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Abstract— We present a multi-modal AI approach for 

Automated Guided Vehicles (AGVs) to perform autonomous 

warehouse inventory monitoring. A vision module detects and 

tracks the goods and registers them to the inventory when the 

confidence score is high. Moreover, we use uncertain detections 

to direct the AGV to better viewpoints that could lead to new 

inventory counts. Navigation is done with a Reinforcement 

Learning (RL) agent trained to perform directed exploration in 

previously unseen warehouse settings. Because there is not a 

pre-defined route, we implement a robust way to merge detected 

items to avoid double counts. We also use speech as an easy way 

to provide instructions to the AGV. 

Keywords- AI based autonomous systems; Automated Guided 

Vehicles, multimodal AI; navigation; deep learning; neural 

networks; reinforcement learning; warehouse monitoring & 

management system; automated logistics & inventory  

I. INTRODUCTION 

Inventory is done manually by humans in many logistic and 
industrial warehouses, which is a slow and costly procedure. 
Automated inventory analysis is potentially faster, safer and 
more accurate [1]. To perform automated inventory 
monitoring, two main tasks need to be achieved: count the 
goods and move autonomously through the warehouse. 

Regarding the counting of goods, supervised AI vision 
techniques have proven good performance for detection of 
many types of objects [2]. However, accuracy depends on the 
amount and quality of training data, and often it is hard to 
reach very high accuracy values. For the inventory 
application, a requirement is to have as few labeled examples 
as possible. Otherwise, the implementation in a real setting 
would be infeasible if a lot of manual labeling is necessary 
each time a new product is introduced. 

To move autonomously through the warehouse, many 
industry settings use Automated Guided Vehicles (AGVs). 
Classic navigation pipelines typically need to construct a map 
by scanning the environment with sensors, such as lidars [3], 
while manually driving the AGV. Sometimes the usage of 
floor markings or fiducial landmarks (e.g., reflectors) are used 
as well. These approaches do not only require an updated map, 

but also require a different module to set destinations or 
missions with waypoints, meaning that a high set-up time for 
new or modified environments is needed. Because of the 
increasing variability in warehouses, it is common that rack 
configurations are modified after short periods of time. This 
exposes the need for an increased flexibility in the whole 
navigation approach. 

In this work, we show how multi-modal AI is leveraged to 
overcome current limitations and perform an inventory in a 
pure exploration manner without previously knowing the rack 
configuration. We demonstrate a proof of concept in a real-
time AGV forklift (Figure 1), which exploits spatial-temporal 
data to increase accuracy and robustness. 

 

 
Figure 1. AGV used for integration and experiments 

 

Regarding the detection of goods, by using the video 
stream, lidar data and the forklift position we avoid the need 
to detect all objects in all frames, and detecting at least once 
each object becomes sufficient. Moreover, it is important to 
reject false positive counts to avoid adding wrong detections 
to the inventory. We deal with this problem by setting a high 
confidence threshold, which increases the object count only 
when the model is certain about the existence of the object. 
However, the information in low confidence detections is still 
valuable, and we use it to direct the navigation module to 
uncertain areas. This allows to actively interact with the 
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environment and get better viewpoints. In many cases, this 
will lead to high confidence detections, and as a consequence 
to new counts in the inventory.  

In terms of robustness, the challenge is to avoid counting 
twice the same object, so we add tracking between frames. 
Furthermore, as exploration can lead to revisiting some places 
after a while, we implement a robust merging strategy to avoid 
counting again objects seen in the far past. This is an issue that 
existing navigation solutions do not face because they 
navigate on a mission with manually selected waypoints on a 
map. 

To explore an unseen environment, we use a 
Reinforcement Learning (RL) agent, which is trained through 
trial-and-error in simulation to explore a warehouse while 
being directed by an external module. 

Operators need a fast and easy way to interact with AGVs. 
We introduce a module that allows operators to give 
instructions via speech commands. This way, the cooperation 
between humans and machines becomes smoother 

In previous work [4], we focused on the multi-modality 
between speech and vision to detect objects given speech cues. 
The RL navigation modality was also present, but only 
available in simulation as a digital twin which was 
synchronized with the real-world vehicle. In this work, we 
have a higher focus on the vision modality and how it interacts 
with the RL navigation. Furthermore, we have implemented 
all the modules in a real platform, and we have switched from 
an autonomous off-highway vehicle into an AGV which 
performs warehouse inventory.  

In Section II, the related work is reviewed. Section III 
specifies the multi-modal AI solution used to solve the 
automated warehouse inventory use case. Section IV 
describes the experimental platform and the results on the real 
setup. Finally, Section V gives conclusions and talks about 
future work. 

II. RELATED WORK 

A. Object detection and tracking 

There are two main approaches to perform Multi-Object 
Tracking (MOT), “tracking by detection” and “detection by 
tracking”. “Tracking by detection” is a two-stage process: first 
an object detector [5] [6] [7] recognizes the objects of interest 
in a new frame, and then an object tracker uses the past 
detections to associate the new detections with the previous, 
creating tracks with consistent IDs across frames. CenterNet 
[8] is used in many trackers [9] [10] [11], as it is simple and 
efficient. The YOLO family of detectors [12] [13] are used in 
various trackers [14] [15] [16] due to the good trade-off 
between speed and accuracy. MOT tracking in 3D [17] [18] 
[19] follows the “tracking by detection” approach. One of the 
advantages of “tracking by detection” is that there are two 
modules, which can be easily combined, e.g., the same tracker 
can be fused with different detectors. In “detection by 
tracking”, the tracking information is also used to improve the 
accuracy of the detector. In some cases [20] [21], a Kalman 
filter [22] is used to predict the tracks in the next frame. 
Transformer-based detectors can also be used in tracking [23] 
[24] to propagate boxes between frames.  

Most methods keep only high confidence score detection 
boxes to perform data association, as detections with low 
confidences can be unrelated background objects. 
BYTETrack [16] implements a strategy with a second 
association round for low score detections, as an additional 
step, to filter potentially occluded objects. Generally, all 
methods use a similarity metric followed by a matching 
strategy for data association. SORT [25] uses location and 
motion cues to compute the Intersection over Union (IoU). 
Some methods [24] [26] [8] are robustified w.r.t. the camera 
movement by having motion specific parameters. Appearance 
similarity of Re-ID features is used in a standalone way in 
DeepSORT [27] and in a joint way with detections in other 
methods [15] [28]. 

Few works focus on re-tracking objects once they are lost 
and allow for re-tracking [29] only in a short future horizon. 

B. Navigation 

Currently, navigation with an AGV throughout a 
warehouse mostly relies on SLAM-based approaches in 
which the agent constructs a map, and simultaneously tries to 
localize itself within this map. Alternatively, beacons, floor 
markings or guiding rails might be placed in the environment 
in order to allow the AGV to navigate efficiently [30]. 

These approaches, however, have two main drawbacks. 
The first is that they are often not very flexible and require a 
lot of manual tuning and setup in order to operate. The second 
drawback is that navigation tasks are currently mostly limited 
to positioning the AGV to a specific point in space, through 
providing the coordinates of the location. Semantic tasks such 
as directly searching for a specific item, without knowing its 
location would require visiting the entire environment in a 
greedy fashion. 

Reinforcement Learning (RL) is an alternative approach 
which is able to learn control policies in sequential decision-
making processes through trial-and-error learning. In an RL 
setting, the agent executes actions in order to figure out the 
effect they have on the environment. An RL agent learns about 
the quality of its performed actions through feedback from a 
reward function. 

RL has been applied successfully in navigation settings, 
e.g., in operating stratospheric balloons [31], or controlling 
robotic platforms [32]. However, RL is still facing an issue of 
sample efficiency. An RL-based approach generally requires 
a large amount of interactions with its environment in order to 
learn a successful policy. While there is a lot of research being 
conducted on making RL more sample efficient in navigation 
settings [33] it is still very impractical and unsafe to train an 
RL agent in the real-world [34] [35]. For this reason, RL is 
usually trained in simulation, where multiple environment 
instances can be parallelly run at a faster rate.  

While training in simulation can generally alleviate the 
problem of sample inefficiency, a new issue arises due to the 
fact that the observations coming from a simulated sensor, and 
those coming from a real-world sensor are often very 
different. Real-world sensors are often noisier and are utilized 
in a larger variety of setups (such as weather conditions or 
lighting). A few different methods have been proposed before 
in order to solve this sim2real gap. Attempts have been made 

26Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-053-7

ICAS 2023 : The Nineteenth International Conference on Autonomic and Autonomous Systems



 
Figure 2. Multi-modal software architecture

 
at making the simulators more realistic [36]. This however 
resulted in the agent overfitting to aspects of the simulator [37] 
[38]. 

An additional benefit of RL based approaches over classic 
navigation approaches, is that they are able to solve 
semantically defined tasks. As classical navigation 
approaches are typically limited to navigation to coordinates. 
RL-based navigation approaches have outperformed such 
classic agents in specific settings in coordination-based 
navigation [39], and have been able to also handle tasks such 
as finding objects through only specifying the type of object, 
or exploring the environment in an intelligent and an efficient 
manner [40]. 

The usage of RL navigation to improve the confidence of 
detections in a map has also been addressed [41], but only in 
simulation. 

III. CASE STUDY: AGV FOR WAREHOUSE INVENTORY 

A. Multi-Modal AI architecture 

Figure 2 an overview of the software architecture and 

interface between the platform and the different AI modules. 

Apart from the data that comes from the AGV (RGB image, 

point cloud and position) a voice instruction is the input that 

serves as user interface. The overall output are the control 

commands to the AGV and the map with the inventory 

counts. 

B. Spoken Language Understanding 

If the operator wants to give a speech command, he/she 
can either press a button and then start talking, or enable the 
open microphone feature and say a pre-defined keyword to 
indicate that an instruction will be given. 

We have reused the user interface and AI model from a 
previous work [4] and retrained it to work in English for a new 
set of tasks. First, a command is available to start a new 
inventory session (“count” Figure 2). Then, there are 3 options 
available: steer the AGV manually, trigger the RL 
autonomous exploration (“explore” in Figure 2), or further 
give speech instructions to control the movement of the AGV 
(“move” in Figure 2), such as “forward”, “a little bit to the 
left”, or “stop”. 

C. Reinforcement Learning Navigation 

We address the sim-2-real gap in the sensing part by using 
lidars, which are more robust to sensor noise. While lidar-
based simulations are often very compute-intensive, our 
approach allows fast simulations by rendering obstacles into 
top-down images containing the lidar data, without any need 
for ray casting. Rack locations are similarly added as a second 
image channel, and a third channel contains past vehicle 
positions. This 3-channel image in the ego view (see Figure 3) 
determines the only input of the RL agent. The same 3-
channel image is created in the real setup: 

• The obstacles channel comes from a projection of the 
3D lidar point cloud to the plane parallel to the floor. 

• The second channel contains the areas to direct the 
exploration, which come from the detection module. 
A 3D point cloud is projected as in the first channel. 

• The third channel contains the past trajectory, which 
is obtained by concatenating the last positions given 
by the AGV positioning system. 

 

 
Figure 3. Input image to the RL agent. Blue are obstacles, green represents 

uncertain areas and red is the past trajectory 
 

Simulations use a kinematic model of the AGV to bridge 
the sim-2-real gap in the acting part. The RL policy utilizes a 
discrete set of 15 actions, that map to specific steering angles 
and forward speeds. At a low speed (0.3 m/s) the vehicle can 
turn at 3 different angles (small, medium and large) to the left, 
and 3 to the right. The vehicle can also go straight. This makes 
a total of 7 actions, which are also available for backward 
moving. The 15th action allows to go forward straight at a 
higher speed (0.5 m/s). The simulation environments are 
randomly generated to create several rack configurations and 
generalize to any warehouse setting. We use Proximal Policy 
Optimization (PPO) [42] to train the agent. 
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D. Object Detection and tracking 

The detector uses an RGB image as input and produces 

bounding boxes with associated confidence scores. We do not 

use depth sensors or lidar. The reason is that training models 

which use these sensors would require 3D annotations, 

generally not available in industrial datasets. An alternative 

is to label point clouds, which is prohibitive, and therefore we 

opt only for 2D object detection applied on RGB images.  

We use the 3D lidar sensor, available in the navigation 

module, to obtain depth information which is pixel-by-pixel 

aligned with the RGB images. This approach provides better 

depth accuracy than depth cameras. The point cloud from the 

lidar is projected on the camera plane, with some inflation 

proportional to the depth value, leading to higher inflation for 

closer points. This provides a richer depth image, as 

illustrated in Figure 4. The projection of a point cloud into a 

camera plane only works well only if the two sensors are 

mounted close enough, which is the case for our platform. 
 

 
Figure 4. Depth image from the point cloud without inflation (left) and with 

inflation (right) 
 

We choose the Yolov7 detector [12], as it is one of the 

latest open-source detectors with a better trade-off between 

accuracy and real time performance. Starting from a pre-

trained version on COCO dataset [43], 4 videos recorded in 

the test warehouse have been annotated, making a total of 

around 1500 frames. The detector is trained to detect only one 

class, which is the cardboard box. 

We select BYTETrack [16] as an object tracker, because 

it can be easily coupled with any other detector and yields to 

good accuracy in the MOT20 [44] benchmark. The main 

building block is a Kalman filter [22] with a constant speed 

model for the bounding box position and size of the 

detections. In most cases, trackers are employed in 

applications with a static camera and moving objects, while 

we use a moving camera with static objects. We have slightly 

modified the default version to be able to tune the covariance 

matrices Q and R of the Kalman filter in order to put a higher 

confidence on the detections (measurements) than in the 

model (constant speed motion). Especially when the camera 

is turning, the model will be less reliable, so we want to give 

higher importance to the new detections. Tracking provides 

unique IDs across frames, but does not solve the problem of 

tracking objects when they re-enter the camera FOV after 

some time. This will be addressed in the 3D map creator. 

E. 3D map creator 

The individual 2D detections, the generated depth image 

and the AGV location in the warehouse are inputs to the 3D 

map creator, which is responsible to merge new detections to 

the ones in the map. This way, it keeps an updated version of 

the counted items locations, which are represented as cuboids 

with an ID, confidence score, internal point cloud, center, 

width, height and depth. The 3D map also keeps track of the 

uncertain areas, which are represented in the same way but 

with a negative value for the ID. Algorithm 1 shows the 

pseudo-code of the map creator, including also the object 

detector and tracker. 
 

Algorithm 1: Pseudo-code of the inventory monitoring 

 Input: sequence S with image I, lidar point cloud L and vehicle 

position P ; threshold for tracking Tt ; detection confidence threshold 

for counting Td ; position confidence threshold for counting Tp 

 Output: goods map M (list of objects with ID, confidence score, 

point cloud and 3D cuboid)  
1 Initialization: M  0 
2 for I, L, P in S do 
3  Dets = detector(I) 
4  Tracks = tracker(Dets, Tt) % Tracks contain an ID, confidence 

score and bounding box 
5  Depth = project_pointcloud(L) 
6  for Track in Tracks do 
7   Depthfiltered = filter_depth(Depth, Track) % Depth with padding 
8   Otrack = to_pointcloud_object(Depthfiltered, Td)  % object with 

point cloud, ID (<0 for uncertain) and confidence fields 
9   Ofiltered = filter_poitcloud(Otrack, Tp)  % SOR, passthrough, SAC 

filters + ID becomes <0 if uncertain position 
10   Oworld = to_world(Ofiltered, P) % transform from ego view 
11   Ocurrent = compute_cuboid(Oworld) % add 3D box to object 
12   Test = overlap_test(Ocurrent, M) % compare to all map objects 
13   if Test then 
14    M = merge_to_map(Ocurrent, M) % discard new ID & merge 
15   else 
16    M = add_to_map(Ocurrent, M) % new detection added to map 
17   end 
18   M = voxel_grid_filter(M) 
19   M = delete_uncertain_areas(M) 
20  end 
21 end 
22 Return M 

Figure 5. Algorithm for inventory monitoring 

 

For each new frame the algorithm iterates over the 

bounding boxes from the tracker. For each track, the 

corresponding depth pixel values are retrieved with a padding 

to discard pixels that may belong to the background. Then, 

depth values are converted back to a point cloud per 

detection. This point cloud goes through a filtering process 

that includes a Statistical Outlier Removal (SOR), a 

passthrough filter to remove far points and a SAmple 

Consensus (SAC) test: using the domain knowledge that 

boxes have flat surfaces and that they are never seen from 

above, we fit a plane and require it to be vertical in the world 

coordinate system.  

At this point, we have for each detected object a point 

cloud, which generally contains points on the main surface of 

the box. There are two reasons to consider it uncertain: 

• Uncertainty in the detector output: If the confidence 

score provided by the detector is below a certain 
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threshold, then the corresponding object is marked 

as uncertain in detection. 

• Uncertainty in the object location: In case the SAC 

plane is too far away, has a low number of inliers, or 

is not seen frontally (the boxes are too much at the 

side of the image), then the corresponding object is 

marked as uncertain in position. 

The point cloud is finally transformed using the vehicle 

location into world coordinates, and a 3D cuboid that 

encloses the point cloud is computed. 

Then, all the detections are merged with the map. There 

are two possibilities: 

• The ID of the current detection is already in the map. 

In that case, the default option is to merge it with the 

map’s object with the same ID. However, it could 

be the case that the 2D tracker fails, so an 

overlapping volume comparison is done with all the 

other detections already in the map, and if there is 

enough overlapping, the current detection is merged 

with the map object with more overlapping volume. 

• The current detection is not in the map. The same 

overlapping test is done as in the case above. If there 

is not enough overlapping, it is a new detection, and 

a new object is initialized in the map. Otherwise, the 

new detection is merged into the matched object in 

the map. 

When a detection is merged to one in the map, the point 

clouds are concatenated and then reduced using a voxel grid 

filter. The confidence is updated to the maximum of the ones 

being merged, and the centroid and vertex locations are 

updated fitting a cuboid to the point cloud. Since only one 

surface per box is considered, the cuboid corners are 

extended so each dimension is bigger than a user defined 

minimum object size. The current vehicle position and 

relative viewpoint respect the detection are used to know the 

direction of the extension. 

Uncertain detections are merged in a similar way as 

certain ones. Certain and uncertain detections are never 

merged between them. When an uncertain detection with a 

particular ID becomes certain, all the uncertain data is 

deleted. Moreover, whenever there is a certain detection 

being added or merged to the map, nearby uncertain 

detections are deleted. Finally, in case that the AGV gets 

close enough to an uncertain detection and it remains 

uncertain, the object is completely discarded, since after 

having a good viewpoint the certainty did not increase 

enough, so it is assumed to be a detection false positive. 

IV. EVALUATION 

A. AGV forklift platform 

An open experimental platform has been built on top of an 
AGV, automating a standard pallet forklift [45]. Localization 
is provided by a commercial system with reflector landmarks 
with known positions across the warehouse. Triangulation 
allows to get the AGV position with an accuracy of the order 
of few centimeters.  

Two Ouster OS1 lidar with 64 vertical layers have been 
used. They have a vertical field of view of 45° and a maximum 
range of 120 m. They are placed in the front and the back of 
the AGV, and they are merged into a single point cloud that 
has a full 360-degree coverage. A camera (Zed mini) is used 
for inventory detection and is placed at the front of the forklift.  

Figure 6 illustrates the hardware architecture and principal 
communications in the AGV. Robot Operating System (ROS) 
is used as a middleware to provide communication between 
the different perception modules. Then, control commands are 
sent to a motion module via ethernet, which is responsible for 
executing the actions on the AGV. There is a safety system 
mainly based on safety scanners that stops the forklift in case 
of an expected imminent collision. 

The dynamics of the forklift can be summarized in the 

kinematic bicycle model [46]. This model is used in the RL 

training bridge the sim2real gap in the actuation. In Figure 7 

the vehicle model can be seen. 

 The kinematics for a forklift AGV are defined by the 

following equations  [47]: 

 

�̇� = 𝑉(𝑡) 𝑐𝑜𝑠 𝜃(𝑡) 

�̇� = 𝑉(𝑡) 𝑠𝑖𝑛 𝜃(𝑡) 

�̇� =
𝑉(𝑡) 𝑡𝑎𝑛 𝛿(𝑡)

𝑙 − 𝑎 𝑡𝑎𝑛 𝛿(𝑡)
 

 

The following values apply for this work AGV:  l = 1.5m, 

a = 0:15m The forward velocity is denoted as V and 𝛿 is the 

steering angle in radians. 

 

 
Figure 6. Hardware architecture 
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Figure 7. Bicycle kinematic model for AGV 

B. Experimental Results 

We have integrated all the algorithms in the forklift AGV 
platform and performed several online real-time experiments. 
Figure 8 shows the available inventory visualization in an 
experiment sequence. The locations of the racks are provided 
by the user and are only employed to improve the 
visualization, as they are not part of the algorithm. In the 
Figure 8 top image it is seen how several boxes in the middle 
rack have already been detected while in another rack there 
are uncertain detections. White points denote areas with low 
detection certainty, while grey points correspond to low 
certainty in location. Those areas direct the navigation to 
move closer, and once better viewpoints are obtained, they 
become certain detections that are added to the inventory, as 
seen in the middle image. Finally, in the bottom image it is 
seen how after performing a loop around the middle rack, the 
previous 2 racks are seen again, but only new objects are 
added to the inventory count. Detections that are assigned to 
an object already in the map are merged, and the object 
location is slightly adjusted accordingly if necessary. 

TABLE 1 contains the results for object detection. We 
have used a test subset of 188 frames of around 30 seconds 
where the vehicle goes towards a rack and then performs a 
turn. The “Detector alone” row contains the results of the 
detector without any tracking or merging on the map. Then, 
the following rows represent the results for different ablations 
on the map creator, where the thresholds to track (Tt) and to 
count (Td, Tp) are modified. H represents a version where the 
several thresholds for the position certainty are high, while L 
is for low values. We denote as Tt=0 the case where the 2D 
tracker is not used. The results include the precision and recall 
values, as well as the number of detected uncertain objects 
that are remaining in the map at the end of the sequence. A 
distinction is done between remaining uncertain objects that 
would become true and false positives if added to the count. 

Although accuracy values in the “Detector alone” are 
high, all versions with the 3D map creator have a higher 
precision and similar or higher recall. Depending on the 
thresholds to track the objects and to count them in the 
inventory, the trade-off between precision and recall changes. 
In our application a high precision would be desired, while 
we expect to improve the recall by the active navigation. 
Results show there is still room for improvement in the 
directed exploration, since there are several true positive 
uncertain detections that were not yet included in the map. 
Alternatively, counting and position thresholds could be 

further reduced to count those uncertain detections and 
increase the recall, but that would reduce precision. Results 
show how the usage of a 2D tracker (Tt ≠ 0) helps to avoid 
false positives, as seen in the TABLE 1 uncertain detections. 

 

   
Figure 8. Sequence of the forklift around some racks in a warehouse. 

 
TABLE 1. RESULTS OF THE OBJECT DETECTION 

 Precision Recall Uncertain (T/F) 

Detector alone 0.89 0.85 - 

Tt=0.3, Td=0.9, Tp=H 1 0.76 9/0 

Tt=0.3, Td=0.5, Tp=H 1 0.81 7/0 

Tt=0, Td=0.5, Tp=H 1 0.81 7/7 

Tt=0.3, Td=0.9, Tp=L 0.96 0.86 5/0 

Tt=0.3, Td=0.5, Tp=L 0.97 0.89 3/0 

Tt=0, Td=0.5, Tp=L 0.94 0.86 3/8 
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Results show how, by using spatial-temporal information 
of the same object while actively navigating to obtain better 
viewpoints, we can rely in a less accurate detector and achieve 
higher accuracy results on the high-level task of inventory 
count. This directly translates into a faster set up of the 
detector (less required labeled data, less time doing 
hyperparameter tuning, etc.), which is critical to reduce the 
implementation time of the solution in a new or modified 
warehouse. In this direction, the usage of an instance 
segmentation detector would have provided pixel level 
detections, which could be better matched to depth 
information leading to better position accuracy in the map. 
However, this would have increased the inference rate and the 
labeling effort. Our results show, how by post-processing the 
lidar data and registering to the inventory only detections with 
high position accuracy, a bounding box detector is enough 
instead of a more advanced pixel level instance segmentation 
detector.  

V. CONCLUSIONS 

The multi-modal approach presented in this work showed 

how uncertain detections in the vision module can be used in 

a navigation module, in our case based on RL, to improve the 

accuracy of the high-level task of warehouse inventory 

monitoring. If navigation can get better viewpoints directed 

by the detection module, the accuracy of the object detector 

is highly increased when applied to a time sequence. For a 

feasible industrial implementation, the set-up time in new 

environments should be minimal, and this work has proven 

how by considering uncertainty in the detections, a fast 

detector that is not accurate enough at frame level can achieve 

high accuracy at a task level. 

The merging approach used to create the 3D map ensures 

that the same object is not counted twice. This is necessary in 

case of exploration which might re-visit the same areas. 

However, the current approach assumes that in each 

inventory session no objects are moved or removed. This is a 

limitation that needs to be addressed in future research. 

This work also showed how the sim-2-real gap in RL can 

be addressed to successfully navigate in an unknown 

environment. Moreover, the navigation and the inventory 

modules are loosely coupled, which extends flexibility. The 

navigation module could be combined with other types of 

tasks where directed exploration is needed, such as finding an 

object or as intelligent patrolling. Beside the warehouse 

management application, the presented approach could also 

be used in other domains such as AGVs in agriculture or 

construction applications. We foresee future work on the RL 

navigation module with extended evaluation of the directed 

exploration navigation. We expect a performance 

comparison both in the simulation and real world setups 

between agents trained with different reward functions (e.g., 

general coverage vs directed exploration). 
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