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Abstract— Unexpected downtime and IT system outages can 
cost organisations millions of dollars in lost revenue, loss of 
opportunity, and negatively impacted reputation. Third party 
cloud services and infrastructure are commonly used by 
individuals and organisations as it offers the ability to create 
highly scalable applications without the huge cost of 
purchasing and maintaining their own hardware facility. 
Consequently, cloud service providers are challenged with 
ensuring that their data centres are reliable, as they have 
shared responsibility for the applications deployed in them. 
One of the most common causes of IT system failure in data 
centres is failing Hard Disk Drives (HDDs). It is proposed that 
if data centres were able to accurately predict imminent HDD 
failures, then appropriate action could be taken to prevent 
potential outages. This paper investigates the relationship 
between Self-Monitoring, Analysis, and Reporting Technology 
(SMART) attributes and HDD failure, implementing 
supervised machine learning methods to predict drive failure 
at various prediction horizons. Random Forest and XGBoost 
classifiers are observed to achieve the best prediction 
performance, with the Area Under the Receiver Operating 
Characteristic Curve (AUROC) calculated at 0.9185±0.0066 
and 0.9162±0.0066 respectively at the shortest prediction 
horizon (0-24 hours prior to failure). Reallocated sectors count 
(SMART 5), reported uncorrectable errors (SMART 187), 
current pending sector count (SMART 197), and uncorrectable 
sector count (SMART 198) were found to be the most 
important SMART attributes for HDD failure prediction. 

Keywords-hard disk drive; hdd reliability; machine learning; 
failure prediction. 

LIST OF ABBREVIATIONS 
Abbreviation Definition 
AUROC Area Under the Receiver Operating Characteristic Curve 
DT Decision Tree 
FAR False Alarm Rate 
FDR False Discovery Rate 
FPR False Positive Rate 
HDD Hard Disk Drive 
k-NN K-Nearest Neighbour 
LR Logistic Regression 
ML Machine Learning 
MLP Multi-Layer Perceptron 
RF Random Forest 
RUL Remaining Useful Life 
SLA Service Level Agreement 
SMART Self-Monitoring, Analysis, and Reporting Technology 
TPR True Positive Rate 
XGB XGBoost 

I.  INTRODUCTION 
Unexpected downtime or outages of IT systems can have 

major consequences for businesses and users. It is reported 
that a single outage can cost an organisation millions of 
dollars through the loss of revenue, loss of opportunities, and 
diminished reputation, and that this cost impact is increasing 
year on year [1]. Many organisations today use cloud 
computing as part of their products and services, reducing 
the need for purchasing and maintaining their own IT 
infrastructure while improving the scalability of their 
applications. As cloud adoption continues to grow, cloud 
service providers have shared responsibility for their users’ 
applications and are tasked with providing highly available 
services and reliable IT infrastructure. Application downtime 
or system unavailability can be detrimental for both the 
cloud provider and the cloud user, with cloud providers 
liable to fines for breaches of Service Level Agreements 
(SLAs). 

Data centre outages occur from time to time, which may 
result in application unavailability or system downtime. The 
most common causes of data centre outages are on-site 
power-related problems, such as generator or grid failures, 
followed by network problems and IT system failure [2]. 
With respect to IT system failures, which include hardware 
and software failures, Hard Disk Drives (HDDs) are believed 
to be one of the main offenders of causing problems. HDDs 
are one of the most replaced hardware components and one 
of the least reliable, with [3] reporting that 78% of faults or 
replacements are attributable to hard disks. Another 
investigation [4] of the data centres of a major internet 
service organisation observed that 82% of hardware failure 
tickets were attributable to HDDs. Therefore, data centres 
could potentially improve their reliability by monitoring the 
health of HDDs in their IT estate and take appropriate action 
before a drive failure occurs.  

Self-Monitoring, Analysis, and Reporting Technology 
(SMART) was developed in 1995 and is commonly used by 
manufacturers today, providing measurements collected by 
sensors within HDDs to report on various indicators of 
reliability and drive health. SMART attributes are numbered 
from 1 to 255 giving raw and normalised values of each 
measurement. For example, SMART 9 reports the power-on 
hours, the total count of hours that the drive has been in a 
power-on state across its operational lifetime. SMART 190 
and 194 give measurements of internal temperature within 
the HDD unit. SMART 240 records the total time in hours 
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that the read-write head has been operating to position itself 
across the surface of the disk, while SMART 241 and 242 
record the lifetime data (in bytes) written to, and read from, 
the drive respectively. Other attributes count the number of 
errors, such as SMART 1, which records the rate of read 
errors between the read-write head and the disk surface. 

The aim of this paper is to investigate the relationship 
between SMART metrics and HDD failure, and to assess if 
Machine Learning (ML) methods can accurately predict 
imminent drive failure using reported SMART attribute 
measurements. Additionally, a comparative study will 
determine the best ML algorithm for application in this 
problem domain. 

The remainder of the paper is organised as follows: 
Section II highlights existing work in the field, describing 
research approaches and their effectiveness for HDD failure 
prediction. Section III describes the dataset analysis and ML 
methods used in this paper. Section IV reports the results and 
performance of the ML implementation. Section V discusses 
the limitations of the work, highlighting improvements and 
opportunities for extension. Section VI summarises the 
research and concludes the paper. 

II. EXISTING WORK 
“Autonomic systems are examples of accelerated AI 

automation. They are self-managing physical or software 
systems, performing domain-bounded tasks that exhibit three 
fundamental characteristics: autonomy, learning and agency. 
When traditional AI techniques aren’t able to achieve 
business adaptability, flexibility and agility, autonomic 
systems can be successful in helping with implementation. 
Autonomic systems will take five to ten years until 
mainstream adoption but will be transformational to 
organizations” [5].  This work on supervised Machine 
Learning for HDD failure prediction fits generally with that 
Autonomic vision [6][7]. 

The ability to predict HDD failures would allow data 
centres to mitigate against potential outages by proactively 
replacing drives before they reach a state of failure. 
Unsurprisingly, there have been many works of research 
investigating and attempting to address this problem. 
Machine learning and probabilistic techniques are popular 
among researchers, applying traditional ML classification 
and regression methods, Bayesian networks, deep learning, 
or combining multiple methods with ensemble learning.  

 The approach taken in [8] uses SMART attributes to 
create HDD failure prediction models using classification 
and regression trees. Their experiments show the 
classification tree model was able to successfully predict 
95% of failures with a False Alarm Rate of less than 0.1% 
when applied to a real-world data centre containing 25,792 
HDDs. Additionally, they propose a regression tree model to 
evaluate the health status of the drives, where the probability 
of a fault occurring is predicted. Also using a tree-based 
model, [9] takes a binary classification approach to predict 
the health of HDDs in Meta’s Tectonic storage fleet. The 
SMART metrics of 53,000 failed HDDs were used, 
alongside a random sample of non-failing drives, to 
categorise the HDDs as healthy or unhealthy at 1 and 30 

days prior to failure. Their XGBoost classifier showed 
limited prediction performance, achieving low precision 
when applied to unseen data from a different time window. 
However, they report noticeable improvements when using 
the difference, or delta, between SMART measurements over 
time as opposed to using the singular measurements from a 
set prediction horizon. 

Highlighting the limitation of using SMART attributes 
with their default thresholds to detect failing HDDs, [10] 
proposes a failure prediction method using a Bayesian 
network to provide Remaining Useful Life (RUL) estimates 
of drives. Using a subset of SMART attributes and their 
temporal trends, the proposed Bayesian Network for Failure 
prediction in HDDs (BNFH) was applied to a dataset 
containing 49,056 drives from Backblaze’s data centres. 
Their evaluation showed the model outperformed standard 
reliability-based methods and other Bayesian network-based 
methods presented in [11]; and achieved similar relative 
accuracy to a Recurrent Neural Network presented in [12]. 
The work in [13] utilises ensemble learning to create a 
Combined Bayesian Network (CBN), where the learning 
results from four individual classifiers are combined to 
predict the remaining time before a drive fails. The 
individual classifiers used backpropagation neural networks, 
evolutionary neural networks, support vector machines, and 
classification tree methods. Experimental results indicate the 
CBN performs similarly to the classification tree model and 
outperforms the other models. However, the CBN has 
additional benefit over the classification tree model by 
indicating when the drive will fail, not just that it will fail.  

Other research papers propose deep learning methods for 
HDD failure prediction. The work in [14] uses bidirectional 
LSTM models with multi-day lookback periods to learn the 
temporal progression of key health indicators present in 
SMART data. The proposed model achieved 96.4% accuracy 
in predicting HDD failure for a 15-day lookback period, 
outperforming a standard LSTM implementation. However, 
due to the inconsistency in SMART measurements recorded 
by different HDD manufacturers and models, the data used 
in this work only related to a single Seagate model 
(ST4000DM000) over the course of 9 months. Another deep 
learning approach, presented in [15], proposes a model based 
on Gated Recurrent Unit (GRU) neural networks and 
TimeGAN adversarial networks to analyse the temporal 
sequences of SMART attributes in HDDs, while addressing 
data imbalance issues. Their proposed approach achieved an 
average failure detection rate of 95% and a false alarm rate 
of 0.2%. This work also only applies to a single Seagate 
drive (ST6000DX000). 

While existing work has achieved success in HDD failure 
prediction, it is not always clear which method performs best 
in this problem domain. The listed works in this section 
apply numerous ML algorithms to HDD SMART metrics 
using data centre drives. However, the data centres, drive 
manufacturers, drive models, and timeframes within the 
datasets will vary from paper to paper. Therefore, it is not 
necessarily viable to make direct comparisons. As such, the 
purpose of this paper is to apply multiple machine learning 
methods to the same dataset of operational data centre hard 
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drives. The comparative study will derive insight into the 
best performing methods for HDD failure prediction. 

III. METHODOLOGY 
The dataset used in this paper was obtained from 

Backblaze [16], which records the daily SMART metrics of 
HDDs within their data centres. Each row in the dataset 
contains the date, serial number, model, capacity (in bytes), 
and raw and normalised values for various SMART metrics 
reported by each HDD. Additionally, a failure column 
records a binary value indicating if the drive is functional 
(0), or if the entry represents the last operational day before 
the drive failed (1). This paper uses the reported data across a 
10-year period, from 1st January 2014 to 31st December 
2023.  

A. Data Exploration 
Initial analysis of the dataset was conducted to gain a 

better understanding of the size and complexity of data, the 
HDD models that are reported on, and the prevalence of 
drive failures. Over the 10-year period, the dataset contained 
over 450 million rows, reporting the daily SMART metrics 
of 388,485 unique hard disk drives (identified by their serial 
number). In that time, 21,356 rows indicated that an HDD 
had failed. It appears that the data centre organisation 
preferred to replace failed drives, rather than repair them, as 
only a very small proportion of drives (0.005%) were seen to 
fail more than once. Table I shows that most of the drives 
(94.5%) did not experience failure, and nearly all failed 
drives only failed once. 

Using the model number provided in the dataset, it was 
possible to analyse the failure rate with respect to drive 
manufacturer and drive model. Seagate models accounted for 
the largest proportion of drives in the data centre throughout 
the years. Hitachi models also made up a large proportion in 
the earlier years, but their presence almost entirely 
disappeared by 2018. Other drive manufacturers present in 
the data include Toshiba, HGST, and WDC. Of the 193,378 
Seagate drives, 16,177 resulted in failure accounting for 
75.75% of all failures in the dataset and indicates an 8.37% 
failure rate for all Seagate HDDs. Table II shows the top 10 
models with the highest number of failures, indicating the 
model failure rate and their proportional contribution to the 
overall failures present in the data. Models prefixed with 
‘ST’ are Seagate drives and Table II shows that 7 of the top 
10 most failing drives belong to this manufacturer.  

One of the known issues with SMART attributes is that 
manufacturers do not always use them equally, as mentioned 
in [14]. The same SMART attribute may be used to report  

TABLE I.  DRIVE FAILURE COUNTS ACROSS ALL HDDS IN THE 
DATASET SHOWING PROPORTION OF DRIVES WITH MULTIPLE FAILURES 

Number of 
Failures 

Number of 
Drives % of HDDs % of Failures 

0 367,147 94.51 - 
1 21,320 5.49 99.92 
2 18 0.005 0.08 

 

TABLE II.  TOP 10 HDD MODELS WITH THE HIGHEST NUMBER OF 
FAILURES 

Model Total 
HDDs 

Total 
Failures 

% of All 
Failures 

Model 
Failure % 

ST4000DM000 36,983 5,602 26.23 15.15 
ST12000NM0007 38,838 2,106 9.86 5.42 
ST8000NM0055 15,680 1,718 8.04 10.96 
ST3000DM001 4,354 1,454 6.81 33.39 

ST12000NM0008 20,836 1,349 6.32 6.47 
MG07ACA14TA 39,292 1,173 5.49 2.99 
ST8000DM002 10,305 1,037 4.86 10.06 

HUH721212ALN604 11,166 600 2.81 5.37 
HMS5C4040BLE640 16,349 426 1.99 2.61 

ST14000NM001G 11,154 418 1.96 3.75 
 
different measurements by different manufacturers.  This 
would make it difficult to train a machine learning model and 
therefore, for the purposes of this paper, HDDs belonging to 
a single manufacturer will be used for failure prediction. As 
Seagate drives are the most prevalent model of HDD in this 
dataset, and account for the most failures, the Seagate 
models from Table II were selected. These are the top failing 
drives and include the following models: ST4000DM000, 
ST12000NM0007, ST8000NM0055, ST3000DM001, 
ST12000NM0008, ST8000DM002, and ST14000NM001G. 

B. Features 
Analysis of the data quality measured the prevalence of 

null or missing values to determine which SMART columns 
in the dataset could be used as features for machine learning. 
The HDD model, capacity (in bytes), and the raw and 
normalised SMART measurements were used for training 
and evaluating the ML classifiers.   

TABLE III.  SMART ATTRIBUTE FEATURES AND THEIR SPEARMAN 
RANK CORRELATION WITH HDD FAILURE 

ID Attribute Name Null 
% 

Correlation 
with Failure 

1 Read Error Rate 0.39 -0.001 
3 Spin Up Time 1.32 - 
4 Start/Stop Count 1.32 0.1015 
5 Reallocated Sectors Count 0.38 0.5352 
7 Seek Error Rate 1.32 0.0584 
9 Power-On Hours 0.38 0.0314 

10 Spin Retry Count 1.32 - 
12 Power Cycle Count 1.32 0.0959 
187 Reported Uncorrectable Errors 1.32 0.6114 
188 Command Timeout 1.32 0.1378 
190 Temperature Difference 1.32 0.0429 
192 Power-Off Retract Count 1.32 0.0455 
193 Load Cycle Count 1.32 0.0448 
194 Temperature 0.38 0.0429 
197 Current Pending Sector Count 0.38 0.5056 
198 Uncorrectable Sector Count 1.32 0.5056 
199 UltraDMA CRC Error Count 1.32 0.0705 
240 Head Flying Hours 1.32 -0.002 
241 Total LBAs Written 1.33 0.0368 
242 Total LBAs Read 1.33 0.0482 
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Furthermore, the Spearman rank correlation was 
measured to indicate which SMART metrics were more 
associated with drive failure. Table III shows the list of 
SMART metrics used and their Spearman rank correlation 
coefficients. 

C. Machine Learning Implementation 
The failure prediction in this paper was treated using a 

classification approach to determine if an HDD will fail or 
not at specific prediction horizons, or lookahead days. The 
SMART metrics were collected at 0, 1, 2, and 7 days prior to 
failure occurrences of the selected Seagate models described 
previously. As most drives in the dataset do not fail (94.5%), 
the datasets are highly imbalanced with vastly more 
examples of non-failing drives than failed ones. As 
imbalanced data can introduce bias to machine learning 
models, the non-failing class was under-sampled. A random 
sample of non-failing drives was collected to create 
balanced, unbiased training and testing datasets, where each 
Seagate model had equal representation of failure and non-
failure. The models were trained using 80% of the balanced 
datasets, reserving 20% for testing on unseen data. Any 
categorical fields, such as the HDD model and capacity, 
were converted to numerical values using ordinal and one-
hot encoders.  

The machine learning classifiers implemented in this 
paper include Random Forests (RF), XGBoost (XGB), 
Decision Trees (DT), Neural Networks (Multi-Layer 
Perceptron or MLP), k-Nearest Neighbour (k-NN), and 
Logistic Regression (LR). These methods were selected as 
they have shown good performance in other existing works 
of research. Appropriate hyperparameters were selected for 
each model using Bayesian optimisation, grid search, or 
random search with 5-fold cross-validation to measure the 
combination of parameters that achieved the best mean 
performance.   

Feature importance was assessed for each model, 
collected if available from the classifier, or measured using 
permutation. Permutation calculates the decrease in model 
performance as a result of randomly altering the values of 
each feature after the model has been trained. If the model 
performance is not greatly affected by permutations of a 
feature, then it is assumed that the model does not consider 
that feature important. Conversely, if the model’s 
performance reduces then the feature is considered 
important, with larger performance reductions implying a 
relatively more important feature. 

D. Model Evaluation 
The performance of each model was evaluated by 

generating failure predictions using the test dataset, and by 
comparing these predictions to the true failure status of the 
drives. A confusion matrix of the test predictions allowed for 
calculation of several evaluation metrics using the True 
Positive (TP), False Positive (FP), True Negative (TN) and 
False Negative (FN) values, as shown in Fig. 1. 

The accuracy and failure detection rate, or True Positive 
Rate (TPR), were calculated for each classifier at each 
lookahead window. Accuracy measures the percentage of  

  Predicted Label 
  0 (Not Failed) 1 (Failed) 

True 
Label 

0 (Not Failed) TN FP 
1 (Failed) FN TP 

Figure 1.  Confusion matrix used to evaluate binary classifiers. 

correct predictions made by the model and the TPR measures 
the proportion of failed drives that were correctly predicted 
as failing by the classifier. The accuracy and TPR 
calculations are as follows: 

  

In addition to accuracy and TPR, the False Alarm Rate 
(FAR) was also measured, which calculates the percentage 
of drives that were incorrectly labelled as failing. Two 
measurements were used to determine the FAR: the False 
Positive Rate (FPR), which is the proportion of non-failing 
drives in the test dataset that were incorrectly labelled as 
failing; and the False Discovery Rate (FDR), which 
measures the proportion of predicted drives labelled as 
failing that are incorrect. The FAR calculations are as 
follows: 

  
Another measure of performance used to evaluate the 

models is the Area Under the Receiver Operating 
Characteristic (AUROC) curve. The ROC curve plots the 
TPR against the FPR and the area under the curve gives a 
measure of the model’s prediction performance. An AUROC 
value of 1 represents a perfect classifier, and a value of 0.5 
represents the performance obtained by a random classifier. 
While accuracy is commonly used and important for 
evaluating the likely real-world benefit of the prediction 
model, the AUROC represents the goodness of the model. 
Using the prediction probabilities of belonging to a particular 
class, rather than the resulting binary label of the 
classification, the AUROC can give a better indication of 
model performance and is useful for comparing the 
performance between different models. Consequently, the 
AUROC was measured for each classification model, and for 
each lookahead window, using 5-fold cross-validation of the 
test datasets to measure the mean prediction score. 

IV. RESULTS 
The model prediction performance is shown in Table IV, 

comparing the mean AUROC scores of each of the models 
and the standard deviation from the 5-fold cross-validation 
evaluation on test data predictions. The random forest 
classifier achieved the highest AUROC score of 
0.9185±0.0066 at a lookahead window of 0 days. This was 
followed very closely by the XGBoost classifier, which 
achieved an AUROC score of 0.9162±0.0066 for the same 
lookahead window. In all cases, as the prediction horizon 
increased, the model performance decreased. The worst 
performing classifier was logistic regression, achieving an  
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TABLE IV.  AUROC AND STANDARD DEVIATION OF FAILURE 
PREDICTION CLASSIFIERS USING 5-FOLD CROSS-VALIDATION  

Method 
Lookahead Days (N) 

0 1 2 7 
Random 
Forest 0.9185±0.0066 0.8976±0.0142 0.8830±0.0092 0.8653±0.0068 

XGBoost 0.9162±0.0066 0.8954±0.0126 0.8841±0.0083 0.8653±0.0071 

Decision 
Tree 0.8818±0.0086 0.8648±0.0084 0.8477±0.0132 0.8293±0.0053 

Neural 
Network 0.8721±0.0105 0.8526±0.0132 0.8517±0.0131 0.8254±0.0133 

k-NN 0.8617±0.0121 0.8414±0.0111 0.8482±0.0150 0.8176±0.0088 

Logistic 
Regression 0.8484±0.0117 0.8166±0.0135 0.8192±0.0117 0.7871±0.0099 

 
AUROC score of 0.8484±0.0117 at the shortest prediction 
horizon. The AUROC scores are generally higher in this 
paper compared to [17], but the prediction performance 
ranking of classification methods agrees with their findings.  

The accuracy of the models generally follows the same 
trend and rankings as the AUROC scores, as shown in Table 
V. As accuracy uses the predicted label of the HDDs, and not 
the prediction probabilities associated with each class, they 
are lower than the AUROC as expected. Again, random 
forest and XGBoost performed the best at a lookahead 
window of 0 days with accuracies of 0.862 and 0.864 
respectively.  

Although the AUROC and accuracy scores are important 
evaluators of prediction performance, it is likely that a real- 
world application would place importance on how well the 
classifiers predicted failing drives. Therefore, the failure 
detection rate, also known as the True Positive Rate (TPR), 
was calculated for each model, and at each prediction 
horizon, as shown in Table VI. The XGBoost classifier 
achieved the best failure detection rate at most prediction 
horizons, successfully identifying 77.6% and 74.8% of 
failing drives with lookahead windows of 0 and 1 day 
respectively. It was able to successfully predict the imminent 
failure of 70.7% of drives 7 days in advance, better than any  

TABLE V.  ACCURACY OF FAILURE PREDICTION CLASSIFIERS ON 
TESTING DATASETS AT EACH LOOKAHEAD WINDOW (N) 

 N RF XGB DT MLP k-NN LR 

A
cc

ur
ac

y 0 0.862 0.864 0.854 0.810 0.801 0.778 
1 0.841 0.844 0.832 0.793 0.788 0.753 
2 0.822 0.822 0.813 0.787 0.786 0.752 
7 0.800 0.804 0.790 0.753 0.753 0.720 

 
of the other classifiers. Additionally, any model used in a 
real-world scenario would require false alarms to be 
minimised to gain the confidence of users. Also shown in 
Table VI, the FPR and FDR for each model at each 
prediction horizon was measured. Random forest and 
XGBoost show the best ratios between TPR and FAR. At the 
shortest prediction horizon, the random forest classifier 
achieves 76.7% TPR with 4.1% FPR, while XGBoost 
achieves 77.6% TPR with 4.5% FPR. 

The feature importance ranking for each classifier is 
shown in Table VII, obtained from the model where 
available, or estimated with feature permutation. Features 
with smaller values of ranking order indicate more 
importance to the classification model. Missing values 
indicate that the feature was not present in the top 5 most 
important features for that classifier. SMART 187, reported 
uncorrectable errors, is a key indicator for HDD failure and 
is the most important feature for almost all classifiers.  

TABLE VII.  MOST COMMON IMPORTANT FEATURES AMONGST 
CLASSIFIERS INDICATED BY FEATURE RANKING ORDER  

 Feature Ranking Order of Importance if Present in Top 
5 Most Important Features 

 RF DT XGB MLP k-NN LR 
SMART 5 2 3 4 3 1 2 

SMART 187 1 1 1 1 4 1 
SMART 197 3 2 3 4 2 - 
SMART 198 4 - 2 2 3 - 
SMART 240 - 5 - - - - 
SMART 241 5 - - - - - 
SMART 242 - 4 - 5 - - 

 

TABLE VI.  TRUE POSITIVE RATE (TRP), FALSE POSITIVE RATE (FPR) AND FALSE DISCOVERY RATE (FDR) OF CLASSIFIERS AT EACH 
LOOKAHEAD WINDOW (N) 

 N RF XGB DT MLP k-NN LR 

TPR 

0 0.767 0.776 0.759 0.761 0.682 0.599 
1 0.738 0.748 0.746 0.728 0.669 0.566 
2 0.707 0.717 0.695 0.726 0.681 0.582 
7 0.689 0.707 0.701 0.689 0.636 0.507 

FPR 

0 0.041 0.045 0.049 0.139 0.077 0.040 
1 0.052 0.058 0.078 0.141 0.089 0.056 
2 0.061 0.072 0.066 0.150 0.106 0.074 
7 0.085 0.095 0.118 0.182 0.130 0.065 

FDR 

0 0.049 0.054 0.060 0.153 0.100 0.062 
1 0.064 0.070 0.092 0.160 0.116 0.088 
2 0.078 0.090 0.086 0.168 0.132 0.111 
7 0.107 0.116 0.140 0.208 0.169 0.114 
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Comparing these results with Table III, the four features with 
the highest correlation coefficient are the top four most 
important features in Table VII. 

V. DISCUSSION 
The classification approach adopted in this paper 

achieved relatively high levels of prediction performance. It 
highlighted the most accurate machine learning classifiers 
for failure prediction using a common dataset of HDDs from 
an operational data centre. It proved that SMART metrics 
can be used as an indication of imminent failure, with some 
more useful than others. However, there are some limitations 
and weaknesses that need to be highlighted. 

 As HDDs are constructed of both mechanical and 
electrical components, there are a number of potential 
reasons for their failure. Over time the subcomponents 
within the hard drive unit can degrade, causing problems 
with reading and writing data, and eventually leading to 
failure. In this scenario, where the drives fail slowly with 
accumulated usage and workload, SMART metrics may be a 
good indicator of HDD health. However, hard disk drives are 
susceptible to external factors, such as physical disturbances 
from knocks and vibrations, water damage, and power-
related problems, including voltage spikes. It is therefore 
unlikely that SMART metrics would indicate imminent 
failure for quick-failing drives due to external factors. With 
the best TPR of 77.6% achieved in this paper, at least 22.4% 
of failed drives were not detected. Without knowing the root 
cause of failure, it could be possible that those drives did not 
contain any indication of failure in their SMART metrics.  

The decision to approach the research as a binary 
classification problem means that the prediction only has the 
option to label a drive with a failure status of failing or non-
failing. However, the health of HDDs may indicate that the 
drive is at low, moderate, or high risk of failing, in which 
case a multi-class classification approach might be better 
suited. Using the same logic, it may be desirable to predict 
the probability of drive failure. In the case of the binary 
classification approach, if a drive is predicted to have a 51% 
chance of failing it would be labelled as a failing drive 
(assuming a 50% threshold). However, data centre 
maintainers may dismiss that drive as a low risk if they were 
presented with the probability of failing, whereas they would 
be forced to investigate the drive if the binary classification 
prediction was presenting its impending failure. Hence, the 
AUROC was used in this project to better evaluate the 
classifiers’ prediction performance using the prediction 
probabilities of belonging to a particular class. 

A well-known issue with SMART metrics is that the data 
they report isn’t always consistent between various 
manufacturers and drive models. Some attribute fields may 
be used to record a particular measurement by one 
manufacturer, but a completely different measurement by 
another. And the format or scale used may not be consistent 
even when reporting the same measurement. Therefore, to 
mitigate against this, the drive models used in the ML 
implementation of this work only considered drives of a 
single manufacturer, Seagate. Consequently, it is not 

guaranteed that the prediction classifiers would generalise 
well for predicting failures or other manufacturers’ drives.  

The prediction horizons examined in this paper use the 
SMART attribute measurements from 0, 1, 2, and 7 days 
prior to HDD failure. The prediction performance improved 
as the lookahead days decreased, with 0 days achieving the 
best AUROC, accuracy, TPR, and FAR rates. The 0-day 
lookahead window means that the drives failed sometime in 
the next 0-24 hours. In a real-world application it is likely 
that this prediction window is too short, not allowing for 
enough time to act. Increasing the window would decrease 
the prediction accuracy, potentially reducing the likelihood 
for users to trust the classification output.  

The features used to train and evaluate the ML classifiers 
consisted only of the raw and normalised SMART 
measurements with scaling applied. As indicated in [9], the 
rate of change of SMART measurements over a given period 
can provide additional features that potentially improve the 
prediction performance of HDD failure prediction models. 
The work presented in this paper would benefit by extending 
to include temporal disparities of SMART measurements as 
features for machine learning. 

Further work may include extending the scope to 
compare the prediction performance of the classification 
methods implemented here with other methodologies, such 
as time series prediction, and analysing the AUROC, 
accuracy, TPR, and FAR at varying prediction horizons. 

VI. CONCLUSSION 
In this paper, the SMART attributes of operational HDDs 

in a large data centre were analysed with respect to drive 
failure. SMART attributes 5, 187, 197, and 198 (reallocated 
sectors count, reported uncorrectable errors, current pending 
sector count, and uncorrectable sector count) were observed 
to have the highest correlation with HDD failure.  

A subset of the SMART attribute measurements, reported 
daily by the data centre HDDs, was used to create machine 
learning classifiers for drive failure prediction. The ML 
classification models implemented in this work include 
Random Forest, XGBoost, Decision Tree, Neural Network 
(Multi-Layer Perceptron), k-Nearest Neighbour, and Logistic 
Regression methods. The SMART metrics were collected at 
0, 1, 2, and 7 days prior to drive failure to evaluate the 
prediction performance at multiple prediction horizons. It 
was found that as the prediction horizon decreases, the 
performance of the failure prediction increased for all 
classifiers.  

Random Forest and XGBoost classifiers achieved the 
best results, with 86% prediction accuracy and 4-5% False 
Alarm Rate (FAR) at the shortest prediction horizon. The 
failure detection rate ranged from 67% when making 
predictions 7 days prior to HDD failure, to 77% when using 
the SMART measurements recorded in the last 24 hours 
before failure. The AUROC was calculated to make better 
comparisons between the classifiers, which again showed 
Random Forest and XGBoost as the best performing, with 
AUROC scores of 0.9185±0.0066 and 0.9162±0.0066 
respectively at the shortest prediction horizon. 
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The relative feature importances of the ML models were 
obtained, either directly from the classifier or estimated 
using feature permutation. It was found that, in all but one of 
the classifiers, SMART 187 was regarded as the most 
important metric for predicting HDD failure. The top four 
most important features across all classifiers were those with 
the highest Spearman rank correlation coefficient relating to 
failure as described above (SMART 5, 187, 197, and 198). 

The classification models generated in this work could 
benefit from future advancements, and enhanced feature 
engineering would likely improve the performance of the 
models. Additionally, SMART attributes do not account for 
many of the external factors that can affect the health of 
HDDs, such as physical disturbances. Therefore, it may be 
valuable to extend the work of this paper by considering 
other relevant datasets alongside SMART data for predicting 
failure. For example, force sensor data may indicate knocks 
or jolts to the HDD, and [18] has shown success in using 
machine learning to classify force signals and determine if a 
collision occurred. Other future work may include 
incorporating the classification models with autonomic 
computing, where the failure predictions can inform 
autonomic actions. Such actions may involve pre-emptively 
backing up data to another storage device to mitigate the risk 
of data loss.  
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