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Abstract—This paper discusses an approach that integrates 

data generation capabilities into the Autonomic Computing 

MAPE-K (Monitor Analyse Plan Execute and Knowledge 

Loop) to mitigate problems with data scarcity in autonomous 

space missions. The purpose of this work is to enhance the 

decision-making abilities of an Autonomic Manager by 

providing it with the ability to use simulation and data 

generation. A Conditional Tabular Generative Adversarial 

Network (CTGAN) is used to generate new synthetic datasets. 

Synthetic datasets are then evaluated to assess their utility. The 

evaluation results show that synthetic data can closely 

resemble the original data. However, this paper does not 

address the challenges of equipping a swarm with the 

necessary hardware, focusing instead on the feasibility of the 

proposed data generation pipeline.  

Keywords-Autonomic Computing; conditional generative 

adversarial networks; ctgan; autonomic manager; mape-k loop. 

I.  INTRODUCTION 

Integrating data generation capabilities into the MAPE-
K loop can address data scarcity challenges in space 
missions. The current trend in space exploration involves 
the development of autonomous swarms of small spacecraft 
that collaborate with each other to complete a common goal. 
NASA’s Autonomous Nano Technology Swarm (ANTS) 
mission proposed using a swarm of a 1,000 small craft 
organized into 10 different classes depending on the 
instrument they carry [1][2]. Managing a large swarm 
requires a high degree of autonomy since human operators 
cannot manage each craft individually [3] .   

The field of Autonomic Computing [4] aims to solve the 
complexity associated with managing a large swarm of 
autonomous craft. By incorporating Autonomic Computing 
concepts, such as the MAPE-K loop [5][6], each individual 
craft can self-manage its internal state and plan its actions. 
This work contributes to the concept of the MAPE-K 
control loop by adding simulation and data generation 
capabilities to enhance the analysis and planning stages. An 
in-built component that enables each swarm member to 
monitor and adapt its internal state helps decrease the 
complexity involved when designing a large swarm. 
Additionally, a Mission-level Autonomic Manager craft 
could be designated to oversee higher-level reasoning and 
planning tasks for the entire swarm. The MAPE-K loop 
could incorporate predictive analytics within the Analyse 
and Plan phases to improve decision-making. Prediction 
algorithms generally require substantial amounts of data to 
provide accurate results [7].  

Recent advancements in Machine Learning (ML) have 
introduced techniques such as Generative Adversarial 
Networks (GANs)  to help solve the issue of data scarcity 
[8] [9]. A generative model can be trained to produce new 
synthetic data that is statistically similar to the training 
dataset. This is particularly useful for ML prediction 
algorithms, as larger datasets can lead to better accuracy 
when identifying trends and relationships between features. 
However, the quality of the data is as important as the 
quantity; therefore, evaluation of the synthetic data is 
necessary to determine its usefulness. An area that could 
benefit from data generation is space exploration. Collecting 
sufficient data from space missions is a significant challenge 
due to high costs and risk associated with operating in a 
hazardous environments [10]. Deploying large swarms of 
spacecraft to unforgiving environments adds further 
complexity to mission management. Attempting to gather 
enough data to cover every possible scenario could prove 
costly and inefficient. Generative models address data 
scarcity by augmenting existing datasets with synthetic data 
that reflects the statistical properties of the real data. 

 By integrating data generation into the MAPE-K loop 
the issue of data scarcity can be mitigated, especially at the 
beginning of missions. A data generation pipeline could 
increase the dataset size so that there is enough data for 
prediction analytics. Additionally, the pipeline could 
enhance the dataset by interpolating new scenarios not 
captured by the swarm. This would allow the mission to 
gather comprehensive data at a lower cost. This synthetic 
data could then be used to inform more precise planning and 
deployment strategies. Enhancing real data is a step up from 
simulation and more cost effective than a full scale mission 
deployment. Synthetic data reduces reliance on real world 
data and can help augment the data and improve planning 
and prediction for future missions.  

This work focuses on enhancing the capabilities of a 
Mission-level craft that oversees the mission as a whole. By 
equipping this craft’s Autonomic Manager with a simulation 
capability it could help improve planning by simulating the 
future mission data. This data can then be analysed and used 
to train prediction algorithms. In addition to prediction 
modelling, simulation data could be used to train a 
Conditional Tabular Generative Adversarial Network 
(CTGAN) [11] model that generates new synthetic data. The 
purpose of this step is to evaluate the ability of the 
Autonomic Manager’s data generation pipeline to produce 
synthetic data that is a good proxy for the real data. By 
using simulation data to train the generative model, it 
functions as a first pass of the data generation pipeline. 
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Once generated, the synthetic data  is evaluated to check 
whether it is similar to the original simulation data. The 
purpose of this is to provide assurance that any future real 
data gathered by the swarm and used for data generation 
will result in high quality synthetic data.  

The data generation process could also include an 
interpolation feature that produces new data for unseen 
scenarios. This interpolated dataset could then be used to 
train the CTGAN to produce synthetic data for scenarios 
that aren’t present in the original dataset. Data augmentation 
would help enhance real data that is scarce or incomplete. 
Enhancing limited datasets could reduce cost and 
unnecessary wastage of craft. For this work, we assume the 
AM has sufficient GPU resources to perform data 
processing. Hardware issues, such as power consumption, 
memory, and bandwidth in space missions are important 
considerations, however, these are outside the scope of this 
paper. 

In Section II, we provide background information on 
previous work; Section III discusses the main contribution 
of Data Generation in the MAPE-K Loop; Section IV 
discusses the data evaluation experiments and results.  

II. BACKGROUND AND RELATED WORK 

In our previous work [12], we developed a simulation 
tool for testing communication strategies for robot swarms, 
varying cooperation and cohesiveness. The ideas discussed 
in this paper build upon the previous work, the simulation 
output datasets were used to train a CTGAN model that 
produced synthetic data similar to the simulation output. 

The Autonomic Computing concept of an Autonomic 
Manager (AM) that exists within each craft could be 
expanded so that the overseer craft processes the mission 
data and uses this to plan future tasks. Having an in-built 
component that enables each swarm craft to self-manage by 
monitoring and adapting their internal state helps to 
decrease the amount of complexity involved when designing 
a large swarm. The overseer AM could simulate mission 
data and use this simulated data to test a data generation 
pipeline that produces good quality synthetic data.  

To prove that simulation and data generation are a useful 
addition to the MAPE-K loop, it is important to evaluate the 
synthetic data’s quality [13]. The evaluation of the synthetic 
data is necessary so that there is confidence in the quality of 
the synthetic data produced.  If the simulated data is 
evaluated to be of high quality, the AM could use the real 
data and generate synthetic data to increase the dataset size. 
This data could also be enhanced to include swarm 
configurations that were not gathered by the swarm. The 
purpose of this would be to save on the cost of sending a 
large swarm. A relatively small swarm could gather a 
sample of data. The small dataset could then be used to 
generate a large amount of synthetic data. If the real data is 
insufficient for training prediction algorithms, the AM 
would have the option to use the synthetic data to train 
machine learning prediction algorithms used by its planning 
component. 

The purpose of this paper is to show that data generation 
could be used as a proxy for real data, to prove this we have 

performed several comparative tests that evaluate the quality 
of the synthetic data. This is an important step as the data 
must be an accurate representation of the original dataset in 
terms of statistical similarity and feature relationships [14] 
[15]. Section III discusses the data generation process using 
CTGAN, 20 models were trained with various parameters.  

III. DATA GENERATION IN THE LOOP 

Data generation is accomplished by training a neural 
network that can learn the statistical properties of the 
training dataset. The goal of synthetic data generation is to 
improve the accuracy of machine learning models by 
increasing the size and diversity of datasets. They can also 
be used to enhance the privacy of individuals by creating 
synthetic data that anonymizes personal information 
contained within the original dataset.  

A Generative Adversarial Network (GAN) consists of 
two neural networks models that compete against each other 
during the training process. The Generator model creates 
new data and the Discriminator model acts as a binary 
classifier that scores the new data on its accuracy to the 
training set. The adversarial training process continues until 
the Generator can produce data that can fool the 
Discriminator into classifying it as real.  

Traditionally, GANs perform best with image data, 
however, a CTGAN was designed specifically for tabular 
data. It can work with categorical and numerical data it is 
also capable of learning the relationships between the 
features/columns. The GAN architecture consists of two 
models, each with an input layer, several hidden layers and 
an output layer. The input layer of the Generator takes a 
random noise vector and transforms it into output data 
resembling the training dataset. The Discriminator’s 
classification of the output data is then used to calculate the 
loss function, a backward pass is performed through the 
Discriminator’s network to update it’s internal weights and 
improve its predictions.  

The Discriminator is also used to help guide the 
Generator, a backward pass through the Generator network 
uses the Generator’s loss value to determines how much the 
Generator’s internal weights need to be adjusted in order to 
improve the data quality during the next iteration. The 
Generator never sees the training data; it relies on the 
feedback from the Discriminator. This learning technique is 
known as backpropagation and continues iteratively until 
the training process ends. 

The training duration can be adjusted by modifying the 
number of Epochs. The Batch Size determines how many 
training samples are processed during one pass through the 
model. For this paper, we trained 20 CTGAN models and 
varied the Epochs and Batch Size parameters. In future 
work, additional hyperparameters may be considered to 
improve training performance. This could involve adjusting 
the Generator and Discriminator learning rates. 

The tabular dataset outputted by the simulation includes 
many features, such as: ‘Simulation Time’, which robot 
discovered and found each item, and what time the items 
were discovered and found. The rules of the simulation 
stipulated that items could only be analysed by a robot of 
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the same type as the item. This was simulated by rules that 
state that only a robot that is the same colour as the item can 
analyse that item. However, items could be discovered by 
any type of robot, messages would then be sent to the rest of 
the swarm asking for help from other robots. The swarm 
simulation output included all of the information discussed 
above, the dataset was compiled from 270 simulation runs 
and consists of ~50,000 rows. This was reduced to 4,600 
rows for training, a sub-set of the data was used to train the 
CTGAN as this improved the chance of learning the 
distribution of the data. The subset also significantly 
reduced the amount of  time required to train the CTGAN. 
The subset of data consisted of only the simulation runs in 
which the signal range was set to the lowest range and the 
robot swarm was split unevenly with 90% one type of robot 
and only 10% of the other type.  

The flowchart in Figure 1 outlines the stages of the 
control loop for data generation using a CTGAN. The 
processing, training and evaluation code was written in 
Python. An AM could implement this pipeline to prepare 
real or simulated data for data generation. The pipeline 
performs data pre-processing to convert the time features to 
seconds so that there is consistency when performing 
calculations on the data. The original dataset is then filtered 
to a subset of the data based on key attributes such as robot 
split, signal type or type of communication protocol. Unique 
IDs were added to help maintain data integrity.  

 
 

 
 

Figure 1.  Flowchart of simulation and data generation pipeline. 

Constraint rules are applied to ensure that the model 
learns the relationships between certain features and 
respects the rules of the original simulation. The constraint 
rules are essential to ensure that the synthetic data generated 
by the model follows the rules and relationships defined in 

the original simulation that produced the training dataset. In 
the swarm simulation, the following rules were defined: 

 

• Time Relationship Rule: the Found (analysed) 
Time of the item must be greater than or equal to 
its Discovered Time.  

• Robot and Item Matching Rule: this dictates that 
items can only be found/analysed by a robot of the 
same type (e.g., Colour).   

 
An item can be discovered by robots that are unequipped 

to analyse it, but can only be found/analysed by robots that 
have the correct instrument. A robot that discovers but 
cannot analyse the item sends a help request to find a robot 
that has the correct instrument. If an item is discovered at 
time=10 seconds, it cannot have a found time less than this 
value. A Time Constraint check is added so that item 
‘Found Time’ is always greater than or equal to ‘Discovered 
Time’. The Matching Constraint rule is added so that items 
can only ever be found and analysed by a robot of the same 
type (e.g., Colour).  If a blue item is discovered by a red 
robot, the robot must send a help request to find a red robot 
that can analyse the item. Applying a constraint that 
enforces this rule ensures that the relationships between 
robots and items are preserved in the new data. The 
constraint step is necessary to maintain the fundamental 
rules of the simulation and ensure the synthetic data is 
realistic.   

The ‘Train CTGAN’ step uses the Synthetic Data 
Vault’s (SDV) [16] implementation of CTGAN to train the 
model. The trained model can then be used to produce data 
that is similar in structure to the original data. The ‘Evaluate 
Data Quality’ stage uses a variety of metrics to assess the 
similarity of the generated data to the original test dataset. 
An overall composite score was then calculated from the 
key metrics were identified as most important. The 
composite score  assigns a weighting to the key metrics 
tests.  

IV. EXPERIMENTS  

To assess the ability of the CTGAN to generate 
synthetic data similar to the original data, we conducted 20 
training experiments. For each experiment, we varied the 
Epochs training time (100, 500, 1000, 1500, 2000), and 
Batch Size (50, 100, 250, 500), all other parameters stayed 
consistent. The Generator Learning rate was set to 0.0001 
and the Discriminator Learning rate was 0.0002. The 
learning rate controls how much the models can learn within 
an iteration, with a lower value allowing the model to learn 
at a gradual rate. A lower batch size results in a longer 
training time as a smaller number of samples are viewed 
within each iteration. The entire dataset must be covered per 
epoch, therefore a lower batch size results in more iterations 
per epoch. Using a large batch size results in faster 
processing times and fewer iterations per epoch, however 
this can lead to less accurate weight updates and less 
accurate synthetic data. A larger batch size may require 
more epochs to reach the same results as a lower batch size 
and less epochs.  
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The CTGAN model training script was implemented in 
Python, it used PyTorch [17] to enable GPU acceleration. 
An NVIDIA RTX A500 GPU was used for training the 
GANs. The training script used an instance of SDV’s 
‘CTGAN Synthesizer’, this is an implementation of 
Conditional Tabular GAN (CTGAN) [11] which was 
designed to work with tabular data. The script saves the 
trained CTGAN model as a pickle (.pkl) file and generates a 
new synthetic dataset for comparison. The model .pkl file 
can be reused to generate more data if necessary.  

A. Evaluation Metrics 

To evaluate the synthetic data generated by the CTGAN, 
we used the open-source SDV library that provides a suite 
of evaluation metrics. These SDV metrics assess the quality 
of the Synthetic Data in terms of its similarity to the original 
data. In addition to the SDV tests, we also implemented 
tests that check for similarity. These tests used Python 
libraries such as Scikit-learn, SciPy and Pandas to perform 
regression, statistical and correlation tests. 

The primary objective was to generate synthetic data 
that closely mimics the real data, especially in terms of how 
the simulation time varies with different communication 
protocols. The goal was to have the CTGAN capture the 
same feature relationships and distributions.  

 

• SDV Evaluation Metrics 

 
The SDV metrics verify that the synthetic data adheres 

to the schema as the original data. The schema refers to the 
data types, categories, and numerical ranges. The Validity 
Score result should always be 100%, indicating the data 
adheres to the schema but is not a similarity check. For all 
tests shown below the Validity Score was 100%. The results 
for each test are shown in Table 1, along with the number of 
Epochs and Batch Size.  

TABLE I.  SDV EVALUATION METRICS 

Test Eps Batch 

Size 

Data 

Quality  

Column 

Shapes 

Pair 

Trends 

1 100 50 91% 91% 91% 
2 100 100 91% 92% 90% 

3 100 250 90% 90% 90% 

4 100 500 90% 90% 89% 
5 500 50 91% 91% 91% 

6 500 100 92% 93% 91% 

7 500 250 92% 93% 92% 

8 500 500 91% 91% 91% 

9 1000 50 93% 92% 93% 

10 1000 100 92% 92% 93% 
11 1000 250 92% 92% 91% 

12 1000 500 91% 91% 90% 

13 1500 50 92% 92% 92% 
14 1500 100 93% 93% 92% 

15 1500 250 91% 91% 91% 

16 1500 500 92% 93% 92% 
17 2000 50 93% 93% 93% 

18 2000 100 91% 91% 91% 
19 2000 250 92% 92% 92% 

20 2000 500 93% 94% 92% 

 

The Data Quality metric is a composite score calculated 

from the ‘Column Shapes’ and ‘Pair Trends’ values. 

Column Shapes measures how well the distribution of 

features in the data matches those in the real data. The Pair 

Trends metrics analyses the relationships between columns. 

All tests scored similar results, it was therefore necessary to 

perform additional tests to gain more insight into the quality 

of the data. 

• Statistical Similarity Metrics 

 
This Kolmogorov-Smirnov (KS) test checks whether the 

distributions of continuous variables are similar. The 
variables checked were ‘Discovered Time’, ‘Found Time’, 
‘Simulation Time’ and ‘Time Difference’. The ‘Time 
Difference’ variables gives the time between an item being 
discovered and found. The results for ‘Simulation Time’ and 
‘Time Difference’ are shown in Table II.  

The KS Test consists of the KS Statistic and the KS 
Complement, it measures the difference between the 
numerical values in the two datasets. It helps assess whether 
the distributions are similar and if the synthetic data is a 
reliable replacement for the real data. 

The KS Statistic measures the maximum difference 
between the two datasets, a smaller KS Statistic results 
indicates that the datasets are similar. The KS Complement 
test transforms the KS Statistic into a score that is more 
intuitive for comparison purposes, the closer the score is to 
1 the higher the similarity between the datasets. 

Model 20 had the best KS Complement result for ‘Time 
Difference’. Models that were trained with higher epochs 
generally show higher KS Complement scores. This suggest 
that longer training times are better at capturing the 
distribution of the data. For ‘Simulation Time’, Model 18 
performed best as it had the highest KS Complement score 
of 0.950. This indicates that the synthetic data closely 
matches the simulation times of the original data. Figure 2 
shows the distribution for ‘Simulation Time’ for Model 18, 
the Synthetic data approximately matches the pattern of the 
real data.  

 

 

Figure 2.  Simulation Time numerical distribution. 

4Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-241-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICAS 2025 : The Twenty-First International Conference on Autonomic and Autonomous Systems



TABLE II.  STATISTICAL SIMILARITY TEST 

Test Eps Batch 

Size 

Simulation 

Time KS 

Stat 

Simulation 

Time KS 

Comp 

Time 

Diff 

KS 

Stat 

Time 

Diff 

KS 

Comp 

1 100 50 0.148 0.851 0.396 0.603 

2 100 100 0.096 0.903 0.309 0.691 
3 100 250 0.091 0.908 0.372 0.627 

4 100 500 0.087 0.912 0.367 0.632 

5 500 50 0.122 0.878 0.355 0.645 
6 500 100 0.069 0.931 0.205 0.785 

7 500 250 0.069 0.931 0.331 0.669 

8 500 500 0.107 0.893 0.358 0.642 
9 1000 50 0.098 0.902 0.296 0.704 

10 1000 100 0.073 0.926 0.265 0.735 

11 1000 250 0.118 0.882 0.259 0.741 
12 1000 500 0.106 0.894 0.311 0.689 

13 1500 50 0.072 0.928 0.290 0.710 

14 1500 100 0.069 0.930 0.282 0.718 
15 1500 250 0.079 0.921 0.330 0.670 

16 1500 500 0.087 0.913 0.345 0.655 

17 2000 50 0.075 0.925 0.356 0.644 
18 2000 100 0.050 0.950 0.325 0.675 

19 2000 250 0.061 0.939 0.438 0.562 

20 2000 500 0.069 0.931 0.174 0.826 

 

 

• Regression Results for Simulation Time 

 
The Regression Analysis Test compares how well a 

Random Forest Regressor model that’s trained on the 
synthetic data performs against the real data when 
predicting ‘Simulation Time’. This test demonstrates the 
utility of the synthetic data and how useful it is as a proxy 
for the real data. We trained Random Forest models on both 
the real and synthetic data. A combined model (Model B) 
was also created by augmenting the real data with synthetic 
data.   

Table III shows the Mean Squared Error (MSE), Root 
Mean Squared Error (RMSE), and R² scores for models 
trained on the real data, synthetic data and the combined 
dataset. The MSE is the average of the error rate between 
actual values and those predicted by the model. The RMSE 
value gives the root of the MSE, it shows how much the 
predictions deviate from the actual values, this value is in 
seconds and is easier to interpret. A lower MSE and RMSE 
indicates that the model’s predictions are closer to the actual 
real values. The R² value indicates how much the changes in 
the ‘Simulation Time’ variable can be explained by the 
independent variables – ‘Discovered Time’, ‘Found Time’, 
‘Communication Protocol’.  

The range for the ‘Simulation Time’ variable is ~90-700 
seconds. The results for the real data are, MSE 12,495 sec², 
RMSE 111.78 sec, and R² 0.26. The model trained on the 
real data has a prediction error rate of 111.78 seconds, this is 
high and suggests that the data may be too variable for the 
Random Forest to learn effectively. However, the error rates 
for the models trained using the Synthetic data are similar to 
those for the real data, demonstrating that the synthetic data 
is a good proxy for the real data in predictive modelling.  

The model trained in Test 5 performs best and has a 
lower RMSE than the real data. Of the combined models, 

Test 14 gives the lowest RMSE result. Several models 
trained on the synthetic data and the combined data 
outperform the model trained on the real data. 

The limited number of independent variables may 
explain the poor R²  result. The CTGAN training dataset 
was reduced from having all signal ranges and robot swarm 
splits to just one signal range and one type swarm split. This 
may have hindered the Random Forest from learning as it 
cannot use the signal and robot split as independent 
variables. The lack of dataset variation means both variables 
are constants in the dataset and do not contribute to 
explaining the variance in ‘Simulation Time’. Despite the 
low R² values, the results are consistent across models 
trained on both real and synthetic data. This suggests that 
the CTGAN has been able to capture the relationships 
within the subset of data. 

The results show that models trained on the synthetic 
data perform similar to, and in some cases better than the 
models trained on real data. This demonstrates the utility of 
synthetic data in improving predictive performance. 

 

TABLE III.  REGRESSION RESULTS FOR SIMULATION TIME 

Test MSE 

(sec²) 

RMSE  

(sec) 

R²  

 

Comb. 

MSE 

Comb.  

RMSE 

Comb. R² 

1 10,320 101.59 0.25 11,325 106.42 0.33 
2 10,969 104.74 0.22 12,051 109.78 0.28 

3 12,608 112.28 0.04 12139 110.18 0.28 

4 18,654 136.58 -0.20 13,947 118.09 0.17 
5 9,623 98.10 0.31 11,990 109.50 0.29 

6 10,894 104.38 0.32 11,217 105.91 0.37 

7 10,270 101.34 0.28 11,473 107.12 0.32 

8 9,902 99.51 0.28 12,495 111.78 0.26 

9 11,041 105.08 0.21 11,401 106.78 0.33 

10 10,316 101.57 0.25 11,800 109.09 0.30 
11 10,534 102.64 0.18 12,070 109.86 0.29 

12 10,208 101.04 0.25 11,080 105.26 0.35 

13 11,088 105.30 0.23 11,742 108.37 0.31 
14 10,220 101.09 0.24 10,426 102.11 0.38 

15 10,084 100.42 0.22 11,954 109.34 0.29 

16 10,015 100.08 0.29 11,553 107.49 0.32 
17 10,584 102.88 0.35 11,477 107.13 0.32 

18 10,473 102.34 0.29 11,252 106.08 0.33 

19 9,777 98.88 0.29 10,858 104.20 0.36 
20 11,682 108.09 0.24 11,973 109.42 0.29 

 
 

• Correlation of Feature Importances 

 
The purpose of this test was to determine the degree to 

which the CTGAN preserved the relationships between 
features. To do this, we compared the results from a Feature 
Importances Test to assess the correlation between feature 
importances values for real and synthetic data. The 
correlation of Feature Importances results are shown in 
Table IV. 

Figure 3 shows the Feature Importances results for Test 
10, the blue bars show the amount of importance assigned to 
that feature when predicting the ‘Simulation Time’ feature. 
The red bars show the importance assigned to the synthetic 
data features. The Feature Importances Test measures how 
much each feature contributes to predicting the target 
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variables ('Simulation Time’ and ‘Time Difference’). Two 
Random Forest Regressor models were trained on both real 
and synthetic data, and the importance of each feature 
calculated. 

 

 

Figure 3.  Feature Importances for Simulation Time. 

To calculate the correlation of Feature Importances, we 
used the Pearson correlation coefficient. This compares the 
importances scores for both datasets and outputs a 
Correlation of Features result. A high correlation close to 1 
indicates that the relationships between the features are 
preserved in the synthetic data. If the models disagree on 
which features are the most important then the correlation 
result will be low and closer to zero. The Correlation 
Similarity Score is a composite score for the Correlation of 
Features for both ‘Simulation Time’ and ‘Time Difference’. 

 

TABLE IV.  CORRELATION OF FEATURE IMPORTANCES 

Test Eps Batch 

Size 

Corr. of 

Features 

(Sim. 

Time) 

Corr. of 

Features 

(Time 

Diff.) 

Corr. 

Similarity  

Score  

1 100 50 0.950 0.996 0.960 

2 100 100 0.910 0.996 0.959 

3 100 250 0.683 0.990 0.919 
4 100 500 0.442 0.982 0.880 

5 500 50 0.981 0.999 0.970 

6 500 100 0.980 0.995 0.968 
7 500 250 0.980 0.999 0.923 

8 500 500 0.985 0.999 0.966 

9 1000 50 0.943 0.987 0.958 
10 1000 100 0.997 0.973 0.967 

11 1000 250 0.941 0.994 0.952 

12 1000 500 0.974 0.999 0.966 
13 1500 50 0.966 0.999 0.970 

14 1500 100 0.960 0.999 0.964 

15 1500 250 0.945 0.999 0.967 
16 1500 500 0.984 0.993 0.957 

17 2000 50 0.995 0.977 0.964 

18 2000 100 0.993 0.995 0.968 
19 2000 250 0.972 0.998 0.961 

20 2000 500 0.964 0.982 0.962 

 
 

Most tests show a high correlation above 0.9, this 
suggests that the synthetic data has preserved the 
relationships between features. Test 10 had a result of 0.997 
for ‘Simulation Time’, indicating that the real and synthetic 
scores for feature importances are nearly identical. 

 

B. Composite Results 

The key metrics chosen to create the composite score 
were SDV Pair Trends, Overall Quality, Simulation Time 
KS Complement, Correlation of Feature Importances 
(Simulation Time), Correlation Similarity Score. These 
metrics were chosen to assess the statistical similarity 
between the synthetic and real data.  

To derive an overall quality assessment, we used a 
weighted composite score to rank each model, the top five 
performing models are listed in Table V. A weighting was 
applied to each metric as follows: Data Quality 20%, Pair 
Trends 30%, Simulation Time KS Comp 20%, and Feature 
Importances Correlation 30%. By combining different 
evaluation metrics, the composite score provides a balanced 
view of each model’s quality.  

TABLE V.  COMPOSITE METRIC SCORE 

Test Epochs Batch Size Composite Score 

17 2000 50 0.9485 

10 1000 100 0.9473 
18 2000 100 0.9429 

7 500 250 0.9402 

19 2000 250 0.9394 

 

 

 

Figure 4.  Composite score for 20 CTGAN models. 

Model 17 (2000 Epochs, Batch Size 50) produced the 
highest composite score of 0.9485, this indicates a good 
similarity between the two datasets. The results suggest that 
using longer training times with low to moderate Batch 
Sizes are best for learning the distribution of the data. The 
poorest performers were models trained with only 100 
Epochs, the composite score decreased as the Batch Size 
increased from 50 to 500. A larger batch size can speed up 
the training process but it results in fewer updates to the 
Generator’s weights per epoch. Smaller batch sizes allow 
for more updates per epoch but they also increase training 
times. The composite scores are visualized in Figure 4, the 
bar chart shows the results of all 20 models for each of the 
key metrics. The visualization ranks the models from best to 
worst, with the best performing model ranked first.   
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V. CONCLUSION 

In this paper, we discussed integrating a data generation 
pipeline into the MAPE-K loop, with the goal of alleviating 
data scarcity in autonomous space missions. Training a 
CTGAN often involves trial and error, making the 
integration of an evaluation component vital. Training 
parameters can greatly influence the quality of the synthetic 
data produced so it is important to evaluate the quality of the 
synthetic data produced. The results demonstrated that 
synthetic data generated by a CTGAN can closely mimic the 
real data in terms of feature relationships and distributions. 
Training the CTGAN for a high number of  Epochs 
combined with a low Batch Size (2000 Epochs, Batch Size 
50) produced the highest quality synthetic data. Future work 
will focus on the data interpolation component to generate 
new configurations of the swarm not present in the original 
dataset.  

While synthetic data can offer a solution to the problem 
of data scarcity, it is vital that the practical utility of the data 
is evaluated. This presents a new challenge that requires a 
suite of metrics to give a comprehensive evaluation of 
quality. In addition to post-training evaluation metrics, it is 
important to pre-process the training dataset to remove errors 
and biases that could be propagated into the synthetic data.  

This paper demonstrates the utility of using synthetic 
data to increase the size of an existing dataset. However, it 
does not address the practical constraints associated with 
equipping craft with hardware capable of performing the 
data generation. Generating synthetic data requires 
significant computational resources which may not be 
practical when operating in a constrained environment. 
Future work will look at solutions such as distributing 
computational load across the swarm or extending 
processing times to simulate hardware limitations, and 
increase system resilience by distributing the reliance of the 
Swarm away from one AM in case of damage or 
malfunction. 
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