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Abstract—For the evaluation of drone operators, it is important
to assess their capability to produce high-quality video of a
certain object. However, traditional video quality assessment
methodologies are in general more geared towards video com-
pression and thus focus on the correct image representation,
and not on the real content of the produced data. In this
paper, we therefore propose a methodology to define a video
quality metric, specifically geared towards drone operations.
Using this quantitative measure as a baseline, we also propose
a methodology which proposes optimal drone trajectories for
obtaining a maximum amount of qualitative video data about
a given object or target in a minimum amount of time. The
proposed methodologies are validated within a virtual pilot
training environment.

Index Terms—video production; quality assessment; drones;
unmanned aircraft systems; situational awareness

I. INTRODUCTION

Drones are used nowadays for a plenitude of tasks, including
often missions where the drone operator is required to produce
a high-quality video of a certain object or target. These kind of
operations can range from wedding photography over search
and rescue [1] or bridge inspection [2] to military operations
[3]. Obviously, in order to fulfil such tasks in a proper way, the
drone operator requires a specific form of training and skills
development. Moreover, for mission-critical applications, it is
essential to assess on beforehand that the drone operator has
a sufficient level of skills with respect to this task. However,
to date the quantitative evaluation of this drone pilot training
expertise remains problematic, as it is not really possible to
quantify the quality of the piloting skills, notably related to
the capability of producing high-quality video data of a given
target.

Indeed, as we will develop in Section 2 on the state of
the art, there does not really exist a tool which allows to tell
whether a video produced by a certain drone operator contains
enough information about a certain target or not. Therefore, we
propose in this paper a methodology to quantitatively assess
the content of drone-based video data.

It should be noted that the methodology, which is explained
in detail in Section 3 of this paper, is not performed by an
analysis of the video signal, as this would render the approach
very difficult to port from one type of application or mission

scenario to another. Instead, the methodology is based on the
analysis of the position data, which drones typically receive
via their positioning sensors. As such, the methodology is task-
agnostic and can be applied to a wide range of applications.

We do focus in this research study mostly on military
operations, where aim is to gather a maximum amount of data
about a target in a minimum amount of time. A drawback of
this choice as an application is that the proposed approach
ignores cinematographic constraints (rule of thirds, etc.) as
they are commonly used for professional video photography,
which makes it less useful for these kinds of applications.

In the fourth section of this paper, we show how the
proposed evaluation metric can be used inside an optimization
scheme in order to automatically generate drone trajectories
that maximize the amount of high-quality video data obtained
from a certain target.

In the fifth section of this paper, we validate the proposed
methodologies in two use cases, highlighting the novel con-
tributions of this paper:

• A methodology for content-based video-quality analysis,
used for the assessment of the performance of drone
operators

• A methodology for the automatic generation of optimal
drone trajectories for maximizing the information gath-
ered of a certain subject

In relation to these validation experiments, it should be
noted that the quantitative drone-based video quality assess-
ment methodology presented in this paper is not an isolated
development. It is developed within the framework of the
ALPHONSE project by Belgian Defence [4], which has as a
goal to develop a virtual training environment for the training
of drone pilots of security services (e.g., police, firefighters,
civil protection, military) and to study the human factors
that influence the performance of these operatives. Within the
ALPHONSE training environment, drone operators perform
regular virtual training missions and the goal is to track their
performance related to high-quality video production with the
tools presented in this paper.
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Fig. 1: Taxonomy of video quality analysis methodologies.

II. RELATED WORK

Video quality analysis methodologies can be generically
classified into two different categories. On the one hand there
are the subjective video quality analysis methodologies [5],
which directly express the video quality as experienced by
humans. In order to do so, subjective video analysis method-
ologies require the video sequences to be shown to groups of
viewers. The subjective opinion of the audience is recorded
and averaged into a so-called Mean Opinion Score (MOS) to
evaluate the quality of the video sequence. While subjective
video analysis methods render excellent results, the problem is
that they are extremely labour-intensive and therefore difficult
to deploy in a practical context. As a result, more objective -
and therefore also more automated - have been developed.

Objective video quality analysis methods have been clas-
sified by the International Telecommunications Union (ITU),
according to the input data employed by the algorithms [6].

Media layer models directly use the video signal to define
a quality measure. These methods do not require a priori
information about the system under test and are therefore often
used for the comparison of different compression method-
ologies. Depending on the type of source data the processed
video is compared with, 3 types of submethods can be further
identified:

• Full-reference methods extract data from high-quality un-
degraded source signals. This is the type of methodology
(often a PSNR-derivative [7]), which is used for video
codec evaluation.

• Reduced-reference methods extract data from a side-
channel with signal parameter data.

• No-reference methods do not employ any source infor-
mation.

Parametric packet-layer models estimate the video quality
using only information from the signal packet header.

Parametric planning models use quality planning param-
eters for networks as an input in order to estimate a video
quality measure.

Bitstream layer models estimate the video quality by com-
bining encoded bitstream information with packet-layer infor-
mation.

Hybrid models use a combination of the previously dis-
cussed methodologies in order to estimate a measure for the
video quality.

All these traditional methodologies for video quality analy-
sis estimate the video quality based upon the assumption that
there exists a perfect input signal, wich is then degraded, due to
encoding, network transmission, decoding, display constraints,
etc. In our application, this is not really the case: the question
we are interested in is more whether a certain subject has been
perceived sufficiently within the video material. As such, it is
more a content-based analysis which is required.

Video content-based planning for drones has been shown
before by Hulens and Goedemé in [8]. Within this paper,
an autonomous drone is presented that automatically adjusts
its position in order to keep a subject (in this application
an interviewee) within view under certain cinematographic
constraints. In comparison with our research question, where
it is the aim to maximize the information gain about generic
subjects, this approach is very much geared towards one
application (the subjects are always human faces).

Building upon the ITU taxonomy for objective video quality
analysis methods (see Fig. 1), we therefore introduce a new
category of models which are based upon a processing of the
metadata layer. Indeed, drones typically have accurate GPS
sensors on-board, enabling to geo-localize all image and video
data produced by these systems. As we will develop in the
following section, we propose a methodology which uses this
meta-data to estimate a content-based video quality metric.

Obviously, the new metadata-layer ignores important as-
pects of the video quality analysis paradigm, as it does not
consider any errors that may be induced in the encoding -
transmission - decoding - display - pipeline. We acknowledge
this and advocate that it is - in a realistic deployment - prob-
ably the best idea to incorporate the proposed metadata layer
model together with another model in a hybrid architecture.
However, in this paper, we will focus fully on the elaboration
and validation of the metadata layer model by itself.

Drone trajectory optimization is a research field that has
received a lot of attention in recent years, as researchers have
started employing drones for a wide range of applications [9],
[10]. In its essence, this problems boils down to a constrained
optimisation problem, as there is an objective function (e.g.,
a number of targets that need to be reached) that is to be
minimized, while taking into consideration the constraints
imposed by the flight dynamics of the drone. This is the same
in this paper, where we employ in Section 4 the proposed
video quality metric as a basis for the optimization function.
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III. METHODOLOGY TOWARDS THE QUANTITATIVE
EVALUATION OF DRONE-BASED VIDEOS

The video quality analysis methodology presented here is
developed to be as task-agnostic as possible. However, this
makes it necessary to define some key basic assumptions made
by the algorithm.

• We assume that the drone camera is always looking
straight at the target. This assumption is made in order
not to over-complicate the algorithm with (dynamic)
viewpoint changes in function of the drone movement.
This is a realistic assumption, as in real operations, it is
very often the case that there is a separate camera gimbal
operator, whose task it is to point the camera at the target.
Obviously, this is a task that can be automated as well
using visual servoing methodologies [11]. In this paper,
we assume that such a method has been implemented.

• In order to ensure that the target object is perceived
equally from any different viewing angle, we assume
that the target has a perfect spherical shape. This will
be obviously an approximation, and for realistic objects
with a very different shape, it may lead to a different
evaluation. However, this is the most generic assumption
which can be made, and it can - if required - be further
refined if certain specific target shapes are better suited
for specific applications.

• As the zoom factor is a piece of information which is not
dynamically available to the algorithm, we assume here
a static zoom factor.

• The sole input parameters used by the video quality
assessment algorithm are the position of the drone at a
certain time instance xi = (xi, yi, zi) and the position of
the target xt = (xt, yt, zt), which is assumed to be static
during the entire video sequence.

The methodology proposed here towards quantitative video
quality analysis considers three sub-criteria, which determine
together the overall measure of video quality. These three
metrics are:

1) The number of pixels on target φp. It is well-known
that for machine vision image interpretation algorithms
(e.g., human detection [12], vessel detection [13]), the
number of pixels on target is a key parameter to predict
the success of the image interpretation algorithm. Also,
for human image interpretation, the so-called Johnson’s
criteria [14] state clearly that the ability of human
observers to perform visual tasks (detection, recognition,
identification) is a function of the image resolution on a
target.
The number of pixels on target is obviously correlated
to the zoom factor of the camera. However, as the zoom
factor is assumed to be constant, the number of pixels on
target is inversely proportional to the distance between
the target and the drone, such that:

φp =
λ

|xixt|
, (1)

where λ is a constant parameter ensuring that 0 6
φp 6 1. The parameter λ is dependent on the minimum
distance between the drone and the target, the resolution
of the camera and the focal length.

2) The data innovation φd. As expressed in the introduc-
tion, we want to assess the capability of drone operators
to obtain a maximum amount of information about a
given target in a minimum amount of time. What is
therefore very important is that the operators are able
to produce high-quality new video data of a target. The
data innovation metric is there to evaluate this innovation
quality.
This is performed by building up a viewpoint history
memory θj with j = 1...i−1, which contains a memory
of all normalized incident angles of previous viewpoints.
The current incident angle θi is then compared to this
memory. In practice this is done by taking the norm
of the difference between the current incident angle and
each of the previous incident angles. The data innovation
is then equal to the smallest of these norms, as this
represents the distance to the closest viewpoint on a unit
sphere:

φd =
i−1
min
j=1

(|θi − θj |) (2)

As the idea is to generate as much as possible new data,
the new viewpoint θi should be as far away as possible
from existing viewpoints, which is expressed by (2).

3) The trajectory smoothness φt. In order to achieve a high-
quality video, it is important that the trajectory of the
drone is smooth over time. Indeed, if the drone follows
an irregular motion pattern, then the resulting video
signal would be hard to interpret by human operators or
by machine vision algorithms. The metric φt therefore
evaluates the trajectory smoothness, by building up a
velocity profile ẋj with j = 1...i− 1, which contains a
memory of all velocities at previous time instances. The
current drone velocity ẋi is then compared to the n most
recent iterations in this velocity memory. This is done
by taking the norm of the difference between the current
velocity and each of the previous velocities. In order to
make more recent data count more in the evaluation,
this norm is weighted according to the recency of the
information. The weighted and normed sum of the n
most recent velocity differences is a measure for the
changes in the motion profile and is thus inversely
proportional to the trajectory smoothness, as expressed
by (3).

φt =
1

i−1∑
j=i−n

1
i−n |ẋj − ẋi|

(3)

All 3 video quality subcriteria have been constructed such
that they produce values between 0 and 1. According an equal
importance to each of these subcriteria, the overall proposed
measure for drone-based video quality can be written as:
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φ = |(φp, φd, φt)| (4)

Obviously, it is possible to attach weights to this global
metric in order to prioritize one or two of the subcriteria, in
function of the requirements of a given application. In this
paper, we study the generic case and do not apply any of such
weights.

IV. METHODOLOGY FOR GENERATING OPTIMAL DRONE
TRAJECTORIES FOR TARGET OBSERVATION

As advocated in Section 2, the drone trajectory optimization
problem is essentially a constrained optimization problem,
where the constraints are given by the flight dynamics of the
drone and where the optimization function expresses some
application-specific goal. Therefore, we need to define in the
first place the drone model and the application scenario.

As described in the introduction, one of the goals of this
project is to develop a methodology to automatically generate
drone trajectories such that a maximum amount of information
can be gathered about a subject in a minimum amount of time.
The application scenario is thus clearly a target observation
mission.

In this research work, we assume to be dealing with a
rotorcraft drone. This is a reasonable assumption, as rotorcraft
are in most cases also the types of unmanned aircraft that
would be used for short inspection or target observation tasks.
While the execution of complex dynamic flight behaviours
with rotorcraft drones requires a complex motion model and
control architecture [15], this motion model can be quite well
simplified for low-speed and quite static observation applica-
tions as is the case in the context of this paper. Therefore,
we adopt a very simple motion model [16] for the drone to
generate possible locations to move to.

Another assumption that we make is that we do not account
for weather effects such as wind. Obviously, such external in-
fluencing factors can be incorporated into the system later, but
here we wanted to validate in the first place the effectiveness
of the proposed trajectory generation approach.

A pseudo-code representation of the general framework of
the algorithm for generating drone trajectories is given in
Algorithm 1. We will now explain this methodology line by
line:

• Line 2: As stated above, the algorithm starts from a
simple drone motion model, which proposes a number
of possible discrete locations where the drone can move
to, taking into account the flight dynamics constraints.
In a first step, we perform a search over all possible
new locations in order to assess which one is the best
to move to. This means that a brute brute-force search
is followed for searching for the optimal position. This
is a quite simplistic approach, but we have opted for
this option as the number of possible locations is not so
enormous and it is therefore not required to incorporate
some advanced optimization scheme.

• Line 3: In a second step, the safety of the proposed new
drone location is assessed. This analysis considers in fact
two different aspects:

– The physical safety of the drone, which is in jeop-
ardy if the drone comes too close to the ground.
Therefore, a minimal distance from the ground will
be imposed and proposed locations too close to the
ground are disregarded.

– The safety of the (stealth) observation operation,
which is in jeopardy if the drone comes too close to
the target, which means that the target (in a military
context often an enemy) could hear / perceive the
drone and the stealthiness of the operation would
thus be violated. Therefore, a minimal distance be-
tween the drone and the target will be imposed and
proposed locations too close to the target will be
disregarded.

• Lines 4-6: The different sub-criteria are assessed, follow-
ing equations (1), (2) and (3).

• Line 7: The global objective video quality measure φ at
the newly proposed location is calculated, following the
equation (4).

• Line 8: The point with the highest video quality score φ
is recorded.

• Line 9-10: At this point, an optimal point for the drone
to move to has been selected (xb). The viewpoint history
memory θj and the velocity history memory ẋj are
updated to include this new point.

• Line 11: The drone is moved to the new point xb, in
order to prepare for the next iteration.

• Line 12: The point xb is appended to the drone trajectory
profile.

Algorithm 1: Trajectory generation algorithm.
Input: drone position xi = (xi, yi, zi)

target position xt = (xt, yt, zt)
Output: Drone trajectory Y

1 while not at end of the iteration do
2 xn ← CalculatePossibleNewPositions(xi)

forall proposed positions xn do
3 if EvaluateSafety(xn) then
4 φt ← CalculateP ixelsOnTarget(xn,xt)
5 φd ← CalculateInnovation(xn,xt,θj)
6 φt ← CalculateSmoothness(xn,xt, ẋj)
7 φ← |(φp, φd, φt)|
8 xb ← RecordBestPoint(xn, φ)

9 θj ← UpdateDataInnovation(θj ,xb)
10 ẋj ← UpdateTrajectorySmoothness(ẋj ,xb)
11 xi ← AdvanceDrone(xb)
12 Y ← RecordDronePosition(xb)
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V. RESULTS & DISCUSSION

For the validation of the proposed methodologies, we started
with the assessment of the performance of drone operators
in a simulation environment [4]. Multiple simulated operators
were asked to produce a high-quality video of a target within
the simulation environment and the resulting total φ scores
they obtained were recorded, as shown in Fig. 2. The figure
shows that the algorithm is capable of discriminating between
proficient users (e.g., number 3) and less proficient users.
However, it is certainly the case that more research is still
required in order to validate the relationship between the
subjective quality assessment and this objective metric.

Fig. 2: Video quality scores obtained by seven operators.

In a second phase of evaluation, we validated the proposed
automated drone trajectory generation, as presented in Section
3. For this validation process, we let the drone start from a
random location and evaluate the optimal trajectories estimated
by the algorithm.

An example of this analysis is shown in Fig. 3. In the
case of the experiment depicted in Fig. 3, the drone starts
from a location which is high above the target. The solution
proposed by the proposed automatic trajectory generation
methodology is shown in Fig. 3e, where the target position
is depicted by the large sphere on the bottom. As can be
noted, the proposed solution in this case consists of a spiraling
downwards movement, which ensures that the target is well-
perceived from all angles. Once the safety distance (from the
ground and from the target) is reached, the movement pattern
switches more towards an outwards extending rectangular
pattern. This movement pattern is both economic for the drone
and ensures that the target is perceived from ever more oblique
angles.

Figs. 3a-3c show the evolution of the subcriteria φp, φd
and φt during different steps of the drone trajectory. As can
be noted, the algorithm achieves attaining a relatively high
amount of pixels on target in the first half of the trajectory,
while the drone is spiraling downwards. In the second half,

the number of pixels on target decreases as the drone goes
further away to obtain more oblique views.

The data innovation φd, shown on Fig. 3b shows a mostly
decreasing evolution, which is due to the fact that it becomes
ever more difficult to find new information.

As can be seen on Fig. 3c, the trajectory smoothness is quite
constant during the majority of the trajectory, which means that
the algorithm achieves in choosing smooth trajectories. Only
near the end, there are peaks and valleys, which are related to
the rectangular pattern where 90° turns are interspersed with
straight lines.

Summing up the data innovation φd over time allows
to define a so-called scan completeness measure, shown in
Fig. 3d. This metric gives an idea of the amount of new data
which is gathered per step in the trajectory. In all experiments
we have conducted, this scan completeness metric shows an
asymptotic evolution, as shown in Fig. 3d. This is also to be
expected, as it becomes after some time harder and harder to
obtain new data. This metric can therefore be very useful for
drone operatives to evaluate in real-time whether it has sense
to continue the observation task or whether it is more sensible
to stop the mission.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a novel metric for assessing
the video quality for drone-based observation or inspection
tasks. This measure is based upon an analysis of the GNSS
positioning metadata embedded in the signal. The metric is
essentially based upon three criteria: the number of pixels on
target, the data innovation and the trajectory smoothness. The
metric was embedded in an automated trajectory generation
approach, which finds optimal trajectories for maximizing
the amount of information perceived from a given target.
The metric and the trajectory optimization methodology were
validated in the framework of a drone training and simulation
environment.

The validation showed that the proposed video quality
metric is capable of discriminating between different levels
of users. However, more research is certainly required in this
domain to assess the viability of the proposed metric. As the
metric is now incorporated in the drone training environment
[4], it is now the idea to start larger-scale user-testing to
address this issue.

An obvious shortcoming of the proposed metric, is that
it only takes into account (GNSS) positioning metadata. We
will therefore in a future iteration integrate this approach in
a hybrid video quality analysis model, in order to come to a
more comprehensive metric. Furthermore, we aim to address
some of the assumptions made in this work, making the
approach work also for non-spherical objects and while also
accounting for weather effects.

As discussed in Section 5, the proposed trajectory genera-
tion approach succeeds in finding optimal trajectories for target
observation and inspection. Moreover, having a real-time view
on the scan completeness allows to know when it is the best
time to end a mission. Both of these contributions of this paper
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Fig. 3: Drone trajectory generation validation.

can be important time-savers for drone operators, or they can
form the basis for automated target observation missions.
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