai-1→B|conf(Ai-1→B)>minconf}
9 end
10 end

Figure 3. The algorithm for finding association rules

As we can see above, the rules are generated in an
iterative way. In each iteration j we generate rules with
consequent of size j. Then we consider the following
property: for a frequent itemset, if a rule with consequent b
holds, then rules with consequents that are subsets of b holds
also. We use this property to generate rules in iteration j
based on rules with consequents of length (j-1) found in the
previous iteration.

IV. USING SQL FOR FREQUENT K-ITEMSETS GENERATION

In most implementation Apriori works with data stored in
flat files but, data is ordinary stored in databases, so, for
moving it in a flat file there are necessary some additional
preprocessing operations.

Here we describe a way to find the frequent k-itemsets
using SQL and manipulating data directly in a database. First
of all we assume that the transaction table D has two
columns: transaction identifier and item. As we don’t know
the number of items per transaction, this structure is more
practical that alternatives presented in [5] where each item of
a transaction is placed in a different column.

A. Stored procedure approach

In the first step of the algorithm one have to generate the
frequent 1-itemset, by finding the support for each item and
by removing those items that have support lesser that
minsup.

The SQL query that performs this task, corresponding to
the first line in the pseudo-code described above is:

 insert into F1

 select item, count(*) (4)

 from D

 group by item

 having count(*)>minsup;

Further, each step k of the algorithm, first generate a

candidate k-itemset Ck from which we will find the frequent
k-itemsets Fk. In order to do that, we have to execute the
following:

• to generate C2, which will be stored in a table with
two columns (one for each item in the combination)
we use:

 insert into C2

 select a.item1, b.item2 (5)

 from F1 a, F1 b

 where a.item<b.item

 order by a.item;

• to find F2 we must count the support of all 2-itemsets
from C2, and insert into F2 only those who have the
support greater than minsup. F2 is a table with three
columns (two columns for the two items and one
column for support). We use a stored procedure that
contain a sequence such as:

 ….

 select count(id) into vsup

 from D

 where D.item=vc1 and exists

 (select tid

 from D d1 (6)

 where d1.item=vc2 and D.tid=d1.tid);

 if vsup>vminsup then

 insert into F2

 values(vc1, vc2, vsup);

 end if;
……….

To generalize, in order to find a frequent k-itemset Fk we

will use the following SQL statements:

insert into Ck

 select a.item1,a.item2,…, a.item (k-1), b.item(k-1)

 from Fk-1 a, Fk-1 b

 where a.item1=b.item1 and (7)
 a.item2=b.item2 and

 ……

 a.item(k-2)=b.item(k-2)and

 a.item(k-1)<b.item(k-1)

 order by a.item1, a.item2,…, a.item(k-1);

for generating Ck and a stored procedure including:

 select count(id) into vsup
 from D

 where D.item=vc1 and exists (8)

16

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

 (select tid
 from D d1

 where d1.item=vc2 and D.tid=D1.tid and exists
 (…………
 (select tid
 from D dk-1
 where dk-1.item=vck
 and dk-2.tid=dk-1.tid)

 …);

in order to find the support of candidate k-itemsets.
One can see that for counting support for a k-itemset we

need a select SQL statement that have k-1 subqueries, so, the
number of nested selects is direct related with the size of the
itemset to be analyzed.

B. The SQL Approach

To take advantage of the query optimizer, which is
present in every relational DBMS, it is possible to implement
Apriori algorithm only in SQL. In this case the generation of
candidates Ck is made in the same manner as above.

In fact, the expression (7) generates an extensive set of
candidate k-itemsets. If we consider that to be frequent, a k-
itemset must contain only subsets of frequent (k-1) itemsets,
it could be necessary to eliminate candidates that contain
subsets that are not frequent from those generated by (7).
This operation is the so-called pruning step, and is very
useful because, after that, the remaining candidates could fit
into memory, and the counting for support could be made
pipeline, without materializing the candidates.

In [6] it is shown that we can perform the prune step in
the same time with the join of Fk-1 and Fk-1. In order to
combine these tasks we could use the following SQL
statement:

 insert into Ck

select I1.item1,I1.item2,…,I1.item(k-1), I2.item(k-1)
 from Fk-1 I1, Fk-1 I2, Fk-1 I3,…,Fk-1 Ik
 where
 I1.item1=I2.item1 and (9)
 I1.item2=I2.item2 and

 ……
 I1.item(k-2)=I2.item(k-2)and
 I1.item(k-1)<I2.item(k-1)and
 I1.item2=I3.item1 and && skip item1

 ……
 I1.item(k-1)=I3.item(k-2)and
 I2.item(k-1)=I3.item(k-1)and
 ……

 I1.item1=Ik.item1 and && skip item(k-2)

 ……
 I1.item(k-1)=Ik.item(k-2)and
 I2.item(k-1)=Ik.item(k-1)

 order by I1.item1, I1.item2,…, I1.item(k-1);

The expression (9) is a k-way join. This method is used

since for any k-itemset there are k subsets of size k-1, which
must be member of the frequent (k-1)-itemsets (Fk-1).

In the above expression after joining I1 and I2, we obtain
the following k-itemset (I1.item1, I1.item2,…,I1.item(k-1),
I2.item(k-1)). It contains two (k-1)-itemsets, which are frequent
since they are member of Fk-1. These are (I1.item1,I1.item2,
…,I1.item(k-1)) and (I1.item1, I1.item2,…,I1.item(k-2), I2.item(k-

1)). The rest of (k-2) subsets must be checked, and in order to
do that we use additional joins whose selection predicates are
build by skipping one item at a time from the k-itemset.

Concrete, first we skip item1 and check if the (k-1)
itemset (I1.item2, …, I1.item(k-1), I2.item(k-1)) belong to Fk-1.
This is done by the join with I3. Second we skip item2 to see
if (I1.item1, I1.item3, …, I1.item(k-1), I2.item(k-1)) belong also to
Fk-1.

In general we perform the join with In and, in the
predicate we skip the item (n-2) from the k-itemset to check
if the subset build by deleting the (n-2)th item from the
original k-itemset, belong to Fk-1.

Further it is necessary to count candidates’ support to
find frequent itemsets. In order to do that we use the
candidate itemsets Ck and the transaction table D. We
consider the two approaches, which were found to be the
best ones in [5]. There are: the K-way joins and the
subquery-based implementation.

In k-way joins the candidate itemset Ck is joined with k
transaction tables D and the support is counted using a group
by clause on all k items. The general expression for finding a
frequent k-itemset Fk is:

insert into Fk
 select item1, item2, …, itemk, count(*)
 from Ck, D d1, …, D dk
 where d1.item=Ck.item1 and
 d2.item= Ck.item2 and (10)
 ……..
 dk.item=Ck.itemk and
 d1.tid=d2.tid and
 d2.tid = d3.tid and
 ….
 dk-1.tid=dk.tid
 group by item1, item2, ….,itemk
 having count(*)>:minsup;

The subquery-based approach tries to reduce the amount

of work during the support counting by using the common
prefixes between the items in Ck. To do this, the support
counting phase is split into a cascade of k subqueries.

The nth (n=1..k) subquery is build based on the result of
(n-1)th subquery, which is joined with the transaction table
D, and the distinct itemsets consisting of the first n+1
columns of Ck. To obtain the final output we make a group-
by on the k items to calculate the support and we remove
those rows that have the calculated support less than minsup.

The statement for generating Fk is:

 insert into Fk
 select item1, item2, …, itemk, count(*)
 from (SQk) (11)
 group by item1, item2, ….,itemk
 having count(*)>:minsup;

17

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

where SQk is the kth subquery . Subquery Qn (n=1..k) is

Select item1, item2, …, itemn, tid
From D dn,(Subquery Qn-1) SQn-1,(select distinct item1,…,

itemn from Ck) cn

where SQn-1.item1 = cn.item1 and (12)
 … and
 SQn-1.itemn-1 = cn.itemn-1 and
 SQn-1.tid = dn.tid and
 dn.item = cn.itemn ;

V. CASE STUDY

The Center for Computer Research in the University
"Stefan cel Mare" of Suceava has implemented the
TERAPERS project [7]. TERAPERS is a system, which is
able to assist teachers in their speech therapy of dislalya and
to follow how the patients respond to various personalized
therapy programs. This system is currently used by the
therapists from Regional Speech Therapy Center of Suceava.

In the context of the need for more efficient activities, it
was showed that data mining methods, applied to data
collected in TERAPERS, can provide useful knowledge for
personalized therapy optimization. So, the idea about Logo-
DM system has started. This is a data mining system, which
aims to use the data from TERAPERS database in order to
answer the questions such as: what is the predicted final state
for a child or what will be his/her state at the end of various
stages of therapy, which the best exercises are for each case
and how they can focus their effort to effectively solve these
exercises or how the family receptivity, which is an
important factor in the success of the therapy - is associated
with other aspects of family and personal anamnesis [8][9].

Specifically, association rules could reveal interesting
relationships between patients’ anamnesis, their diagnosis
and the results obtained at the end of various stages of
therapy.

To find the best way to implement the association rules
we have used a real dataset from TERAPERS, on which we
have applied the three methods of determining the frequent
itemsets discussed above.

Data considered is stored in a relational table with 96
columns (attributes) and 300 cases. A step in the preparation
process of this table for applying Apriori algorithm is to
change the structure of the initial table in order to obtain the
following structure: id, item.

After this transformation we have obtained a data set that
can be assimilated to a transactional one. As each patient has
associated a set of features, we can consider the patient
identifier as a transaction identifier and the set of features as
a set of items. The transactional dataset obtained as result of
pre-processing operations contains 300 cases (transactions),
but the average of items per transaction is 65.

We have applied on this data the three methods for
finding the frequent itemsets discussed above. All of them
have provided as output the same number of frequent
itemsets and the same maxim length of the itemsets, but
major differences were recorded on response times. To
enable the query optimizer to choose the best execution plan,

we have constructed some indexes. The source table for data
used by Apriori algorithm was indexed on both columns (id,
item), and Ck and Fk were indexed on columns (item1, item2,
…, itemk).

The results obtained are presented in figures below.
Figure 4 and Figure 5 show the number of itemsets

obtained and the maximum length of these itemsets. We
note that, in this case, taking into account the data
characteristics, it should be imposed a minimum value for
the threshold minsup equal to 0,5. For this value is obtained
a considerable number of itemsets (approximately 4000000)
with a maximum length of 32 items.

Figure 6 presents a summary of execution times obtained
when, in order to finding frequent itemsets, we use the
following methods: stored procedures, k-way joins and
subquery-based joins. It may be noted that for the last two
ways, execution times are relatively closed and they are
lower than for stored procedures.

Figure 4. Frequent itemsets found for different values for minsup

0

10

20

30

40

50

60

0,2 0,3 0,4 0,5 0,6 0,7

support

m
a
x

 l
e

n
g

th
 o

f
s
e

ts

Figure 5. Maximum length of itemsets for different values for minsup

18

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

Figure 6. A comparation of execution times

VI. CONCLUSION

Last time, data mining has become an area of special
importance. Based on the results obtained using the patterns
provided by data mining in fields such as business or
medicine, we have tried to extend the implementation of
these methods in other areas. This paper presents a part of
the efforts made in order to achieve and to early evaluate the
performances of finding the association rules for a system
that aims to optimize the personalized therapy of speech
disorder.

To take advantage of the facilities offered by the query
optimizer, it is proposed to incorporate data mining
algorithms in the database that stores data to be analyzed.

First, it was noted that in this context the data pre-
processing operations are relatively simple to be achieved.
Then it was observed that, due to the data set properties, the
largest number of candidate itemsets was not obtained in the
second step, and for about half of iterations the number of
candidates and of frequent itemsets increases, then this
number decreases. The data source contains a lot of items
that are found in a large percentage of transactions. As a
result it is indicated for the support’s threshold to be
established to a value of least 0,5. Even in this case the
number and the maxim length of frequent itemsets are high.
As a result it will get a large number of association rules that
should be filtered in order to preserve only the most
interesting ones.

ACKNOWLEDGMENT

This paper was supported by the project "Progress and
development through post-doctoral research and innovation
in engineering and applied sciences– PRiDE - Contract no.
POSDRU/89/1.5/S/57083", project co-funded from
European Social Fund through Sectorial Operational
Program Human Resources 2007-2013.

REFERENCES

[1] J. Han, Y. Fu, K. Koperski, W. Wang, and O. Zaiane.
DMQL: A data mining query language for relational datbases.
In Proc. of the 1996 SIGMOD workshop on research issues
on data mining and knowledge discovery, Montreal, Canada,
May 1996.

[2] R. Agrawal and K. Shim. Developing tightly-coupled data
mining applications on a relational database system. In Proc.
of the 2nd Int'l Conference on Knowledge Discovery in Databases

and Data Mining, Portland, Oregon, August 1996.

[3] R. Agrawal, T. Imielinski, and A. Swami. Mining association
rules between sets of items in large databases. In Proceedings
of the ACM SIGMOD International Conference on
Management of Data (ACM SIGMOD '93), 1993

[4] R. Agrawal and R. Srikant. Fast algorithms pentru mining
association rules. In Proceedings of the 20th International
Conference on Very Large Databases (VLDB '94), Santiago,
Chile, June, 1994

[5] K. Rajamani, B. Iyer, and A. Chaddha. Using DB/2's object
relational extensions for mining associations rules. Technical
Report TR 03,690., Santa Teresa Laboratory, IBM
Corporation, sept 1997.

[6] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating
Association Rule Mining with Relational Database Systems:
Alternatives and Implications. In Proc. of the ACM SIGMOD
Conference, Seattle, Washington, June 1998.

[7] M. Danubianu, S.G. Pentiuc, O. Schipor, M. Nestor, I. ,
Ungurean. Distributed Intelligent System for Personalized
Therapy of Speech Disorders, Proceedings of ICCGI08,
2008, Atena

[8] M. Danubianu, S.G. Pentiuc, I. Tobolcea, O.A. Schipor.
Advanced Information Technology - Support of Improved
Personalized Therapy of Speech Disorders, International
Journal of Computers Communications & Control, ISSN
1841-9836, 5(5): 684-692, 2010.

[9] S. G. Pentiuc, I. Tobolcea, O. A. Schipor, M. Danubianu, D.
M. Schipor, "Translation of the Speech Therapy Programs in
the Logomon Assisted Therapy System," Advances in
Electrical and Computer Engineering, vol. 10, no. 2, pp. 48-
52, 2010, http://dx.doi.org/10.4316/AECE.2010.02008

19

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

