
Autonomic Computing in
Total Achievement of Quality

Joel Bennett, Roy Sterritt
School of Computing

Ulster University
Belfast, Northern Ireland

email: bennett-j8@ulster.ac.uk |
r.sterritt@ulster.ac.uk

Abstract—This paper presents a Systemization of
Knowledge (SoK) on Autonomic Computing (AC) for Total
Quality Management (TQM), i.e. a review of the domain of
Quality GxP manufacturing environments considered through
the paradigm of Autonomic Computing. The development of
autonomic computing concepts and how they are applied
currently are discussed. The paper then examines quality
systems for each of; manufacturing and automation; product
testing validation; data integrity; and supporting IT
infrastructure; as pertaining to GxP manufacturing
environments, being subject to high levels of regulatory
compliance, before concluding with considerations about the
need for this self-managing computing paradigm for quality
manufacturing, and some avenues of progress identified in the
current and future state.

Keywords-Autonomic Computing; quality system; total
quality; achievement; self-x; TQM; MES.

I. INTRODUCTION
The objective of this review will be considering the area

of Quality manufacturing environments, particularly how
those environments are supported by computing systems and
how they benefit, or could benefit from the Autonomic
Computing (AC) paradigm. Quality, in the context of
manufacturing, encompasses a wide range of frameworks,
standards and procedures, which include implementation of
Good Manufacturing Practice (GMP) [1], Continuous
improvement (CI) [2] and for computerised systems
supporting the processes, adherence to the Good Automated
Manufacturing Practice (GAMP) framework “which aims to
safeguard patient safety, product quality and data integrity”
[3]. These requirements are commonly found in any setting
which requires a high level of regulatory compliance and
accountability, such as that found in food, pharmaceutical, or
health care.

The goal of these kinds of standards is not always easy to
define, but generally is captured under the term Total Quality
Achievement (TQA). Standards are updated and there is
always an expectation that cases for CI will exist in any
organisation, which are found through a combination of
internal review and external audits. This is important in
ensuring that customer safety standards are met, maintained
and kept front and centre.

Underneath the quality activities, there are a range of
computer systems and software, from machine automation to
product testing, to scheduling and batch release activities, with
an overarching Quality Management System (QMS). These
environments generate a lot of records and documents, data,
data sets and require well defined data retention policies and
most often this requires a high level of human effort.

The autonomic question is about how much humans needs
to be involved in directly managing systems and how they can
be designed beyond this. We can consider first a brief

overview of what AC is and then some distinct areas within
Quality manufacturing , so as to make some application of it.

This paper presents a Systemization of Knowledge (SoK)
on Autonomic Computing for TQM, as such, the first section
summarizes AC, then examines quality systems for each of;
manufacturing and automation; product testing; validation;
data integrity; and supporting IT infrastructure; before
concluding.

II. AC & TQM: SYSTEMIZATION OF KNOWLEDGE (SOK)
This section presents a Systemization of Knowledge

(SoK) on Autonomic Computing for TQM.

A. Autonomic Computing Paradigm
Having a brief introduction to AC, what it is and sets out

to achieve will be useful to understanding where it might fit
into the area of Quality systems. The term autonomic is
borrowed from the bodies nervous system which governs
unconscious functions such as regulating heart rate and
temperature, without burdening the conscious area of the brain
[4]. As computer and computer supported systems with their
software, have become larger, more sophisticated and more
interconnected, with growing intranetworks and
internetworks, the complexity eventually reaches a level,
where the best of systems experts cannot account for all
configurations, points of failure and providing timely response
to errors in the whole system. The initial recognition of this
has its beginnings in IBM, whose Paul Horn, introduced the
idea to the National Academy of Engineers at Harvard
University in a March 2001 keynote address [5]. IBM
envisioned computer systems of systems, with their smallest
edge endpoints, up to the largest datacentres, with all of those
interconnections as somewhat analogous to the human bodies
smallest molecular machines and the bodies signalling
equipment, being zoomed out to view entire societies with all
their interactions. AC as a paradigm has drawn inspiration
from these initial ideas and as IBM and others had predicted,
it has become recognised in the computing industry as a
necessity to start trying to achieve this goal of systems that are
self-managing guided by an autonomic principle.

Following the talk by Paul Horn, IBM released a printed
work in October 2001 titled “Autonomic Computing: IBM's
Perspective on the State of Information Technology” [5]. In
this, IBM outlined the problems that AC was seeking to
address, the necessity for it and how it might be achieved. The
authors present a case, that human progress has always been
rooted in the support provided by technology and automation,
which frees up human work effort, in order to enable
achieving bigger things. However, while computers and the IT
industry have supported business and innovation to a certain
point, the rising complexity of these systems eventually
presents a risk of even reversing these benefits [5, p. 4]. The
human effort required to support these very same IT systems

35Copyright (c) IARIA, 2024. ISBN: 978-1-68558-140-4

ICAS 2024 : The Twentieth International Conference on Autonomic and Autonomous Systems

as they expand, rises exponentially. The case is compelling
and presents proposals for the capabilities an autonomic
system should have, which is provided in 8 main points which
are briefly, that an autonomic system should:

1) “Know itself” which is perhaps best summarised by
this statement “a system can’t monitor what it doesn’t know
exists”. [5, p. 21] This self term has become definitional to
AC component descriptions throughout the field.

2) Be able to configure and re-configure itself in response
to changing and unpredicted conditions.

3) Not be settled on the current state and always seek to
optimise.

4) Be able to perform functions analogous to healing.
5) Be security aware and self-protecting
6) Know its supporting environment and activities, so

that it can respond appropriately to them
7) and therefore must not be sealed off and isolated, but

must be able to function interdependently facilitated by open
standards

8) Constantly anticipate what resources are needed. [5,
pp 21-31]

This is expanded upon in a further article published by
IBM Systems Journal 2003 "The dawning of the autonomic
computing era”, in which the need for AC is re-stated and then
how the industry can begin to adapt by shifting its design
objectives from price/performance to instead prioritising
“robustness and manageability” and the cost of ownership. [6
p. 7] Here autonomic self-x properties are also elucidated,
namely the fundamental self-Configuring, self-Healing, self-
Optimising, self-Protecting, which is otherwise captured by
the term self-CHOP [6, pp. 8-9].

1) Self-Configuration – is awareness of components and
the environment, so as to be able to dynamically re-configure,
to automatically integrate new components and adapt. A
simple example might be the Plug and Play or hot-swap
features of modern hardware and operating systems, that are
completely unsupervised after the component has been
introduced. This is a distinct development upon the original
features of automatic detection, followed by configuration
wizards, manual bus assignments, or disk drive rebuilds.

2) Self-Healing – detect and diagnose errors in
components, isolate and repair them, or disconnect as
necessary. Prevent failures from occurring if possible through
component management with a view to maintaining constant
availability.

3) Self-Optimising – continual automatic tuning across
the systems available resources. This may include some
element of built-up knowledge, in order to predict and
schedule, as well as the ability to dynamically allocate
resources in response to demands.

4) Self-Protecting – Securing system resources via users
identification, intrusion detection, secure backup and restore
services.

A framework for achievement of this goal, was described

in a so-called intelligent control loop as outlined in IBM’s
work on an autonomic blueprint [7] known as MAPE-K (in
Figure 1). Envisioned as an abstraction from the underlying
managed resources, an Autonomic Manager (AM), of which

there may be several for different specialties, is based upon
the MAPE-K loop, though not all of those capabilities need
necessarily be used in every situation. AM’s could be in a
dedicated role, e.g., Self-Configuring, Self-Protecting, while
other AM’s can occupy a higher level with overall system
supervision, described as orchestrating AM’s.

Figure 1. MAPE-K intelligent control loop [8, p. 6]

The make-up of the AM, includes Sensor and Effector
interfaces which make one AM available to other AM’s and
the system components. From sensors, the Monitoring collects
and filters data from a resource, which is then Analysed,
providing correlations, modelling and predictions so the AM
can learn from its environment. In Planning, the AM
formulates strategy utilising its formed policies and finally
these plans are Executed, whilst remaining open to being
updated by new information. The results of these cycles
update Knowledge for the purpose of improving outcomes.

With AC implementation as a background, we will now

consider a few areas of Quality systems, whether they benefit
from autonomic computing currently and where applicable, if
there is any future development we might expect.

B. Quality Systems - Manufacturing and Automation
Manufacturing relies upon scheduling and execution

controls, usually built upon a Manufacturing Execution
System (MES). Typically, an MES system will provide some
kind of information about a manufacturing floor and a level of
control, for example if certain limits are exceeded, they will
be reported to the appropriate receiver [9 p.3]. Computerised
automation has greatly enhanced the ability of manufacturers
to scale production and improve product quality, but has also
increased system complexity. Tasks such as transfer of raw
materials whether obtained, retained or disposed, must go
through and from approved suppliers. The customers,
manufacturer and suppliers often need to audit one another.
Every record pertaining to the manufacturing process,
including, but not limited to documentation of batch records
and product release must be retained and retrievable. Such
data integrity quality requirements will be considered later.
Product manufacture may, for the most part, be described as
automated, but is still heavily supported at almost every level
by human activity and decision making. It seems in MES and
automation, we can see some parallel, with the problems IBM
drew attention to in its early autonomic works on computing.

Autonomic Smart Manufacturing [9] has been proposed
for improving upon MES, modelling itself upon the MAPE-K
framework, as in Figure 2, using a monitoring phase to collect
metrics relevant to the manufacturing process, which are
analysed to infer unknown relationships within the
environment using machine learning (ML) to make what-if
predictions, thus anticipating situations and performing the
necessary calibrations. A plan phase would further reflect
upon the findings, with a holistic treatment of individual

36Copyright (c) IARIA, 2024. ISBN: 978-1-68558-140-4

ICAS 2024 : The Twentieth International Conference on Autonomic and Autonomous Systems

behaviours allowing the system to propose and implement
optimisations. In this model, there is still human supervision
of the returns by an engineer, which is important to a quality
process in terms of accountability, but an autonomic controller
maintains optimal parameters as conditions change using a
toolkit of built-up models in a knowledgebase to minimise
human resource use.

Figure 2. MAPE-K applied to smart manufacturing [9, p. 5]

A further work on “Generative simulation modeling of an

Autonomic Manufacturing Execution System (@MES)” [10]
noted that traditional MES systems rely on rigid schedules
which are shown to be inefficient and ineffective. It proposes
a multiagent simulation model where an Order Acceptance
autonomic manager has end-to-end knowledge of the shop
floor, customer orders and can delegate tasks, while a number
of Resource Agents have supervision of specific areas of the
MES. The proposal is to implement a loop which incorporates
the scheduling and control functions for specific resources,
allowing the system to respond dynamically to shop floor
requirements (environment) and reconfigure accordingly,
whilst also informing the other agents, which will likewise
recalibrate. The agents can simulate scenarios (i.e., is the next
order feasible?) in conjunction with one another and are able
to autonomically optimise routes, responding with suitable
planning and execution. A later 2012 paper proposing a selfish
multi-agent MES system atop @MES, states one issue
remains in that enterprise networking of MES systems
remains an open problem [11].

In terms of Quality systems, the concerns around such
proposals, may be the validation of the autonomic agents
controlling manufacturing processes at a high level and how
to ensure accountability and oversight. However, if the
autonomic agent has a validated means of justifying its
mitigations, then perhaps this concern could be overcome.
Validation will also be considered later.

C. Quality Systems - Product Testing
Product testing is necessary in any manufacturing process,

but the burden of regulatory concerns in quality
manufacturing is in many ways higher and must meet the
requirements of an internationally recognised standard QMS
such as ISO9001. Product testing supports the development of
product, as well as forming part of the batch release and CI
processes. Chiefly we will consider the typical laboratory
setting, where product samples are taken from a batch,
whether for production, or from a development cycle. The
laboratory comprises a number of systems and instruments

forming a testing suite and will of course vary, depending
upon the kinds of products being analysed. The instruments
utilised in testing must comply with national standards for
regular calibration. Failed samples are reported against a
batch, so that a determination can be made by quality
assurance, investigating whether the sample test failure affects
the whole batch, if further testing is required and what is the
root cause of the product failures. The results of testing must
be retained along with the records of any investigations.

The types of computing systems supporting these
operations are typically the Laboratory Information
Management Systems (LIMS) supporting clerical activity
around recording test results [12], instrumentation control
software on an integrated, or external computer and statistical
analysis tools. Usually, each test or the days testing is
preceded by a sample run to ensure the instrument is operating
within defined parameters. Some tests are quite short in
duration and others can run for many days. The instrument
machinery is largely automated once configured and
validated, but experiments are selected manually, including
the passing of results and aforementioned calibration.

Laboratory performance is measured by the number of
tests performed against erroneous tests performed. LIMS were
created to improve the automation of product test data flows
and ensure integrity, thereby reducing error and this is the
main motivation for adoption of LIMS systems by laboratory
management [12 p.2]. While LIMS systems exist that are
automatically collecting and approving results, there are also
many that involve manual entry of results. Many do
incorporate, as with the MES and AM, a part of their control
loop which automatically notifies and involves the relevant
party when this is necessary. However, very often this is, per
machine automation control, based purely on preset tolerance
value thresholds.

There does appear to be little work done in the area of
autonomic laboratory systems, but we can perhaps identify
some autonomic-in-principal elements. There are many
safeguards included with laboratory instrumentation, both
with a view to safe-guarding results and the instrument itself.
Many instruments have awareness of and do not allow
operation outside the pre-defined calibration windows. This
avoids producing costly invalidated results. Instruments also
have internal sensors and diagnostics which prevent operation
if a fault is encountered, or if a part has passed its expiration
date. Very often, an instrument may have modules for
different kinds of experiments and if not needed, the module
may be bypassed.

Certainly, an implementation such as the proposed @MES
will also need RA’s associated with testing in order to
simulate requirements. Furthering of autonomic principles in
this area, may lead to systems utilising acquired knowledge
during analysis to self-adapt. For example, if the current state
involves manual investigation and root cause analysis due to
test results, autonomic self and environment awareness,
perhaps facilitated by other autonomic agents may allow for
automatic determination of root cause. An external factor,
such as the temperature of the laboratory may be a simple
example. Even more desirable, might be autonomic agency
preventing invalid tests from being conducted in the first
instance and informing the other instruments of current
issues. Also, in an autonomic laboratory system of systems,
the whole test suite could likewise message other agents that
a particular test has successfully completed, allowing
subsequent tests on hold for another instrument to proceed,
thus closely relating the data generated by those tests.

37Copyright (c) IARIA, 2024. ISBN: 978-1-68558-140-4

ICAS 2024 : The Twentieth International Conference on Autonomic and Autonomous Systems

D. Quality Systems - Validation
The purpose of validation is per GAMP to provide

documentary evidence to support a high level of confidence
that all parts of a system will work correctly when used [13
p.1]. It comprises various levels of qualification, which
describe and contain activities that test the functions a system
is supposed to be able to perform. The qualifications include
a Design Qualification (DQ) – documenting that all quality
aspects of the system have been considered during the design
of system, Install Qualification (IQ) – ensures that a system
has been installed per its specifications, Operational
Qualification (OQ) – as implied, that the listed system
functions operates as expected according to the tasks which
have been identified, Performance Qualification (PQ) – is
evidence that the system works on an ongoing basis in its final
setting. Validation applies in a quality setting whether a
hardware, or software implementation. In some cases, it may
include auditing the vendor of the product to be validated and
one reason for this, is that they are supplying some of the
documentation that supports the validation – for example, the
IQ and OQ.

Security is also an important area of system validation,
including that logins work correctly [13 p.3], since it has a
direct bearing on the accuracy of records and traceability as
per FDA Title 21 CFR Part 11. Data entry validation is also
an important aspect, ensuring that data is formatted and saved
appropriately, as well as being retrievable [13 p.4]. Evidence
for the tests having been carried out may also be required
where this is part of the specification.

The creation of design and test validation documents,
collection of evidence and need for reviewers and approvers
can be a lengthy and time-consuming process. Automation of
systems has increased rather than decreased the level of effort
required during validation, due to remaining distrust of
automated systems, even when automated software testing is
considered. Concerns about transparency arise, particularly
when increasing automation may come to rely upon black box
solutions where the underlying reasoning behind an activity
cannot be directly observed. Automated testing and modelling
can assist with allaying fears, such as injecting deliberate
faults to see how the system handles different scenarios [14]
and automated software testing is sometimes employed in
validation, but automation can surely only get us so far.

If instead these systems were built autonomically from the
ground up, with the autonomic agents forming almost a digital
twin of business level hierarchy, which is trusted to provide
the same level of assurance for each respective area, as human
information gathering and review authority, then this would
have the effect of increasing confidence in all of the systems
which implement this by virtue of being recognised as self-
correcting, self-securing, self-optimising, self-healing. We
propose, that it is conceivable, that systems could become self-
validating.

E. Quality Systems - Data Integrity
Integral to modern quality systems is Data Integrity (DI),

which is data that meets standards of completeness, accuracy
and consistency, i.e., the data must be ALCOA, i.e.
attributable to a person or persons, legible, contemporaneous
to what is being recorded, the original record and accurately
recorded [15]. DI also requires consideration for how long
records should be retained. On a computer, data can be in raw
form, or processed form, but even in the current state of a
heavily computerised environment with relatively high levels
of automation, the original primary data records are often still

paper based. However, as automation moves towards industry
4.0 smart manufacturing, much of the discussion inevitably
turns to digitised data and data security.

A large concern in DI, is not just the maintenance of the
original record [23 p.3], but the assurance of a validated
backup and restore functionality, along with the data retention
[23 p.49-50]. Legacy backup solutions were often manual, or
even if automatic/scripted are triggered by simple rules within
a time window. If a backup is missed, it likely does not run at
all, although it may be followed by a notification. Many
modern backup solutions do incorporate some autonomic
elements, such as those described in “Lifeboat” for IBM, as
far back as 2004 [16]. The solution proposes a decentralised
peer-to-peer network backup model, with a distributed file
system and awareness of disk quotas on each participating
system. This eliminates single points of failure and relies on
autonomic agency to determine the most appropriate use of
available resources. It also discusses the scenarios of a server
addition to the system, since availability of clients cannot
always be guaranteed, as well as local backups. Many of the
concerns with peer availability, have been solved in
subsequent technology solutions which implement a Grid
computing approach. Sharding algorithms can distribute
redundant copies of partial data efficiently across as many
peers as available and reconstruct it from x number of peers,
way storage systems can reconstruct from parity data across x
numbers of disks. A prime example of this in practice with
regards to storage are Microsoft’s own DFS and BranchCache
technologies. The other main autonomic element of the IBM
Lifeboat system seemed to be self-configuration in having
awareness of new clients by referring to an asset collection
database and adding detected clients to the backup
automatically. Current backup solutions are relatively self-
aware of available bandwidth and the size of data on
individual clients, so as to be able to automatically allocate the
order and groups of clients to backup queues ensuring that this
happens within the provided timeframes. They can also
perform self-signing or verification of the backup’s integrity
using hash checks. Very often the backups are self-optimising
and regularly consolidate sets to remove duplication and
clean-up to free storage. It seems reasonable to call these
elements autonomic developments. However, most backup
solutions to the present are still centralised, even if with
redundancy. The incremental improvements are welcome, but
achieving truly autonomic backup and restore would seem to
require something further. Almost all backups still rely on
schedules, but in a Quality environment any loss of data, even
if rare is not acceptable. Even if the time gap is only a few
hours between backups, data lost due to disk failure can affect
product release, or manufacturing traceability and will be
questioned by an auditor. Simply increasing the schedule
frequency may be effective in reducing risk and simple, but is
not an autonomic approach and increases system utilisation.
The backup solution could instead have an AM, which senses
relevant disk transactions and efficiently commits those to the
backup storage incrementally. Similarly, being able to restore
a failed disk from a backup is not an autonomic solution. An
autonomic backup should try to anticipate the fault and ensure
the system data is safeguarded and then offline the faulty
component. When the fault is addressed, the AM should be
able to recover from the fault without user intervention.
Perhaps it could also be aware of similar/like systems and
offer another suitable systems resource to carry on performing
the same function, by making the faulty systems data and
functionality available non-destructively. A similar solution

38Copyright (c) IARIA, 2024. ISBN: 978-1-68558-140-4

ICAS 2024 : The Twentieth International Conference on Autonomic and Autonomous Systems

was proposed in 2000, albeit using limited computing nodes,
that was able to autonomically transfer running applications
complete with memory and CPU register content, from faulty
nodes to any available working node, which ensured
continuity [17]. There has been much progress in the area of
thin applications, which can make this level of availability
more common. The main issue for a quality environment, is
to establish trust of the underlying AM decisions and how to
validate data integrity.

Most quality systems rely on a database to store, maintain
and retrieve their generated data. Traditional relational
databases may have some degree of autonomic design. Many
include a self-repair and compact functionality which also
serves as a self-optimiser and this is also recognised in an
analysis published by IEEE in 2003 [18]. However, the
limitations of several popular contemporary DBMS products
were also discussed in terms of how they failed to be
autonomic and how these products may get there. Under the
heading “what is missing?”, the article describes the high level
of human input needed, the inclusion of data advisers and
wizards, rather than self-configuration and the lack of self-
optimisation in the form of ensuring the most efficient
memory usage with optimal indexing. Likewise, databases
tend to include recovery tools and not necessarily the
autonomic self-healing property.

Another key component of quality systems data integrity
since the late 90’s is the Audit Trail. An audit trail provides
evidence of actions performed by the system, or in the system.
A weakness of the current audit trail implementations, is that,
it often doesn’t actually influence outcomes, but merely
records activities. A security audit trail records that a
user/system login took place, or that a particular record was
saved by a given logged in user at a given time, but it is often
a flat text log file, which doesn’t have any actual connection
to the potentially affected data records.

A type of database paradigm which seems to address the
limitations of traditional database and logging systems in this
respect is blockchain technology. The underlying principles of
a blockchain are essentially autonomic. A blockchain database
consists of a series of blocks, to which any kind of data can be
written, and that data is then encrypted by a hash. The entries
are both time-stamped and signed by a unique identifier which
indicates ownership of the block, even if that identification is
anonymous, the transactions are completely transparent on a
ledger. Every subsequent entry relies on the hash of the
previous block to decrypt itself, forming a chain. It is
impossible to update the historical blocks without possessing
every single cryptographic hash key, so it is self-protecting.
The earliest blockchains were designed around the concept of
functioning as currency, with unique identifiers being wallets,
but more sophisticated blockchains can integrate so-called
smart contracts which are automatically executed on the chain
once agreed between parties, as well as hosting digital
applications. Underneath the data layer of a blockchain is the
concept of the nodes whether full, or partial, which host
identical copies of the blockchains data and increase the
reliability of the network and its bandwidth, whilst also
providing a framework for consensus that block transaction
being committed to the database are valid. Blockchains are
largely self-configuring, in that they require no user
intervention as to their data structure once started and
automatically eliminate invalid blocks. They are self-healing
because any potential corruption is automatically eliminated
by making comparison with other nodes. They can also
include apoptotic self-destruction of transactions once these

have expired, which automatically releases the storage utilised
by the transaction block.

Therefore, given these properties, it isn’t surprising that a
framework for utilising blockchain in an ISO compliant QMS
to achieve Total Quality Management (TQM) has been
suggested [19], but it would seem particularly suitable for
ensuring contemporaneous association of data records with a
digital identification, as per the requirements of DI, without
the need for a separate audit trail.

F. Quality Systems - Supporting IT Infrastructure
Finally, although some of the areas above have touched

upon the associated IT technologies which support the various
quality processes, a brief consideration of how IT
infrastructure as a whole supports these systems and how IT
has benefited and may yet benefit from autonomicity to
support quality seems appropriate. IT Infrastructure refers to
all of the components necessary to deliver IT services within
an organisation, e.g. equipment, network, software and
services, including Internet based services and datacenters
[24, p32]. A subset of IT Infrastructure examples are briefly
considered below, which have been selected due to suitable
existing and potential AC properties.

1) Storage – the dominant centralised server storage
paradigm in enterprises of all sizes remains some version of
Redundant Array of Independent Disks (RAID), usually level
5 or above. RAID storage systems have been available since
at least the early 1990’s and above 0 have a self-healing
functionality [20, p.8] whether via duplication, or parity, as
well as self-configuration in allowing hotswap disk
replacement. It seems that due to historicity, these autonomic
mechanisms being invisible to the quality process are trusted
to perform their data management tasks. This may form a basis
for trust in further autonomic developments.

2) Network – most business networks use a tiered star
topology utilising centralised switches. Setting aside the
increased expenditure of additional cabling and network
switches, this is an improvement on the old bus-based
networks, since the failure of one cable does not bring down
the others segments. However, network switches and ports
still often represent single points of failure. There may be a
case for Survivable Network Architectures (SNA) as
employed in telecommunications [21 p.2] for certain quality
operations, particularly automated machine networks in which
the network supports communication between machine
components and when down causes the whole system to cease
operating. Many modern managed switches do offer some
autonomic features. Spanning Tree Protocol (STP) prevents
physical network loops, by blocking them at Layer-2. Quality
of Service (QoS), manages traffic and automatically adjusts
network bandwidth allocated to prioritise specific services.

3) Servers – a server historically was usually hardware
dedicated to a specific service, or set of services with the
needed storage, memory and CPU specification. Typically, in
the last 10 years at least, localised servers have become
divided into storage arrays, shared via dedicated Storage Area
Network (SAN) and separate server hosts, which run the
services in virtualisation containers and share their memory
and CPU across the respective virtual servers. Virtualisation
has incorporated many autonomic elements, including
features such as VMWare Fault Tolerance (FT) [22, p.4]
which can automatically migrate a running server from one
host to another is a fault condition is detected. This kind of
self-awareness and corrective action is essentially autonomic.
VMWare FT also uses heartbeat monitoring to detect server

39Copyright (c) IARIA, 2024. ISBN: 978-1-68558-140-4

ICAS 2024 : The Twentieth International Conference on Autonomic and Autonomous Systems

crashes, borrowed directly from AC designs. Many physical
servers employ heartbeat health monitoring (HBM) to notify
IT of any hardware/software issues which are detected. Again,
because it is invisible to the end user, these technologies are
generally trusted, even if data migration is involved.

4) DataCentres/Cloud – cloud services, hybrid cloud
and Software as a Service (SaaS) being hosted in large
international datacentres have rapidly gained traction in
recent years and many quality supporting applications have
begun to transition to, or incorporate cloud elements, as well
as an increasing number of standard business applications.
Datacentres are essentially by todays standards autonomic
powerhouses, with redundancy and the capability to self-
configure an entire server loss with zero-touch. However,
although telecoms services are generally reliable, the rarity of
redundant Internet access required to use these services
remains a concern.

III. CONCLUSIONS
In reviewing the state of Quality systems and AC, there

seemed to be remarkable parallels between the steps and goals
used in TQM and the descriptions of AC processes, such that
AC can be envisioned in the various frameworks performing
the same functions which are currently requiring a high level
of human input. The need for more autonomicity in the various
components of the quality system is apparent, but so is the
difficulty of overcoming concerns around trust and
accountability. There are some ethical concerns around
impacts upon job satisfaction, when autonomous systems add
autonomic, as it has been noted that the introduction of LIMS
“led to an explosion of paperwork” and that automation
“usurped” any control/autonomy a worker had and handed it
directly to management [12, pp. 1-3].

It was noteworthy, that a lot of literature tends to focus
upon the potential for autonomous aspects of systems, perhaps
enabled by machine learning and not necessarily the
autonomicity of the systems which will allow them to function
independently in a trusted way.

Among emerging technologies, Blockchain is an exciting
autonomic development which may gain traction in quality
environments future state, where ultimate performance is not
the highest concern.

Open autonomic standards [6, p.4] will continue to be a
way forward and crucial to allowing Quality environments to
trust and utilise AC. In the authors’ view, the achievement of
AC and TQA will mature together.

ACKNOWLEDGEMENTS
This paper was produced as part of COM760 Autonomic
Computing & Robotics for Ulster University’s MSc. in
Artificial Intelligence.

REFERENCES
[1] World Health Organization (WHO), “Good Manufacturing Practices”,

Available:https://www.who.int/teams/health-product-policy-and-
standards/standards-and-specifications/gmp, [Accessed 02.2024].

[2] J. Singh, and H. Singh, "Continuous improvement philosophy –
literature review and directions", Benchmarking: An International
Journal, Vol. 22 No. 1, pp. 75-119. Available:
https://doi.org/10.1108/BIJ-06-2012-0038

[3] ISPE, "GAMP 5 A Risk Based Approach to A Risk-Based Approach
to Compliant GxP Compliant GxP Computerized Systems.", 2nd ed.,
2022.

[4] J. O. Kephart, and D. M. Chess, "The vision of autonomic computing,"
in Computer, vol. 36, no. 1, pp. 41-50, Jan. 2003, doi:
10.1109/MC.2003.1160055.

[5] P. Horn, “Autonomic Computing: IBM's Perspective on the State of
Information Technology”, IBM Presentation, 2001.

[6] A. G. Ganek and T. A. Corbi, "The dawning of the autonomic
computing era", in IBM Systems Journal, vol. 42, no. 1, pp. 5-18, 2003,
doi: 10.1147/sj.421.0005.

[7] IBM, "An architectural blueprint for autonomic computing." IBM
White Paper, 2006.

[8] M. C. Huebscher, and J. McCann, “A survey of autonomic
computing—degrees, models, and applications”, ACM Comput. Surv.,
40, 3, August 2008, DOI:10.1145/1380584.1380585.

[9] D. A. Menascé, M. Krishnamoorthy, and A. Brodsky, “Autonomic
smart manufacturing”, Journal of Decision Systems, 24:2, 206-224,
2015, DOI:10.1080/12460125.2015.1046714

[10] M. Rolón, and E. Martínez, “Agent-based modeling and simulation of
an autonomic manufacturing execution system, Computers in
Industry”, Volume 63, Issue 1, 2012, pp 53-78, doi:
10.1016/j.compind.2011.10.005.

[11] M. Rolón, and E. Martínez, “Agent learning in autonomic
manufacturing execution systems for enterprise networking”,
Computers & Industrial Engineering, Volume 63, Issue 4, 2012, pp
901-925, DOI:10.1016/j.cie.2012.06.004.

[12] J. E. H. Stafford, "LIMS: an automating or informating technology?",
Laboratory Automation & Information Management,Volume 33, Issue
3, 1998, pp 163-168, doi:10.1016/S1381-141X(98)80002-6.

[13] D. Friedli, W. Kappeier, and S. Zimmermann, “Validation of computer
systems: Practical testing of a standard LIMS”, Pharmaceutica Acta
Helvetiae, Volume 72, Issue 6, 1998, pp 343-348,
DOI:10.1016/S0031-6865(97)00032-0.

[14] C. Ebert, and M. Weyrich, “Validation of Autonomous Systems”,
InfoQ, 2021, Available: https://www.infoq.com/articles/validation-
autonomous-systems/, [Accessed 02.2024].

[15] H. Alosert, et. al., “Data integrity within the biopharmaceutical sector
in the era of Industry 4.0”, Biotechnology Journal, 17, 2022,
DOI:10.1002/biot.202100609.

[16] T. Bonkenburg, et al. "LifeBoat: An Autonomic Backup and Restore
Solution." LISA '04: Proceedings of the 18th USENIX conference on
System administration, November 2004, pp 159–170.

[17] R. Mukai, S. Yamada, S. Tanaka, A. Tanaka, M. Kubota, and I.
Kogiku, “A networkwide backup system with inter-memory autonomic
copy mechanism”, Syst. Comp. J., 34: 2003, pp 89-99.
DOI:10.1002/scj.1211

[18] S. Elnaffar, W. Powley, D. Benoit, and P. Martin, "Today's DBMSs:
how autonomic are they," Proceedings of the 14th International
Workshop on Database and Expert Systems Applications,. Prague,
Czech Republic, 2003, pp. 651-655, doi:
10.1109/DEXA.2003.1232095.

[19] R. Muruganandham, K. Venkatesh, S. R. Devadasan, and V. Harish
“TQM through the integration of blockchain with ISO 9001:2015
standard based quality management system”, Total Quality
Management & Business Excellence, 34:3-4, pp 291-311, 2023, doi:
10.1080/14783363.2022.2054318

[20] R. J. T. Morris and B. J. Truskowski, "The evolution of storage
systems," in IBM Systems Journal, vol. 42, no. 2, pp. 205-217, 2003,
doi: 10.1147/sj.422.0205.

[21] R. Sterritt, “Autonomic networks: engineering the self-healing
property”, Engineering Applications of Artificial Intelligence, Volume
17, Issue 7, 2004, pp 727-739, DOI:10.1016/j.engappai.2004.08.028.

[22] D. J. Scales, M. Nelson, and G. Venkitachalam, “The design of a
practical system for fault-tolerant virtual machines”, SIGOPS Oper.
Syst. Rev. 44, 4, December 2010, pp 30–39.
DOI:10.1145/1899928.1899.

[23] Ronolo, S.C., "Assuring Data Integrity towards Regulatory
Compliance: A Study on Process Improvement in Data Integrity
Compliance of Computerized Systems.", May 2023,

[24] Laan, Sjaak. “IT infrastructure architecture-infrastructure building
blocks and concepts second edition”. Sjaak Laan, 2012.

40Copyright (c) IARIA, 2024. ISBN: 978-1-68558-140-4

ICAS 2024 : The Twentieth International Conference on Autonomic and Autonomous Systems

	I. Introduction
	II. AC & TQM: Systemization of Knowledge (SoK)
	A. Autonomic Computing Paradigm
	1) “Know itself” which is perhaps best summarised by this statement “a system can’t monitor what it doesn’t know exists”. [5, p. 21] This self term has become definitional to AC component descriptions throughout the field.
	2) Be able to configure and re-configure itself in response to changing and unpredicted conditions.
	3) Not be settled on the current state and always seek to optimise.
	4) Be able to perform functions analogous to healing.
	5) Be security aware and self-protecting
	6) Know its supporting environment and activities, so that it can respond appropriately to them
	7) and therefore must not be sealed off and isolated, but must be able to function interdependently facilitated by open standards
	8) Constantly anticipate what resources are needed. [5, pp 21-31]
	1) Self-Configuration – is awareness of components and the environment, so as to be able to dynamically re-configure, to automatically integrate new components and adapt. A simple example might be the Plug and Play or hot-swap features of modern hardw...
	2) Self-Healing – detect and diagnose errors in components, isolate and repair them, or disconnect as necessary. Prevent failures from occurring if possible through component management with a view to maintaining constant availability.
	3) Self-Optimising – continual automatic tuning across the systems available resources. This may include some element of built-up knowledge, in order to predict and schedule, as well as the ability to dynamically allocate resources in response to dema...
	4) Self-Protecting – Securing system resources via users identification, intrusion detection, secure backup and restore services.

	B. Quality Systems - Manufacturing and Automation
	C. Quality Systems - Product Testing
	D. Quality Systems - Validation
	E. Quality Systems - Data Integrity
	F. Quality Systems - Supporting IT Infrastructure

	III. CONCLUSIONS
	Acknowledgements
	References

