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Abstract—For autonomous actors, such as robots to achieve
their goals while operating adaptively in a dynamically changing
environment, they need to accurately recognize changing condi-
tions from moment to moment. Planning research for finding a
sequence of actions to achieve a goal has a long history, and
in recent years, machine learning has become the mainstream
method for finding the optimal sequence of actions. However, it is
difficult to deal with unexpected situations using this method, and
in such cases, the real-time performance is lost due to the blind
search for a sequence of actions that will achieve the goal. Living
organisms, such as ourselves, have learned how to avoid blind
search by perceiving environmental affordances. In this paper,
we propose a method for robots to use affordances to recognize
their situation accurately and to seek a sequence of actions to
achieve their goals efficiently. Affordances are common sense in
an individual situation, i.e., tacit knowledge, and conventionally
can only be constructed manually, which has the limitation that
they cannot be scaled. However, large-scale language models that
have recently emerged may contain tacit knowledge, and we have
developed a method for extracting this tacit knowledge. In this
study, we incorporated this method into a multi-agent planning
system that is highly adaptive to dynamic environmental changes.
We confirmed that a sequence of actions can be efficiently
obtained to achieve a goal by using affordances.

Keywords—multi-agent planning; action selection; affordance.

I. INTRODUCTION

Planning is an essential area of Artificial Intelligence (AI)
research and continues to be actively studied. In particular,
planning, which is highly adaptive to dynamic environments,
is a core technology for realizing next-generation AI with high
autonomy and versatility.

To realize this capability, it is necessary to distinguish
between immediate planning, which enables instantaneous
action selection in response to changes in the environment, and
deliberative planning, which outputs a highly optimal action
sequence even if it takes time to achieve a goal that requires
deliberation, given to a robot equipped with the planning
system.

A method to construct the planner as a multi-agent type has
been proposed to achieve immediacy and deliberateness. In
multi-agent planning, one agent is in charge of one operant in

Stanford Research Institute Problem Solver (STRIPS) [1], and
the agents cooperate to generate a sequence of operants that
transitions from the initial state to the goal state. Subsumption
Architecture (SA) proposed by Brooks [2] is well known as
an existing study. SA can hierarchically connect lower-level
reflective functional modules and higher-level deliberative
functional modules to use immediacy and deliberateness as
appropriate. However, SA exclusively selects between imme-
diate and deliberative planning, and the two cannot cooperate
or be more adaptive to the environment.

On the other hand, Agent Network Architecture (ANA)
proposed by Maes [3] [4] is an activation propagation-based
behavioral network architecture. This method allows more
fine-grained coordination between immediate response and
deliberation than SA by allowing agents to interact with each
other in the form of activation propagation.

However, in planning, a search is conducted to obtain
action sequences, and the more versatile the planning is, the
more the search for the optimal sequence that achieves the
objective from among a vast number of combinations of action
sequences becomes burdensome and real-time performance
declines. In planning, many methods have been proposed in
recent years to find the optimal action sequence by machine
learning. However, even with this method, unexpected situa-
tions are difficult to deal with. In such cases, blind search is
achieved for a sequence of actions that achieves the objective,
which results in a loss of real-time performance.

Living organisms, such as ourselves, can avoid blind search
by perceiving environmental affordances. Affordance is ‘the
opportunity for action that an organism receives from a par-
ticular object or environment’ [5]. For example, if a human
perceives a door with a handle, he/she can obtain the affor-
dance of pulling from this door to open it. Affordances are
common sense in an individual situation, i.e., tacit knowledge,
and conventionally can only be constructed manually, which
has the limitation that they cannot be scaled.

However, we believe large-scale language models that have
recently emerged may contain tacit knowledge. If this can
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Figure 1. Comparison of related works.

be automatically extracted, affordances can be easily used.
Our research aims to incorporate affordances into multi-agent
planning and use affordances to obtain a sequence of actions
to achieve a goal efficiently.

Naturally, robots cannot receive affordances from the envi-
ronment, so common sense and tacit knowledge have needed
to be manually set for each task given to the robot. Therefore,
the greater the generality of planning, the greater the amount
of tacit knowledge to be set, and the more difficult it becomes
to set by hand.

To address this issue, we focus on large-scale language
models such as Generative Pre-trained Transformer 3 (GPT-
3) [6] that have recently emerged. Since this model was
constructed by learning a huge amount of linguistic informa-
tion, it can be said to contain tacit knowledge and common
sense. In this study, we propose a method for automatically
extracting affordances from this large-scale language model
in accordance with the situation and using them for planning.
The proposed method enables the robot to understand the dy-
namically changing environment by understanding its situation
and to plan adaptively to achieve its goals while avoiding
unnecessary searches for sequences of actions.

In Section 2, we compare related works in planning, and
in Section 3, we introduce our proposed method. Section 4
describes the evaluation conducted to confirm the significance
of the proposed method, and Section 5 describes the results
and the discussion. Finally, Section 6 presents the conclusion
and future work.

II. RELATED WORK

In this section, we present related work in planning. Figure 1
plots each method based on the characteristics. The horizontal
axis in the figure represents immediacy and deliberateness, and
the vertical axis represents the ability to adapt to a dynamic
environment. The plotted symbols are marked ⃝ for methods
that take a long time but output an optimal action sequence
and △ for methods that output a suboptimal action sequence
within a limited time (i.e., with ”anytime” property).

The most typical method of classical planning is STRIPS
[1]. STRIPS outputs a sequence of actions to transform an

initial state into a goal state. Although STRIPS can output
an optimal action sequence, it is problematic because it
requires a significant amount of time for search. Research to
improve the efficiency of the search is still ongoing. Shen
et al. [7] introduced the concept of hypergraphs to output
a suboptimal action sequence in a limited amount of time.
Domshlak et al. [8] detected state symmetries within A* cost-
optimal planning, allowing them to prune a larger portion of
the search space. However, these methods are difficult to adapt
to dynamic environments because they require planning to be
redone from scratch when the environment changes, which is
computationally very expensive.

In recent years, machine learning has been actively used
to find optimal action sequences. Many methods have been
proposed in deep reinforcement learning based on DQN [14],
such as Rainbow [9], APE-X [10], R2D2 [11], and NGU [12].
In particular, Badia et al. [13] have outperformed standard
human performance on all Atari games. The advantages of
such machine learning-based methods are that they can au-
tomatically extract features from large amounts of observed
data and achieve high accuracy in the environment and task
for which they were trained. However, because learning is
based on observed data, they are not good at dealing with
dynamic environments, such as changing the priority of tasks
in accordance with changes in the environment when there are
multiple objectives. Therefore, learning priorities by consider-
ing the immediacy and deliberateness of multiple objectives
in every situation is not practical because the learning load is
too high.

A further method is to construct the planner as a multi-
agent type. In a Multi-Agent Planner (MAP), each agent
is responsible for an individual operant in STRIPS [1] and
generates a sequence of operants that transition from the
initial state to the target state through agent coordination. SA
[2] can connect lower-level reflective functional modules and
higher-level deliberative functional modules hierarchically to
use immediacy and deliberateness as appropriate. However,
SA exclusively selects between immediate and deliberative
planning, and the two cannot cooperate or be more adaptive
to the environment. Maes [3] [4] proposed an activation-
propagating Agent Network Architecture (ANA). In ANA,
an agent will attempt to act if the state of the environment
matches the conditions under which it will act. Each goal
of the robot tries to activate an agent to achieve it, and the
agent in turn tries to activate another agent to activate itself
further. Therefore, ANA can use immediacy and deliberateness
more flexibly than SA by allowing agents to interact in
activation propagation. However, ANA has the disadvantage
of requiring manually designed agents, making it difficult to
scale. MAP continues to be studied today, with research using
ANA to make conversational decisions with users [15] and
research combining state-based and action-based frameworks
to control dynamic behavior [16]. There are also studies using
multi-agents for natural disaster modeling [17] and inventory
modeling [18] to increase prediction accuracy while reducing
reliance on the experience of experts. Thus, although MAP is
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Figure 2. The network of ANA [3].

inferior to other methods in terms of optimality, it is superior
at responding to dynamic environments.

III. PROPOSED METHOD

We consider that using affordances can solve the disad-
vantage of the MAP. Humans similarly use affordances to
reduce the search space, reducing the brain’s load. This is
the inspiration for the proposed method. In this study, we
propose extending the MAP method that utilizes affordance
information. We also propose a method for extracting affor-
dance information from large-scale language models.

A. Agent Network Architecture (ANA)

In this paper, ANA [3] [4] is used as the baseline for MAP
because ANA can use immediacy and deliberateness flexibly.
This section describes the architecture of the ANA and the
algorithm for action selection.

ANA has agents equivalent to STRIPS [1] operants and
consists of a network connecting them. Each agent has a
condition list, add list, and delete list. The condition list
contains states necessary for execution, the add list contains
states to be added to the current environment after execution,
and the delete list contains states to be deleted from the current
environment.

Figure 2 shows the ANA network, consisting of a network
of agents connected to each other by three links: predecessor,
successor, and conflictor. A predecessor link is a link between
two agents when an agent satisfies the preconditions of an
agent (has a condition list state in the add-list). A successor
link is a link between two agents when there is an agent
that can be executed after the execution of an agent (has an
add list state in the condition list). A conflictor link is a link
between two agents when an agent becomes non-executable
(has a condition list state in the delete list) after an agent is
executed.

Through these links, activation propagation from the en-
vironment, goal, and protected goal (external spreading) and
activation propagation between agents (internal spreading) are
performed. The amount of stimulus accumulated by activa-
tion propagation is called the activation level. Each agent

has a threshold, the minimum activation level required for
activation. The agent is activated and executed when the
activation level exceeds the threshold. This sequence of events
is called selection. The agent that can be executed from the
current environment is selected and executed by repeating the
selection process. The following is a formula for the activation
level of agent y at time t.

α(y, t) = decay(α(y, t− 1)(1− active(y, t− 1))

+ input from state(y, t)

+ input from goals(y, t)

− taken away by protected goals(y, t)

+
∑
x,z

(spreads bw(x, y, t)

+ spreads fw(x, y, t)

− takes away(z, y, t)))

(1)

The decay() that runs throughout (1) is a function that
normalizes the activation level of all agents in the network.
α(y, t − 1)(1 − active(y, t − 1)) in the first line indicates
whether the activation level of agent y at time t − 1 is used
at time t. The agent active at time t − 1 is calculated with
active(y, t − 1) = 1, and the agent not active at time t is
calculated with active(y, t− 1) = 0.

The parameters used in the formulas after the second line
of (1) are shown below.

• ϕ, the amount of activation energy injected by the state
per true proposition

• γ, the amount of activation energy injected by the goals
per goal

• δ, the amount of activation energy taken away by the
protected goals per protected goal

• S(t), the set of states that are true at time t
• M(j), the set of agents with state j in condition list
• A(j), the set of agents with state j in add list
• U(j), the set of agents with state j in delete list
• cy , condition list of agent y
• ay , add list of agent y
• dy , delete list of agent y
The second line of (1) represents the amount of stimuli that

agent y receives from the environment, which is calculated by
the following equation. In (2), # represents the size of the set
or list.

input from state(y, t) =
∑
j

ϕ
1

#M(j)

1

#cy
(2)

The third line of (1) represents the amount of stimulus
that agent y receives from the goal and is calculated by the
following equation.

input from goals(y, t) =
∑
j

γ
1

#A(j)

1

#ay
(3)
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The fourth line of (1) represents the amount of stimuli that
agent y receives from the protected goal, which is calculated
by the following equation. Protected goal refers to a goal that
has already been achieved or should be protected.

taken away by protected goals(y, t)

=
∑
j

δ
1

#U(j)

1

#dy

(4)

The fifth line of (1) represents the amount of stimuli
sent from agent x to agent y via the predecessor link and
is calculated by the following equation. If agent x is not
executable at time t (the current environment does not satisfy
the condition list of agent x), the stimulus is sent to agent y.

spreads bw(x, y, t) =
∑
j

αx(t− 1)
1

#A(j)

1

#ay
(5)

The sixth line of (1) represents the amount of stimuli sent
from the successor link from agent x to agent y, which is
calculated by the following equation. If agent x is executable
at time t (the current environment satisfies the condition list
of agent x), then stimuli are sent to agent y.

spreads fw(x, y, t) =
∑
j

αx(t− 1)
ϕ

γ

1

#M(j)

1

#cy
(6)

The seventh line of (1) represents the amount of stimuli
sent from the conflictor link from agent z to agent y and is
calculated by the following equation. Stimuli are sent to agent
y when αx(t − 1) > αy(t − 1) ∨ (∃i /∈ S(t) ∩ cy ∩ dx) is
satisfied.

takes away(z, y, t)

= max(
∑
j

αx(t− 1)
δ

γ

1

#U(j)

1

#dy
, αy(t− 1))

where j ∈ cx ∩ dy ∩ S(t)

(7)

B. Use of Affordances

Agents are expressed as a combination of a verb and a noun,
as in “pick up cup”, but it is common to describe a noun as
a variable, as in “pick up X”. In the MAP we are building,
there are agents such as “wash X with Y (in right hand) in
Z” (where X is the object, Y is the way, and Z is the location
variable).

Since the noun “cup” affords verbs such as “drink”, “grab by
hand” and “wash” an agent such as “throw X” can be excluded
from activation candidates from the beginning. However, if it
does not use affordance, all verbs, including the object, must
be considered candidates for activation.

Thus, if an agent such as “X” is “cup” and “pick up cup (on
Z) with right hand” tries to activate it, it will have to consider
all possible candidates for activation of Z if it does not use
affordance. However, by using affordances, the agent can try

(a) Affordance Net-
work

(b) Variable Agent
Behavior Network

(c) Agent Behavior
Network

Figure 3. The architecture of the proposed method.

to activate only those Zs that are appropriate to the situation,
such as “table” or “rack”, thus avoiding unnecessary search.

As described above, an agent containing variables such
as X, Y, and Z is defined abstractly in advance, and actual
concrete objects are assigned to the variable parts by using
the affordance information described below. In this process, a
generic agent with variables dynamically generates an agent
representing each concrete action applicable to planning, and
then planning is executed.

Figure 3 shows the architecture of the proposed method.
Figure 3(a) shows Affordance Network, the network of objects
and agents afforded by those objects connected by edges.
Figure 3(b) shows Variable Agent Behavior Network, the MAP
network of agents and states with noun parts as variables.
Figure 3(c) shows Agent Behavior Network, MAP generated
by connecting (a) and (b).

C. Affordance Extraction Methods

The sentences output from a large-scale language model
such as GPT-3 express the knowledge contained in the large
number of sentences humans have spun. In other words,
outputting sentences related to a particular object is equivalent
to outputting knowledge. In this study, we analyzed the output
of the sentence by a large-scale language model grammatically.
We call this network the affordance network.

An affordance network is constructed from a large-scale
language model as follows.

1) Output sentences related to nouns using GPT-3.
2) Perform dependency parsing using CoreNLP [19] to

extract dependency relations between verbs and nouns.
3) Build an affordance network from the extracted depen-

dency relations.
In Step 1, GPT-3 outputs sentences using the following

template of imperative sentences (prompts). By assigning
the target nouns to {noun} in the prompt template, GPT-3
outputs a sentence containing knowledge about each noun.
For example, a prompt with “cake” assigned to {noun} would
produce a sentence like “He cut a cake with a knife.”� �

• Please come up with some story.
Keyword: {noun}

• Talk about your memories.
Keyword: {noun}

• Please write a diary with yourself as the subject.
Keyword: {noun}� �
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Figure 4. Affordance Network Structure.

In Step 2, the output of the sentence in Step 1 is subjected
to dependency parsing using CoreNLP. By performing the
dependency parsing, it is possible to identify the relationship
between the verb and its object noun and the relationship
between the verb and its way noun. For example, “cake” and
“knife” are identified as the object and way of the verb “cut,”
respectively.

In Step 3, the network is constructed on the basis of the
verb-noun affiliation relations identified in Step 2. Figure 4
shows the network.

IV. EVALUATION

This section evaluates the introduction of the concept of
affordance into MAP.

A. The Way to Use Affordance

Compared with SyntagNet [20], the proposed method better
handles affordances inherent in the combination of multiple
objects. For example, consider the output verb set VAB when
simultaneously observing object OA and object OB .

SyntagNet takes an object as input, outputs the verb set
recalled from that object alone and outputs the verb sets VA

and VB from OA and OB , respectively. On the other hand, the
combination of OA and OB cannot directly be used to output
a verb set, but only a union set VA ∪ VB or an intersection
set VA ∩ VB can be given as an approximation of VAB , for
example.

The proposed method better outputs the set of verbs recalled
when observing multiple objects simultaneously. The output
of GPT-3, which has acquired a vast amount of human
experience as knowledge, must include sentences that describe
the experience of performing actions on one object using
other objects as tools. In other words, GPT-3 also contains
knowledge about actions specific to combinations of objects.
Our proposed method is a networked output of GPT-3, which
can directly output a set of verbs VAB recalled for objects OA

and OB .
Assume that SyntagNet outputs “cut” and “eat” from “ap-

ple”, and “cut” and “stab” from “knife”. The affordances of
“apple” + “knife” would be defined as a union set (“cut”, “eat”,
“stab”) or an intersection set (“cut”). On the other hand, the
proposed method can derive cut directly from the combination
“apple” + “knife” rather than combining the affordances of
individual objects.

B. Evaluation of MAP Incorporating Affordances

In this section, we built an ANA with built-in affordances
and evaluated whether the proposed method can efficiently
obtain a sequence of actions to achieve the goal.

TABLE I. COMPARISON OF RESULTS.

With affordances Without affordances
agent 16 90
link 73 346
activation propagation 273 1315

For this reason, we conducted experiments on simulations
with and without the affordances extracted for ANA and
compared them in terms of (a) the number of agents, (b) the
number of links, and (c) the number of activation propagations
required to achieve the goal. In (a), the greater the number of
agents that do not contribute to activation for goal attainment,
the more sure we can be that useless agents are provided.
When useless agents are prepared, links are also prepared
to connect them. Thus, in (b), the greater the number of
links connecting the wasted agents, the more wasted activation
propagation may occur. In (c), we counted the number of
activation propagations until the goal set in the experiment
was achieved. The smaller this number is, the more sure we
can be that we can reduce the computational cost.

The experiment was conducted in a scenario that could
occur in daily life, and the goal was to keep the windows
clean. The scenario used two types of nouns (window, towel).
The parameters in (1) were set to ϕ = 20, γ = 70, δ = 50
described in the original paper [4].

V. DISCUSSION

a) The number of agents was 16 with affordances and
90 without affordances. In this experiment, only 6 agents
contributed to the activation to achieve the goal, and most
prepared agents were not used in the case of no affordances.
Therefore, the with-affordance case is more efficient without
unnecessarily activating many agents.

(b) The number of links was 73 with affordances and 346
without affordances. It can be seen that the number of links
increased as the number of wasted agents was prepared in (a).

(c) From Table I, the number of activation propagations
required to achieve the goal is clearly smaller in the case with
affordances, thus reducing the computational cost. This result
confirms that activation propagation is more compact and less
wasteful with affordance.

Figure 5 compares agent behavior networks consisting of
agents and links. The fact that the goal is achieved regardless
of affordances confirms that appropriate action sequences can
be obtained even with compact network configurations such
as those with affordances.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a method of automatically
extracting affordances from a large-scale language model in
accordance with the situation and using them in a MAP. The
experiments demonstrated the effectiveness of using affor-
dances, and we plan to address three points.

The first is to experiment in an unknown dynamic en-
vironment. This study conducted experiments in a known
environment on the simulation. To verify the effectiveness of
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(a) With affordances (b) Without affordances

Figure 5. Comparison of Agent Behavior Network.

the proposed MAP, its adaptability needs to be tested in a
real-world, dynamically changing environment. In the future,
we will test the MAP in a 3D simulation environment that
simulates the real world.

The second point is to verify the object’s affordance by
considering its attributes. The organisms are able to associate
the behavior of eating with red apples but not with brown
apples. Thus, even for objects labeled with the same name,
the fordable behavior should vary depending on attributes such
as color, size, weight, shape, and texture. By considering the
objects’ attributes, we believe we can generate agents that are
more appropriate to the situation.

The third point is to verify the results in several scenarios.
The experiments conducted in this study were conducted
under a single scenario. Experiments with several scenarios
are necessary to verify the efficiency of the proposed method.
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