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Abstract - In the context of the necessity to find new 

knowledge in data, last decade, data mining has become an area 
of great interest.  Although most data mining systems work 
with data stored in flat files, sometimes it is beneficial to 
implement data mining algorithms within a DBMS, in order to  
use SQL or other facilities provided, to discover patterns in 
data.  In this paper we consider a way to discover association 
rules from data stored into a relational database. We make also 
a comparative study of performances obtained by applying the 
following methods: stored procedures in database or candidate 
and frequent itemsets generated in SQL using a k-way join and 
a subquery-based algorithm. This study is used to choose the 
best solution to implement in the particular case of building a 
dedicated data mining system for personalized therapy of 
speech disorders optimization.  

 

Keywords-data mining method, association rules, relational 
database, SQL , stored-procedures 

I.  INTRODUCTION 

The most common way to store data collected in various 
areas is in relational databases. Information and 
Communication Technology development has lead to a huge 
volume of data stored and to the inability to extract useful 
information and knowledge from this data by using the 
traditional methods. For this reason, data mining has 
developed as a specific field. Mining association rules is one 
of the commonly used methods in data mining. Association 
rules model dependencies between items in transactional 
data.  Most data mining systems work with data stored in flat 
files. However, it has been shown it is beneficial to 
implement data mining algorithms within a DBMS, and 
using of SQL to discover patterns in data can bring certain 
advantages. 

There is some research focused on issues regarding the 
integration of data mining with databases. There have been 
proposed language extensions of SQL to support mining 
operations. For instance, in [1], DMQL extends SQL with a 
series of operators for generation of characteristic rules, 
discriminant rules and classification rules. 

This paper aims to present some aspects of coupling data 
mining algorithms with database management systems.  

Section II shows the reasons to try to mine data directly 
in databases and a possible architecture for such data mining 
system. In Section III, there are defined association rules, 

presents the methods and some algorithms that find 
association rules in data. In Section IV, we focus on the 
possibility to use SQL in order to generate the frequent 
itemsets.  Section V contains a case study.  

II. PERFORMING DATA MINING INTO A DATABASE 

MANAGEMENT SYSTEM 

As we have noted above, sometimes it is useful to 
implement data mining algorithms in database management 
systems (DBMS). 

First, one can use the database indexing capability and 
query processing and optimization facilities provided by a 
DBMS.  Second, for long running mining applications it can 
be useful the support for checkpointing and last, but not least 
one can exploit the possibility of SQL parallelization, 
especially for a SMP environment. 

This involves the development of data mining 
applications tightly–coupled with a relational database 
management system. In [2], a methodology to achieve this 
goal is presented.  

Accordingly to this methodology, the records of a 
database are not fetched into the application, but modules of 
the application program that perform various operations on 
the retrieved records, are pushed in the database system.  

Although in this case the core of data mining is found in 
the database, no changes were made on database 
management software, and appropriate functionalities were 
provided by user-defined procedures and functions stored in 
the database. 

A possible architecture for such data mining approach is 
presented in Figure 1. 

The graphical interface allows users to formulate the data 
mining problem and to establish parameters, such as: 
minimum thresholds for support and confidence for 
association rules, or minimum value for accuracy for 
classification. 

Preprocessing module aims to translate the mining 
problem in the corresponding SQL instruction set. We 
consider the Oracle 9i SQL dialect because it contains object 
relational capabilities and it allows user-defined function and 
functions table. 

Finally, the processing results are converted and 
presented to the user in an intelligible form through the 
graphical interface. 
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Figure 1.  A proposed architecture for  data mining in a DBMS  

III. ASSOCIATION RULES: DEFINITION, METHODOLOGY, 
ALGORITHMS  

Association rules aims to discover the dependencies 
between the items in transactional databases.  

Briefly, one can define association rules as follows: if we 
have a set of transactions, where each transaction is a set of 
items, an association rule [3] is an implication A->B, where 
A and B are disjoint sets of items.  It means that if a 
transaction contains the items in A, it tends also to contain 
the items in B. A is called the antecedent of rule and B is 
called its consequent. 

In terms of association rules, a set of k items is called k-
itemset. In a transactional database, for an itemset A we can 
define a measure called support, that represents the fraction 
of transaction that contains A. If we note the database with 
D, the expression for the support for A is: 

 

sup(A)= |A| / |D|                                        (1) 
 
where |A| is the number of transaction containing A, and 

|D| is the cardinality of the database. 
The support for the rule A-> B is defined as: 

 

sup(A→B ) = sup(A∪B)                                 (2) 
 
and represent the percentage of all transactions that 

contain both A and B. 
The rule holds in the transaction database with 

confidence calculated with the following expression:   
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The problem of finding association rules is to generate all 

association rules that have support and confidence greater 
than two user–specified thresholds called minsupp and 
minconf. 

The mining process for association rules can be 
decomposed in two phases: first find all combination of 
items whose support is greater than minsupp, called frequent 
itemsets and second, use these frequent itemsets to generate 
the rules. 

Since the generation of frequent itemsets is the most 
expensive part in terms of resources and time consuming, a 
lot of algorithms for this task were developed. Most 
algorithms use a method that build candidate itemsets, which 
are sets of potential frequent itemsets, and then test them. 
Support for these candidates is determined by taking into 
account the whole database D. The process of generating 
candidate itemsets considers the information regarding the 
frequence of all candidates already checked. So, the 
procedure is the following: the closure of frequent itemsets 
assumes that all subsets of a frequent itemset are also 
frequent. This allows remove those sets that contain at least 
one set of items that is not frequent, from candidate itemsets. 
After generating, the appearance of each candidate in the 
database is counted, in order to retain only those having the 
support greater than minsup. 

Then we can move to the next iteration. The whole 
process ends when there are no potential frequent itemsets.  

The most known algorithm, which uses the above 
mechanism, is Apriori [4]. On this basis some variants such 
as Apriori Tid, Apriori All, Apriori Some or Apriori Hibrid 
were developed. Figure 2 presents the Apriori algorithm. We 
use the following notation: 
D- the transaction database (transaction table) 

t- tuples in D 

k-itemset-set of k items 

Fk- frequents k-itemsets  

Ck- k-itemsets candidates (potential frequents) 

c.count – number of transactions containing each c 

candidate set of items 
 

  

1 F1 = [frequent 1-itemsets] 

 2  k=2 

 3  while Fk-1≠Φ do 
 4    Ck=gen_apriori(Fk-1)    &&generating new candidates 

 5    for each t∈ D do 

 6        Ct={Ck|Ck⊂t)             &&candidates in t 

 7        for each c ∈ Ct do 
 8           c.count=c.count+1 

 9     end 

10   Fk = {c ∈ Ck | c.count ≥ minsup} 
11   k=k+1 

12 end 

13 end 

 

Figure 2.   The Apriori algorithm 
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Once found all frequent k-itemsets one can generate rules 
having minimum confidence minconf. In order to do that, we 
consider all non-empty subsets of every frequent itemset f. 
Then, for each subset x, we find the confidence of the rule x-
> (f-x), and if it is equal or greater than minconf, we output 
the rule. 

Figure 3 presents in pseudo code the procedure for 
finding the association rules. We use the following notation:  
Fk- frequents k-itemsets  

Ai– a subset of j items from Fi (i<k,j<i) 

B–the remaining subset of (i-j) items from Fi 
 

 

1  F2 = [frequents 2-itemsets]  

2   k>2 

3  for i=2,k do 
4     for j=1,i-1 do  

5   Ai-1={aj|aj∈Fi} 

6   B={b|b∈Fi ^ b≠aj}  

7       conf(Ai-1→B)=supp(Ai-1∪B)/suppAi-1 

8       Rij={Ai-1→B|conf(Ai-1→B)>minconf} 
9     end 
10  end 
 

Figure 3.  The  algorithm for finding association rules 

As we can see above, the rules are generated in an 
iterative way. In each iteration j we generate rules with 
consequent of size j. Then we consider the following 
property: for a frequent itemset, if a rule with consequent b 
holds, then rules with consequents that are subsets of b holds 
also. We use this property to generate rules in iteration j 
based on rules with consequents of length (j-1) found in the 
previous iteration.  

IV. USING SQL FOR FREQUENT K-ITEMSETS GENERATION 

In most implementation Apriori works with data stored in 
flat files but,  data is ordinary stored in databases, so, for 
moving it in a flat file there are necessary some additional 
preprocessing operations. 

Here we describe a way to find the frequent k-itemsets 
using SQL and manipulating data directly in a database. First 
of all we assume that the transaction table D has two 
columns: transaction identifier and item. As we don’t know 
the number of items per transaction, this structure is more 
practical that alternatives presented in [5] where each item of 
a transaction is placed in a different column. 

 

A. Stored procedure approach 

In the first step of the algorithm one have to generate the 
frequent 1-itemset, by finding the support for each item and 
by removing those items that have support lesser that 
minsup. 

The SQL query that performs this task, corresponding to 
the first line in the pseudo-code described above is: 

 
 

       insert into F1 

  select item, count(*)                                       (4) 

          from D 

                         group by item 

                having count(*)>minsup; 
 
Further, each step k of the algorithm, first generate a 

candidate k-itemset Ck from which we will find the frequent 
k-itemsets Fk. In order to do that, we have to execute the 
following: 

• to generate C2, which will be stored in  a table with 
two columns (one for each item in the combination) 
we use: 

 
     insert into C2  

   select a.item1, b.item2                              (5) 

     from F1 a, F1 b 

      where a.item<b.item 

     order by a.item; 
 

• to find F2 we must count the support of all 2-itemsets 
from C2, and insert into F2 only those who have the 
support greater than minsup. F2 is a table with three 
columns (two columns for the two items and one 
column for support). We use a stored procedure that 
contain  a sequence such as: 

                    …. 

 select count(id) into vsup 

    from D 

    where D.item=vc1 and exists 

              (select tid  

                     from D d1                                    (6) 

                      where d1.item=vc2 and D.tid=d1.tid); 

 if vsup>vminsup then 

       insert into F2 

        values(vc1, vc2, vsup); 

 end if; 
………. 

 
To generalize, in order to find a frequent k-itemset Fk we 

will use the following SQL statements: 
 

insert into Ck  

  select a.item1,a.item2,…, a.item (k-1), b.item(k-1) 

    from Fk-1 a, Fk-1 b 

     where a.item1=b.item1 and                                   (7)  
           a.item2=b.item2  and  

                   …… 

           a.item(k-2)=b.item(k-2)and 

           a.item(k-1)<b.item(k-1) 

     order by a.item1, a.item2,…, a.item(k-1); 

 
for generating Ck and a stored procedure including: 
 
     select count(id) into vsup 
  from D 

 where D.item=vc1 and exists                               (8) 
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        (select tid  
          from D d1

                       
           where d1.item=vc2 and D.tid=D1.tid and exists 
            (………… 
                     (select tid  
                      from D dk-1 
                    where dk-1.item=vck  
                       and dk-2.tid=dk-1.tid) 

       …); 
 

in order to find the support of  candidate k-itemsets. 
One can see that for counting support for a k-itemset we 

need a select SQL statement that have k-1 subqueries, so, the 
number of nested selects is direct related with the size of the 
itemset to be analyzed. 

 

B. The SQL Approach  

To take advantage of the query optimizer, which is 
present in every relational DBMS, it is possible to implement 
Apriori algorithm only in SQL. In this case the generation of 
candidates Ck is made in the same manner as above.  

In fact, the expression (7) generates an extensive set of 
candidate k-itemsets. If we consider that to be frequent, a k-
itemset must contain only subsets of frequent (k-1) itemsets, 
it could be necessary to eliminate candidates that contain 
subsets that are not frequent from those generated by (7). 
This operation is the so-called pruning step, and is very 
useful because, after that, the remaining candidates could fit 
into memory, and the counting for support could be made 
pipeline, without materializing the candidates. 

In [6] it is shown that we can perform the prune step in 
the same time with the join of Fk-1 and Fk-1. In order to 
combine these tasks we could use the following SQL 
statement:  

 
     insert into Ck  

select I1.item1,I1.item2,…,I1.item(k-1), I2.item(k-1) 
     from Fk-1 I1, Fk-1 I2, Fk-1 I3,…,Fk-1 Ik 
     where  
    I1.item1=I2.item1 and                                          (9) 
    I1.item2=I2.item2 and  

         …… 
  I1.item(k-2)=I2.item(k-2)and 
  I1.item(k-1)<I2.item(k-1)and 
         I1.item2=I3.item1 and            && skip item1

     …… 
       I1.item(k-1)=I3.item(k-2)and 
        I2.item(k-1)=I3.item(k-1)and 
  …… 

    I1.item1=Ik.item1 and         && skip item(k-2)

            …… 
         I1.item(k-1)=Ik.item(k-2)and 
         I2.item(k-1)=Ik.item(k-1) 

    order by I1.item1, I1.item2,…, I1.item(k-1); 
 
The expression (9) is a k-way join. This method is used 

since for any k-itemset there are k subsets of size k-1, which 
must be member of the frequent (k-1)-itemsets (Fk-1).  

In the above expression after joining I1 and I2, we obtain 
the following k-itemset (I1.item1, I1.item2,…,I1.item(k-1), 
I2.item(k-1)). It contains two (k-1)-itemsets, which are frequent 
since they are member of Fk-1. These are (I1.item1,I1.item2, 
…,I1.item(k-1)) and (I1.item1, I1.item2,…,I1.item(k-2), I2.item(k-

1)). The rest of (k-2) subsets must be checked, and in order to 
do that we use additional joins whose selection predicates are 
build by skipping one item at a time from the k-itemset. 

Concrete, first we skip item1 and check if the (k-1) 
itemset ( I1.item2, …, I1.item(k-1), I2.item(k-1)) belong to Fk-1. 
This is done by the join with I3. Second we skip item2 to see 
if  (I1.item1, I1.item3, …, I1.item(k-1), I2.item(k-1)) belong also to 
Fk-1. 

In general we perform the join  with In and, in the 
predicate we skip the item (n-2) from the k-itemset to check 
if the subset build by deleting the (n-2)th item from the 
original k-itemset, belong to  Fk-1. 

Further it is necessary to count candidates’ support to 
find frequent itemsets. In order to do that we use the 
candidate itemsets Ck and the transaction table D. We 
consider the two approaches, which were found to be the 
best ones in [5]. There are: the K-way joins and the 
subquery-based implementation. 

In k-way joins the candidate itemset Ck is joined with k 
transaction tables D and the support is counted using a group 
by clause on all k items. The general expression for finding a 
frequent k-itemset Fk is: 

 
insert into Fk 
      select item1, item2, …, itemk, count(*) 
   from Ck, D d1, …, D dk 
 where  d1.item=Ck.item1 and 
  d2.item= Ck.item2 and                           (10) 
  …….. 
  dk.item=Ck.itemk and 
  d1.tid=d2.tid and 
  d2.tid = d3.tid and 
  …. 
  dk-1.tid=dk.tid 
 group by item1, item2, ….,itemk 
 having count(*)>:minsup; 
 
The subquery-based approach tries to reduce the amount 

of work during the support counting by using the common 
prefixes between the items in Ck.  To do this, the support 
counting phase is split into a cascade of k subqueries. 

The nth (n=1..k) subquery is build  based on the result of 
(n-1)th subquery, which  is joined  with the transaction table 
D, and the distinct itemsets consisting of the first n+1 
columns of Ck. To obtain the final output we make a group-
by on the k items to calculate the support and we remove 
those rows that have the calculated support less than minsup. 

The statement for generating Fk is:  
 
     insert into Fk 
       select item1, item2, …, itemk, count(*) 
   from (SQk)                                                        (11) 
 group by item1, item2, ….,itemk 
 having count(*)>:minsup; 
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where SQk is the kth subquery . Subquery Qn (n=1..k) is 
 
Select item1, item2, …, itemn, tid 
From D dn,(Subquery Qn-1) SQn-1,(select distinct item1,…, 

itemn from Ck ) cn 

where SQn-1.item1 = cn.item1  and  (12) 
        … and 
 SQn-1.itemn-1 = cn.itemn-1  and 
 SQn-1.tid = dn.tid  and 
  dn.item  = cn.itemn ;  

V. CASE STUDY  

The Center for Computer Research in the University 
"Stefan cel Mare" of Suceava has implemented the 
TERAPERS project [7].  TERAPERS is a system, which is 
able to assist teachers in their speech therapy of dislalya and 
to follow how the patients respond to various personalized 
therapy programs. This system is currently used by the 
therapists from Regional Speech Therapy Center of Suceava.  

In the context of the need for more efficient activities, it 
was showed that data mining methods, applied to data 
collected in TERAPERS, can provide useful knowledge for 
personalized therapy optimization. So, the idea about Logo-
DM system has started. This is a data mining system, which 
aims to use the data from TERAPERS database in order to 
answer the questions such as: what is the predicted final state 
for a child or what will be his/her state at the end of various 
stages of therapy, which the best exercises are for each case 
and how they can focus their effort to effectively solve these 
exercises or how the family receptivity, which is an 
important factor in the success of the therapy - is associated 
with other aspects of family and personal anamnesis [8][9]. 

Specifically, association rules could reveal interesting 
relationships between patients’ anamnesis, their diagnosis 
and the results obtained at the end of various stages of 
therapy. 

To find the best way to implement the association rules 
we have used a real dataset from TERAPERS, on which we 
have applied the three methods of determining the frequent 
itemsets discussed above. 

Data considered is stored in a relational table with 96 
columns (attributes) and 300 cases. A step in the preparation 
process of this table for applying Apriori algorithm is to 
change the structure of the initial table in order to obtain the 
following structure: id, item.   

After this transformation we have obtained a data set that 
can be assimilated to a transactional one. As each patient has 
associated a set of features, we can consider the patient 
identifier as a transaction identifier and the set of features as 
a set of items. The transactional dataset obtained as result of 
pre-processing operations contains 300 cases (transactions), 
but the average of items per transaction is 65. 

We have applied on this data the three methods for 
finding the frequent itemsets discussed above. All of them 
have provided as output the same number of frequent 
itemsets and the same maxim length of the itemsets, but  
major differences were recorded on response times. To 
enable the query optimizer to choose the best execution plan, 

we have constructed some indexes. The source table for data 
used by Apriori algorithm was indexed on both columns (id, 
item), and Ck and Fk were indexed on columns (item1, item2, 
…, itemk). 

The results obtained are presented in figures below.  
Figure 4 and Figure 5 show the number of itemsets 

obtained and the maximum length of these itemsets.  We 
note that, in this case, taking into account the data 
characteristics, it should be imposed  a minimum value for 
the threshold minsup  equal to 0,5. For this value is obtained 
a considerable number of itemsets (approximately 4000000) 
with a maximum length of 32 items. 

Figure 6 presents a summary of execution times obtained 
when, in order to finding frequent itemsets, we use the 
following methods: stored procedures, k-way joins and 
subquery-based joins. It may be noted that for the last two 
ways, execution times are relatively closed and they are 
lower than for stored procedures. 

 
 

 
Figure 4.  Frequent itemsets found for different values for  minsup 
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Figure 5.  Maximum length of itemsets for different values for minsup 
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Figure 6.  A comparation of execution times 

 

VI. CONCLUSION 

Last time, data mining has become an area of special 
importance. Based on the results obtained using the patterns 
provided by data mining in fields such as business or 
medicine, we have tried to extend the implementation of 
these methods in other areas. This paper presents a part of 
the efforts made in order to achieve and to early evaluate the 
performances of finding the association rules for a system 
that aims to optimize the personalized therapy of speech 
disorder.  

To take advantage of the facilities offered by the query 
optimizer, it is proposed to incorporate data mining 
algorithms in the database that stores data to be analyzed. 

First, it was noted that in this context the data pre-
processing operations are relatively simple to be achieved. 
Then it was observed that, due to the data set properties, the 
largest number of candidate itemsets was not obtained in the 
second step, and for about half of iterations the number of 
candidates and of frequent itemsets increases, then this 
number decreases. The data source contains a lot of items 
that are found in a large percentage of transactions. As a 
result it is indicated for the support’s threshold to be 
established to a value of least 0,5. Even in this case the 
number and the maxim length of frequent itemsets are high.  
As a result it will get a large number of association rules that 
should be filtered in order to preserve only the most 
interesting ones. 

ACKNOWLEDGMENT 

This paper was supported by the project "Progress and 
development through post-doctoral research and innovation 
in engineering and applied sciences– PRiDE - Contract no. 
POSDRU/89/1.5/S/57083", project co-funded from 
European Social Fund through Sectorial Operational 
Program Human Resources 2007-2013. 

 

REFERENCES 

[1]  J. Han, Y. Fu, K. Koperski, W. Wang, and O. Zaiane. 
DMQL: A data mining query language for relational datbases. 
In Proc. of the 1996 SIGMOD workshop on research issues 
on data mining and knowledge discovery, Montreal, Canada, 
May 1996. 

[2] R. Agrawal and K. Shim. Developing tightly-coupled data 
mining applications on a relational database system. In Proc. 
of the 2nd Int'l Conference on Knowledge Discovery in Databases 

and Data Mining, Portland, Oregon, August 1996. 

[3] R. Agrawal, T. Imielinski, and A. Swami.  Mining association 
rules between sets of items in large databases. In Proceedings 
of the ACM SIGMOD International Conference on 
Management of Data (ACM SIGMOD '93), 1993 

[4] R. Agrawal and R. Srikant. Fast algorithms pentru mining 
association rules. In Proceedings of the 20th International 
Conference on Very Large Databases (VLDB '94), Santiago, 
Chile, June, 1994 

[5] K. Rajamani, B. Iyer, and A. Chaddha. Using DB/2's object 
relational extensions for mining associations rules. Technical 
Report TR 03,690., Santa Teresa Laboratory, IBM 
Corporation, sept 1997. 

[6] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating 
Association Rule Mining with Relational Database Systems: 
Alternatives and Implications. In Proc. of the ACM SIGMOD 
Conference, Seattle, Washington, June 1998.  

[7] M. Danubianu, S.G. Pentiuc, O. Schipor, M. Nestor, I. , 
Ungurean. Distributed Intelligent System for Personalized 
Therapy of Speech Disorders, Proceedings of  ICCGI08, 
2008, Atena 

[8] M. Danubianu, S.G. Pentiuc, I. Tobolcea, O.A. Schipor. 
Advanced Information Technology - Support of Improved 
Personalized Therapy of Speech Disorders, International 
Journal of Computers Communications & Control, ISSN 
1841-9836, 5(5): 684-692, 2010. 

[9] S. G. Pentiuc, I. Tobolcea, O. A. Schipor, M. Danubianu, D. 
M. Schipor, "Translation of the Speech Therapy Programs in 
the Logomon Assisted Therapy System," Advances in 
Electrical and Computer Engineering, vol. 10, no. 2, pp. 48-
52, 2010, http://dx.doi.org/10.4316/AECE.2010.02008 

 

 

 

 

 

   

19

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-139-7


