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Abstract— In current production shop floors, a fleet of 

production machines and AGVs form a full manufacturing 

system with a high degree of automation. These current 

manufacturing systems need to deal with high variability of 

products and production tasks. Every task, however, requires a 

proper reconfiguration & control that is often done manually 

requiring complex settings and long configuration time. With AI 

techniques the reconfiguration of these systems to deal with a 

new task can be made more intuitive. In this paper we present 

the upgrade of an autonomous system, used for manufacturing 

assets handling and transportation, with AI features that make 

it easy to reconfigure in order to deal with high variability of 

assets and missions. Visual and spoken information is used to 

instruct and guide the autonomous vehicle using an AI 

multimodal framework where first, spoken language, with 

different local dialects, is translated to digital instructions, that 

can be associated to visual information to form control 

instructions to the autonomous vehicle. Different AI models, 

respectively for spoken language understanding, visual 

perception, vision based navigation are associated through a 

multimodal AI framework to intuitively control the AGV to 

perform a specific task. Beside the challenges related to the 

integration of these models in the AGV platform, other 

challenges related to dealing with variabilities of dialects, 

objects, surroundings and ambient conditions are partly tackled 

in this research. 

Keywords-AI based autonomous systems; Multimodal AI; 

Natural language processing (NLP); deep learning; neural 

networks; reinforcement learning 

I.  INTRODUCTION 

Autonomous Guided Vehicles (AGVs) are becoming 
more and more popular in industrial applications. They can 
pick up and deliver materials around a manufacturing facility 
or warehouse [1]. However, with the continuously increase 
of mass customization [2], a return on investment of 
production AGVs can only be obtained if these AGVs can 
easily perform large variability of tasks and / or deal with 
large variability of products.  

Tasks scheduling and allocations have been done by a 
central entity for a fleet of AGVs following predefined 
configurations. Driven by flexibility, robustness and 
scalability requirements, the current trends in AGV systems 
are customization and decentralization [3]. In a decentralized 
architecture, an AGV broadcasts the information about its 
states in a local way and decides which actions to take [4]. 

Although new generation of AGVs are highly instrumented 
with different guidance systems (optical, magnetic, laser, 
etc.), they are more optimized and suited for long-distance 
transportation of materials from / to multiple destinations, 
and / or tuned for repetitive and predictable tasks [5].  

(Re-)configurating AGVs to perform multiple tasks in a 
non-predictable environments remains, however, a challenge 
today in industrial floors due to dynamically changing 
environments. Literature in this research remains very limited 
and focuses more on path planning methods in unknown 
environments, yet using references (e.g. markers, identifiers, 
etc.) [26]. Research on voice controlled AGV remains in the 
level of performing basic operations (e.g. moving with 
constant speed) in a prescribed path [27].  

In this paper, we propose a Multimodal Artificial 
Intelligence (AI) framework that allows to intuitively and 
easily (re-)configure an AGV to perform different and 
variable tasks. In this framework, an operator can instruct the 
AGV by speech interaction that can be done locally or 
remotely. The operator can intuitively instruct the vehicle. 
This instruction is then decoded through different 
interpretation layers that make respectively use of (i) natural 
language processing, (ii) association with vision deep 
learning for objects recognition and localization and (iii) 
association with reinforcement learning for navigation.  

(i) Spoken interaction offers fast and natural interaction 
with machines and AGVs, while operators keep their hands 
and eyes free for other tasks. The task of a Spoken Language 
Understanding (SLU) component is to map speech onto an 
interpretation of the meaning of a command, while taking the 
variability in the input signal into account: differences in 
voice, dialect, language, acoustic environment (noise, 
reverberation), hesitation, filled pauses and pure linguistic 
variation. Traditionally, SLU is approached as a cascade of 
Automatic Speech Recognition (ASR) mapping speech into 
text followed by Natural Language Understanding (NLU) 
mapping text onto meaning. This cascaded approach tends to 
propagate and inflate ASR errors and requires application-
specific textual data, which is unnatural to acquire. Instead, 
this work uses End-to-End SLU (E2E SLU), where spoken 
instructions are directly mapped onto meaning without 
textual intermediate representations.  
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Figure 1. Autonomous platform around the autonomous off-highway vehicle 

 
(ii) For the agents to interact with the environment, they 

must process and understand visual input, i.e., extract the 
semantically relevant cues from the environment in order to 
execute the desired task. Should the input be provided from 
an RGB camera, a plethora of Deep Learning techniques 
could be leveraged to achieve visual understanding. Deep 
Learning techniques rely on Neural Networks, commonly 
(pre-)trained on large-scale general-purpose datasets, e.g., for 
visual recognition [6] such as object detection [7]. Since our 
goal is to interpret a language-based instruction we need to 
locate the object(s) referred to by the person in the 
environment. To this end, we build on a state-of-the-art object 
detection method. Given an RGB input, the object detector’s 
role is to locate (detect) the relevant objects, i.e., potential 
objects that the person instructing the AGV might refer to. 
This serves as a backbone to perform multimodal interaction 
— associating the representation of the language-based 
instruction with the representation of the spatial layout of the 
scene (2D location and categories of the detected objects). 

(iii) Egocentric navigation is one of the core problems 
intelligent systems need to master. An agent needs this skill 
not only to execute the task at hand, but also to navigate, in 
order to collect experience that can be used to learn from. 
Navigation is typically done by either using expensive 
specialized lidar and radar sensors, or by relying on visual 
inputs. In this paper we examine the performance of utilizing 
an RGB camera, a depth camera or a combination of both for 
navigation. In the presented approach we have chosen for an 
end-to-end learning-based navigation approach. Such an 
approach is able to outperform Simultaneous Localization 
and Mapping (SLAM) based approaches [8], it doesn't suffer 
from propagation errors due to mapping errors and excels in 
visually sparse environments [9]. As we need to train our 
navigation system in simulation due to the large amount of 
required interactions with the environment, we also propose 
a digital-twin based solution to utilize a navigation model 
trained in simulation in the real world. Through our 
multimodal speech and vision system, combined with learned 
navigation, we demonstrate an intuitively instructible 
autonomous system, which can act as a platform for various 
tasks. 

II. CASE STUDY – AUTONOMOUS OFF-HIGHWAY VEHICLE 

The architecture of the autonomous vehicle, its HW / SW 

components and upgrades with the Multimodal AI 

framework are described in this section. 

A. Autonomous vehicle architecture 

The AGV used in this paper consists of the off-highway 
tractor developed at Flanders Make [10]. The architecture of 
the AGV consists of a perception, control, and actuation 
frameworks (Figure 1). To perceive the environment we use 
cameras, lidars, a GNSS system and a microphone. The 
sensors data is then processed in separate computing 
platforms and stored on middleware (ROS), from where the 
Speech and Vision units send the information to the control 
block. This later is divided in two levels, (i) a High-level 
controller that controls the tractor via a state machine and (ii) 
a Low-level controller, built in a dSpace platform [11], that 
controls the trajectory such that velocity and heading can be 
followed. The output signals are sent to different actuators 
that consist of the brakes, throttle, steering and fork 
implement that are controlled via servo motors. Autonomous 
vehicle upgrades to deal with Multimodal AI 

An example of intuitive instructions given by an operator 
to the AGV to execute a task and their high level 
interpretations by the Multimodal AI framework, described 
in this paper, is illustrated in Figure 2. 

The instruction: ‘Pick up the red pallet and put it on the 
truck’, needs first to be communicated to the computer that 
runs the speech AI module (described in Section III). In the 
next level, a vision module, where real time 2d vision data is 
processed and fed to a pretrained NN, allows objects 
classification and their association to different attributes such 
as object’s type, color, etc. (as described in Section IV). The 
AGV should then move towards the recognized object. This 
step is supported by the association made so far between 
speech and vision data as well as the navigation data. This 
later makes use of the cartesian coordinates of the AGV in 
the navigation space and the reinforcement learning module 
(as described in Section V) that allows to estimate the optimal 
trajectory between the AGV and the object of interest. 

In order to implement and demonstrate the Multimodal 
AI framework, The AGV is updated by a newly installed 
system for interfacing through speech with a dedicated PC. 
This PC is also used for developing and testing the neural 
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networks. It is equipped with a powerful Nvidia GPU and a 
new headset microphone for giving audio commands. The 
autonomous tractor internally uses ROS to communicate 
between the different sub-systems. Originally it was only 
used sparingly in the autonomous tractor, mainly to 
communicate lidar sensor data. After the system upgrade, 
also the control unit, the dedicated PC and the Nvidia Drive 
platform have a ROS interface. While the Nvidia Drive could 
technically runs the neural networks, for more convenience, 
during testing we installed the neural networks on the 
dedicated PC. Data from the cameras on the Nvidia Drive, 
LiDAR and navigation all come in as ROS messages while 
for speech a simple microphone is connected to the PC. The 
output of the multi-modal setup is the location of a specific 
object together with the task the tractor must complete. This 
information can be communicated through ROS to the 
navigation module. 

 
Figure 2. Example of speech-based instruction and multimodal mapping 

III. SPOKEN LANGUAGE UNDERSTANDING 

This section summarizes the speech data generation, 

speech model training and testing as well as the architecture 

and the validation of the spoken language understanding. 

A. Speech data generation  

To train the SLU model, training dataset with audio 
fragments is made. It is important that the recorded speech 
seems natural, as if the participants are really interacting with 
the AGV. To this end, we believe that a visual feedback to 
the participant would be very useful. Therefore, a simple 
automotive simulator called Webots [12] was used and a set 
of API calls were written in order to control the simulated 
tractor in the simulated environment (Figure 3).  

 
Figure 3. Simulator that provides visual feedbacks to participants for 

speech recording 

The participants are given some high-level objectives 
and it is up to them to control the tractor with speech 

commands in order to fulfil these tasks. With the ‘high-level’ 
objectives (in contrast with explicitly providing the primitive 
commands to the participants) we aim to improve the 
variability of commands that participant's would naturally 
choose to control the tractor. Every time the participants 
speak a relevant command, the experiment supervisor presses 
a button to invoke the correct API call. This way, we already 
have some automatically generated annotations linking the 
participant's speech command to the supervisor's API call 
invocation. We recorded the audio in Audacity in WAV 
format using a headset microphone and a separate standalone 
microphone. The commands were mainly basic control 
commands like turning a direction or driving speed. A total 
of 14 people who speak Dutch language (different dialects) 
were recorded with mixed female and male voices. 

B. SLU model architecture & training  

Classical semantic frames are used for representing the 
semantics of an utterance. A semantic frame is composed of 
slots (e.g. “direction”) that take one of multiple slot values 
(e.g. “forward” or “backward”). This encoding represents the 
affordances of the AGV and corresponds to API calls with 
parameters filled in. The task of the SLU component is to 
map an utterance (spoken command) to a completed semantic 
frame. The SLU architecture follows the encoder-decoder 
structure first described in [13] and later refined in [14] to 
allow for encoder pretraining for ASR targets on generic 
Dutch data. The decoder is trained on the task-specific data. 
The encoder encodes an utterance in a single high-
dimensional embedding in two steps. The first step maps 
MEL-filterbank speech representations to letter probabilities 
using a transformer network [15] preceded by a down 
sampling CNN, trained maximal cross-entropy between 
predicted and ground truth transcriptions in a 37-letter 
vocabulary. The training data consist of 200 hours of Flemish 
speech with its textual transcription from the CGN corpus 
[16], fourfold augmented with noise (0-15 dB) and 
reverberation (sampled from [28]) to achieve acoustic 
robustness. The second step counts bigram occurrence 
frequencies of all letter pairs across the utterance and repeats 
the same while skipping one position in the bigram, resulting 
in a 2(372) =  2738 dimensional utterance embedding.  

The decoder maps the utterance embedding onto a multi-
hot encoding of the slot values via non-negative matrix 
factorization (NMF) [17] as described in [13]. Other than in 
the pretraining stage, the training pairs here do not require 
textual transcription, but are pairs of speech with the 
completed semantic frame. Here, a neural network could be 
taken as well, but the chosen decoder has several advantages: 
(1) it requires few training data, (2) it retrains in a fraction of 
a second when user interaction data becomes available and 
(3) it establishes a bag-of-words model making the SLU 
system less sensitive to the rather free word order in Dutch 
(at least compared to English). Learning a stricter word order 
would require more task-specific training data exhibiting the 
word order variability. 

The approach is evaluated on the Grabo corpus [18], 
which contains a total of 6000 commands to a robot spoken 
by ten Flemish speakers and one English speaker. The 
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commands were recorded with the participants’ own 
hardware in a quiet room at their homes. The semantics are 
described in eight different semantic frames describing 
driving, turning, grabbing, pointing, …  using one (e.g. “close 
gripper”) to three (e.g. “quickly drive forward a little bit”) of 
ten slots (e.g. angle, direction, …), which can take between 
two and four different values. In total, 33 different meanings 
occur in the data. The accuracy is evaluated as the F1-score 
for slot values as a function of the number of task-specific 
training examples. The trained decoder is speaker-specific. 
The average accuracy over speakers is plotted in Figure 4 and 
shows that with the minimal of 33 training utterances, i.e. one 
example per meaning, an accuracy of over 98.5% is reached. 
The performance saturates around 180 task-specific 
utterances. 

 
Figure 4. F1-score as a function of the number of task-specific training 

examples. 

C. SLU model validation  

For deployment we set up a docker container to run all 

the code. We developed a user interface to be able to easily 

visualize the results of the SLU model and provide training 

examples for training the decoder. In this interface, it is 

possible to record samples, open the microphone so the 

tractor can listen, give feedback to the model and retrain the 

model. After each command is given the confidence value of 

the prediction is estimated. Commands with sufficient 

confidence are forwarded to the tractor through ROS to the 

control PC. 

The initial accuracy of the model depends a lot on the 

person giving the commands and their accent. But we were 

able to achieve high levels of accuracy of more than 90 

percent in the noisy tractor environment using an active 

learning approach. In this approach, the operator can give 

feedback samples to retrain the model. In this experimental 

set-up, repeating an instruction in 5 instances proved to 

achieve high accuracy (90%). The retraining flow is quite 

time-efficient and takes less than a second to retrain. 

IV. VISUAL PERCEPTION AND ASSOCIATION WITH SPEECH 

The visual perception of the scene, including the scene 

data generation, the AI model architecture, it’s training and 

testing as well as its association with speech in the 

Multimodal AI framework are described in this section. 

A. Vision AI Objects detection and classification  

1) Vision data generation  

The dataset for training the vision model contains images 

with mostly objects that the AGV can pick up. This means 

mostly pallets and boxes of varied materials, shape and sizes 

containing materials like bobbins and wooden planks. This 

data was recorded on the Flanders Make local site, spread 

over two occasions: once on an early cloudy morning in 

spring and one just after noon in summer with sunny weather. 

Every image was recorded with a resolution of 960 x 608 

pixels. The entire dataset contained 1100 images, derived 

from 9 videos. These videos each recorded one configuration 

of objects from many angles.  

2) Vision NN architecture & training  
The main building block of the vision pipeline is the 

object detector. It gets an RGB image I as input, where I ∈
ℝ3∙𝐻∙𝑊and H and W are the image height and width 
respectively. The model we use is a state-of-the-art two-stage 
object detector, where in the first stage, a region proposal 
network generates regions of interest for the image, and in the 
second stage, bounding boxes and object classes are predicted 
for each proposal, which exhibits an objectness score above 
a certain threshold. The region proposal network generates 
region proposals by sliding a spatial window over  a feature 
map obtained from a Convolutional Neural Network (CNN), 
i.e., a backbone. Additionally, the object detector includes a 
Feature Pyramid Network [19], a fully-convolutional 
module, which generates feature maps at different levels, thus 
enabling the model to recognize objects at different scales. 
The object detector we use is a Faster R-CNN [20], with a 
ResNet101 backbone [21], pre-trained for general purpose 
object detection on COCO [7]. Even though less resource 
intensive Faster R-CNN backbones exist, such as MobileNets 
[29], given our computational budget, we find the Faster R-
CNN variant we use to yield the best tradeoff between 
detection performance and speed (near real-time). 

The model’s outputs are object bounding boxes and 
classes with a confidence score for each. The confidence 
score for the predicted class is obtained as the Softmax 
probability of the highest scoring class. 

We perform fine-tuning of the Faster R-CNN on images 
consisting of scenes from the environment, where the objects 
of interest are annotated with bounding boxes and classes. 
The images we use are video frames, extracted from 9 videos 
of the AGV navigating the environment while encountering 
the objects. Considering that the amount of data at our 
disposal is limited, we have to ensure that the model does not 
overfit on some, irrelevant properties of the data, e.g., the 
weather, the relation between objects’ position in the frame 
and their categories, etc. To decrease the influence of these 
components, and to attempt simulating a diverse evaluation 
environment to a certain extent, we determine the optimal 
hyperparameters by training the object detector in a leave-
one-out fashion. Namely, we train on a subset of 8 videos and 
perform evaluation on the remaining one. We iterate this 
process until we train a separate model on all unique subsets. 
The final model performance is averaged over each of the 
videos. We evaluate the model’s performance using the 
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standard COCO [7] mean average precision (mAP). The final 
model, i.e., the model used in the AGV, is trained on all 9 
videos using the hyperparameters determined during the 
leave-one-out training/evaluation process. 

We train the model for 5 epochs with a learning rate of 
1e-4. We perform random horizontal flip data augmentation, 
enabling us to synthetically increase the dataset size and 
make the detector invariant to such data transformations. We 
sample a subset of 128 region proposals to estimate the 
regression and classification loss of the region proposal 
network. 

We quantitatively evaluate each of the trained models on 
the videos, which were held-out during training (Table 1). The 
lowest score is highlighted in red, while the highest scoring 
one in green. Overall, taking the current state-of-the-art of 
COCO as a reference point (~60% mAP when writing this 
paper), we observe that the performance is relatively high 
across all different videos (57.3 mAP). We further observe 
that the performance on Video 2 (Vid. 2), is significantly 
lower compared to the average performance. To inspect the 
reason for the lower performance, we qualitatively inspect the 
samples from Video 2 as discussed below.

TABLE 1. QUANTITATIVE EVALUATION OF THE VISION AI TRAINED MODEL 

 Vid. 1 Vid. 2 Vid. 3 Vid. 4 Vid. 5 Vid. 6 Vid. 7 Vid. 8 Vid. 9 Avg. 

mAP 55.04 40.90 56.03 66.42 68.35 50.50 65.25 61.9 51.42 57.30 

 

   
Figure 5. (left) all objects are correctly classified, (right) some objects are not detected 

We qualitatively evaluate the object detector’s 
performance by visualizing the predictions on the held-out 
videos during training. In Figure 5 (left), we observe that the 
model correctly predicts all objects, which is in line with our 
expectations as the objects are fully visible and of a 
reasonable size. On the other hand, in Figure 5 (right) we 
observe several mis-detected objects of a frame from Video 
2. We conclude that even though the model performs well, it 
struggles to recognize objects, which are (1) far from the 
camera (small size), and (2) occluded in the environment – 
both of which are active areas of object detection research. 

B. Visual grounded SLU 

To deal with the data sparsity, and to be able to ground 
(localize) the speech model output in the image, we perform 
discretization of the spatial layout (the bounding boxes and 
classes obtained as output from the object detector). To be 
specific, we perform mapping of both modalities to a 
canonical space, where we later measure the similarity 
between the output of the speech model and each of the 
detected objects in the image. To that end, we encode each 
detected object as a collection of one-out-of-k encodings of 
its category (box, pallet, etc.), material (wooden, plastic, 
etc.), size (regular or small), and location in the image. Note 

that the object category, material and size are jointly 
predicted by the object detector as the object class. Namely,  
since the number of possible category + material + size 
combinations is limited to 6 in our use-case, we encode each 
combination as a separate class. Lastly, we want to emphasize 
that such approach does not scale well as the number of 
possible object categories, materials and sizes increases, 
however, we leave the decoupling as future work. 

Lastly, we quantize the location of the object, i.e., we 
represent the object’s location based on the object’s 
horizontal and the lower vertical position. We showcase the 
grid over the image including the spatial references according 
to the x and y axis in Figure 6. 

Finally, we represent each detected object as a vector of 
size 12, where we allocate 3, 2, 3, 3, 1 indices for the object’s 
class, material, x-location, y-location and size respectively. 
When measuring the similarity between the speech model 
output (a vector of size 12 as well) and each encoded object 
detection, we explore different weighting strategies for each 
object attributes which we discuss next. 

C. Adding Spatial relations  

We evaluate different strategies for measuring the 
similarity between each (discretized) object detection and the 
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speech model output. The output is a bounding box, which 
represents the grounding location of the instruction. We 
evaluate each grounding strategy on two variants of the 
dataset, namely (1) a descriptive variant, where the objects 
are commonly described based on their attributes, e.g., pick 
up the wooden box, and (2) a spatial variant, where the 
referred object is described based on its location in the frame, 
e.g., pick up the box furthest on the left. 

 
Figure 6. Grid over image with object’s spatial reference  

The grounding strategies we evaluate are: 
1. Random matching (RM): A naïve baseline, where we 

ground the speech given instruction to a randomly 
selected bounding box. We establish a lower bound on the 
grounding performance with this baseline. 

2. Basic matching (BM): We obtain the dot-product between 
the one-hot encodings of speech instruction and each 
object detection, representing the similarity. 

3. Weighted matching (WM): We (re-)scale the 
contributions of the individual elements in the dot-product 
with pre-defined weights. 

4. Confidence matching (CM): We represent the speech 
model with the confidence scores.    

5. Weighted confidence matching (WCM): We use 
confidence scores for the speech model output and 
additionally weight the individual contributions using the 
pre-determined weights. 

We perform evaluation using the standard grounding 
accuracy metric, where we score a hit if the predicted 
grounding bounding box has intersection over union 
(IoU)>0.5 with the ground truth box. For the random 
baseline, we perform inference 5 times and report the average 
performance. For the grounding strategies which weight the 
importance of each attribute (WM, WCM), we perform grid 
search over various weight combinations, and establish a 
weight of 0.1, 0.7, 0.2, and 0.05 for the spatial indicators, the 
object class, the object material and the object size 
respectively. We hypothesize that the success of this 
particular weight combination is a result of (1) the object 
class and material are essential to ground/locate the referred 
object, (2) the spatial indicators are somewhat imprecise, but 
still indicative of the location of the object, and (3) the object 
size mostly depends on the distance between the AGV 
camera and the object, which makes it noisy, and should be 
down weighted. We report the results in Table 2. 

TABLE 2. EVALUATION OF THE AI MODEL WITH SPATIAL RELATIONS  

 Dataset type 

Method Descriptive Spatial 

RM 25.91 17.14 

BM 65.91 59.52 

WM 70.45 57.94 

CM 76.14 62.70 

WCM 79.55 65.87 

 

We observe consistent gains when we weigh (WM) or use 
the speech model confidence scores (CM) in the grounding, 
compared to the baseline basic matching (BM) method. 
Additionally, a combination of the weight and confidence 
matching (WCM) yields superior results across the different 
data (descriptive, spatial) and significantly outperforms the 
other methods.  Lastly, even though the spatial data is more 
challenging than the descriptive data, the WCM module 
performs well, indicating that by re-weighting and adding 
confidence scores, we can ground spatial speech data 
reasonably well. 

V. REINFORCEMENT LEARNING BASED NAVIGATION & 

ASSOCIATION WITH SPEECH-VISION DATA  

In this section, the navigation part of the Multimodal AI 

and it’s association with the speech-vision data is described. 

The currently developed proof of concept consists of a 

simulation environment with the hardware in the loop.  
To make this simulator as close to real life as possible, a 

3-D scan of the test environment by using an aerial scanning 
using a drone with photogrammetry capabilities that allows 
us to map images to a high fidelity 3-D twin of the area. This 
twin was then imported to the simulator for the purpose of 
reinforcement learning. 
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1) RL architecture & training  

The presented Reinforcement Learning (RL) approach 

makes use of the DD-PPO (Decentralized Distributed 

Proximal Policy Optimization) architecture [22] (Figure 7). 

The Reinforcement Learning (RL) approach is able to 

map high dimensional inputs to discrete actions. The DD-

PPO model consists of a visual pipeline, for which in our case 

we use a ResNet18 [21]. 

 
Figure 7. DD-PPO architecture overview  

The resulting learned visual representation is 

concatenated together with a GNSS sensor. This output is 

then passed onto a recurring policy consisting of 2 Long 

short-term memory (LSTM) [23] layers. The final outputs of 

the model consists of a state value estimation, and an action 

distribution from which actions (move forward, turn left, turn 

right and stop) can be sampled. The stop-action should be 

executed by the agent when positioned less than 2 meters of 

the goal position. As inputs for the model we tested a single 

depth camera, a single RGB camera, or a combination of both 

RGB and depth. We use these sensors as they are cheap and 

widely available. The camera is positioned on the front of the 

AGV. 

 

Figure 8. Training performance. The blind agent can perform basic 
navigation by relying on the GNSS sensor, however to further improve to 

near perfect results an additional RGB of depth sensor is required to detect 

and avoid collisions. 

To train the agent we use the improvement in geodesic 

distance between the agent and the goal position as a dense 

reward signal. A slack penalty of -0.01 is subtracted on each 

step, and a termination bonus of 2.5 is awarded upon 

successfully utilizing the done action. We train the agent 

entirely in the Habitat simulator [8] where a photorealistic 

scan of the environment is used. This allows the agent to 

interact with the terrain in a safe way. While in this case we 

trained the agent to specifically work on a single 

environment, DD-PPO also allows generalization to unseen 

environments, given enough different training environments 

and training samples. Figure 8 shows the required number of 

interactions with the environment. These results indicate that 

in this setting the agent relies mostly on the GNSS sensor, as 

the blind agent performs reasonably (60% success rate after 

5M training interactions). However, by adding either a depth 

or RGB sensor the agent achieves near perfect navigation 

capabilities on the training set after 5M interactions with the 

simulated environment. 

2) RL validation   
Realizing Reinforcement learning on a large autonomous 

platform brings in multiple challenges to the board. For safety 
concerns, the approach to validate the system was to use a 
Hardware-in-loop setup along with the digital twin of the 
environment. The main input from the real world was the 
signal from the GNSS receiver (Septentrio AsteRx-U) on the 
AGV, which was then mapped to the digital twin coordinates 
system. The GNSS had a dual antenna setup which could then 
provide the heading of the platform as well. Using a cloud-
based service updates were provided in real time to the 
simulator/digital twin environment to position the simulated 
tractor same as the one in real world. The output from the 
simulator was the suggested trajectory to the goal pose. 

 
Figure 9. Hardware In Loop setup (overview). 

To evaluate the navigation capabilities of the agent, we 
created a holdout dataset. This holdout dataset contains goal 
positions the agent did not see during training. Table 3 
contains the results of 100 tested episodes. In Table 3, the 
success rate indicates the amount of episodes the agent could 
complete successfully. The Success weighted by Path Length 
(SPL) measurement also considers the length of the path 
taken. 

TABLE 3. SUMMARY OF TESTED EPISODES 

Sensors Success 
Rate 

SPL Avg. Collisions 

RGB 100% 0.9454 0.4355 

Depth 100% 0.8882 0.1129 
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RGBD 100% 0.9272 0.5161 

Blind 91.94% 0.7294 4.3548 

 

VI.  AGV MULTIMODAL AI DEMONSTRATION 

To demonstrate the full methodology, we combined the 

methods respectively described in Sections III, IV and V in 

one demonstrator implemented in the AGV. We added all the 

information in a new docker environment to be able to run on 

the dedicated PC in the AGV. There is a similar user interface 

compared to the Speech (NLP) model (Section III) where you 

can record your voice and use the NLP model to predict the 

voice commands. These commands consist of the description 

of the object and the task the AGV should do. Then the fusion 

model uses this information to link an object description with 

a detection from the Vision model to predict the location of 

the describer object on the image. As a last step the lidar data 

is used to link the 2D location on the image to a 3D location 

of the object in the world coordinate space. This location can 

then be sent further as a goal to the control systems together 

with the described task from the NLP model. A significant 

improvement could be made in the parameters of the fusion 

model. There was a bias against using spatial information in 

the voice command. The material of the object is more 

difficult to extract on the image than its location, so using the 

location for finding the correct object is more reliable. Hence, 

we tuned some of the weights to have a bigger focus on this 

kind of information. Another small improvement could be 

made to the audio side. The person dedicated to controlling 

the AGV added some voice samples and gave feedback to the 

model through the user interface. This way the model was 

more confident in recognizing their accent and way of 

talking. With regards Navigation, although the approach is 

not fully implemented in the rea system, the approach can 

already be demonstrated by Hardware-In-the-Loop. In this 

setting an instance of the simulator is constantly 

synchronized with the AGV. This is done by using the GNSS 

position from the real-world AGV to set the position of the 

agent in the simulator. We can use the digital twin to generate 

trajectory paths. These generated trajectories can then be used 

in the real-world by the AGV. A snapshot from the full 

demonstrator is depicted in Figure 10. 

VII. CONCLUSION 

In this paper, we developed and demonstrated a 

Multimodal AI framework that allows to intuitively instruct 

production AGVs to perform multiple tasks. The interface 

with operators is allowed by speech interaction that is 

decoded through an AI NLP model to translate to 

interpretable instructions both by AGV controller and the 

other components of the AI Framework. Associations with 

Vision and Navigation data is done respectively through an 

AI detector ad classifier model that recognize different types 

of objects in a varying environment, as well as a 

Reinforcement Learning model that estimate the optimal 

trajectory between the AGV and the objects. The Multimodal 

AI framework proves to work in different varying conditions 

where the AGV (Autonomous tractor) is configured to 

perform different outdoor missions (handling different types 

of objects such as boxes, pallets, etc.) under different ambient 

conditions (sunny, rainy, day, night, etc.). The demonstrator 

remains however a research proof of concept (to demonstrate 

the approach) and requires different improvements before an 

effective industrial usage. This includes amongst others, 

training with larger datasets (speech, vision, navigation) and 

evaluation in extended number of scenarios. Our research 

will continue on demonstrating this Multimodal AI approach 

in other industrial applications where AGVs are typically 

used, such as in Logistics. 

 
Figure 10. Snapshot of the demonstrator of the AGV Multimodal AI framework: (top left), the Speech model interface, (bottom left), the Vision model 

interface, (right), the Navigation digital twin interface, (bottom middle), the estimated trajectory between the AGV and the object that is dynamically 

calculated by fusing all models together  
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