
Software Architectural Style for Autonomic Cloud Computing

Zakarya A. Alzamil

Software Engineering Department

King Saud University

Riyadh, Saudi Arabia

e-mail: zakarya@ksu.edu.sa

Abstract— Most of the autonomic cloud computing

architectures are either a domain specific architecture or focus

on certain properties of autonomic computing. In addition,

they do not concentrate on the core issues related to the design

and architectural concerns with respect to autonomic cloud

computing in which the cloud can manage itself. In this paper,

we propose a generic software architectural style for

autonomic cloud computing systems that is based on a

simplified layered approach. The proposed architectural style

consists of five layers in which the bottom layer consists of

cloud hardware/software resources, the second layer consists of

a virtual machine that provides flexibility to service providers

to utilize cloud resources, the third layer consists of an

autonomic manager that manages cloud services, the fourth

layer consists of a cloud service provider which provides

services to cloud clients, and finally, the fifth and top layer

represents the client layer that enables users to utilize the

provided cloud services. This architectural style is a flexible

and expandable software architecture solution for autonomic

cloud computing systems, in which the service providers in the

cloud can integrate their services within the architecture of the

cloud computing software system. Additionally, this

architecture enables the software architects to design and

model their cloud computing software system in a flexible way

that will maximize the reuse of existing cloud software

components within their software system.

Keywords- autonomic cloud computing; cloud computing

architecture; software architecture; software architectural style;

cloud computing architectural style.

I. INTRODUCTION

Cloud computing is a computing model that aims to
provide services over the Internet by providing shared
computing resources that are accessible by cloud service
providers, as well as cloud clients. Cloud computing is
defined by the National Institute of Standards and
Technology (NIST) as “a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or
service provider interaction” [1]. A given cloud computing
implementation can be viewed as a collection of
interconnected computers that are presented as unified
computing resources that provide services based on a certain
service level agreement. Cloud computing provides different
services. The most common cloud computing services are
three service models: Software as a Service (SaaS), Platform
as a Service (PaaS), and Infrastructure as a Service (IaaS). In

addition, cloud computing may be deployed based on four
deployment models: private cloud, community cloud, public
cloud, or hybrid cloud [1][2]. Cloud computing relies on
sharing of resources, as well as adaptation to existing
technologies and paradigms without the need to know such
technologies and paradigms. In addition, cloud computing
adopts concepts from Service-Oriented Architecture (SOA)
that can help users to breakdown the business problems into
services that can be integrated to provide a solution. Cloud
computing is widely used as a Web service that provides
services at minimal management. The advantage of cloud
computing is the flexibility of offering and delivering shared
resources. Typically, the cloud service is a subscription-
based service in a pay-as-you-go model. Cloud computing is
a complex, large scale distributed system whose
management is crucial in order to offer services in a reliable
and timely manner. This requires the automation and
integration of cloud service provision and management in an
autonomic computing manner.

The autonomic computing model is derived from the
human body autonomic nervous system [3] in which the
computing system is capable of managing itself and can
dynamically adjust to changes in policies without human
intervention. The main property of autonomic computing is
the self-management, which consists of self-configuration,
self-optimization, self-healing, and self-protection [15]. Self-
configuration is the system’s ability to dynamically
configure itself according to high-level policies, with the rest
of system adjusting itself automatically and seamlessly. Self-
optimization is the system’s ability to automatically optimize
its usage of resources and improve its performance and
efficiency. Self-healing is the system’s ability to
automatically detect, diagnose, and repair localized software
and hardware problems. Self-protection is the system’s
ability to automatically defend itself from malicious attacks
or cascading failures, as well as from end users who
accidentally make software changes, e.g., deleting an
important file [3].

Software architecture deals with the design and
implementation of the high-level structure of the software. It
is the result of assembling a certain number of architectural
elements in some well-chosen form to satisfy the major
functional and non-functional requirements of a system, such
as reliability, scalability, portability, and availability [4].
Software development based on common architectural
idioms has its focus shifted from lines-of-code to coarser-
grained architectural elements (software components and
connectors) and their overall interconnection structure [5]. In
order to understand the architectural style, one should

75Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

understand the concept of software architecture. There are
several definitions of software architecture. Perry and Wolf
[6] define software architecture in terms of building blocks
that are concerned with the selection of architectural
elements, their interactions, and the constraints on those
elements and their interactions necessary to provide a
framework in which to satisfy the requirements and serve as
a basis for the design. ISO/IEC/IEEE 42010 Standard [7]
defines software architecture as “fundamental concepts or
properties of a system in its environment embodied in its
elements, relationships, and in the principles of its design
and evolution”. Bass et al. [8] define software architecture as
the structure or structures of a system, which comprises
software elements, the externally visible properties of those
elements, and the relationships among them. These
definitions identify the software architecture at the macro
level as the software system’s blueprint. The architectural
style is determined by a set of element types, the topological
layout of the elements indicating their interrelationships, a
set of semantic constraints, and a set of interaction
mechanisms that determine how the elements coordinate
through the allowed topology [8]. Shaw and Clements [9]
define the architectural style as a set of design rules that
identify the kinds of components and connectors that may be
used to compose a system or subsystem, together with local
or global constraints on the way the composition is done. An
architectural style determines the vocabulary of components
and connectors that can be used in instances of that style,
together with a set of constraints on how they can be
combined. These can include topological constraints on
architectural descriptions (e.g., no cycles) or some
constraints on execution semantics [10].

In this paper, we propose an autonomic cloud computing
architectural style for software systems that is based on a
simplified layered approach. We have used the decision
support system’s architectural elements proposed in [11], as
will be described in Section III, to support the self-
management of autonomic cloud computing software
systems. The proposed architectural style consists of five
layers: cloud hardware/software resources layer, virtual
machine layer, autonomic manager layer, cloud service
providers layer, and client layer. This paper is organized as
follows. In Section II, we describe the related works, and in
Section III, we present our proposed approach. The
conclusions are presented in Section IV.

II. RELATED WORK

Several studies have proposed architectural approaches
for autonomic cloud computing. In [12], a software process
based development approach for designing and building an
autonomic cloud computing system is described. According
to this approach, a sequence of software steps is followed for
the complete design, such as control parameter identification,
system model, system input identification, model
identification, model update, system decision type,
prediction creation, coordinator creation, data measurement,
managed system control, and autonomic system control. A
cluster of application servers running on top of a cloud is
described as an application of autonomic management

architecture to show how the development approach can be
reconfigured for self-management and optimization for Web
services.

A mechanism to implement autonomic cloud computing
with the usage of information proxies is described in [13].
An information proxy provides useful information about a
resource such as its state, works that need resources, overall
resource utilization, etc. The proposed approach aims at
improving the collaboration among peers in a large-scale
network for the purpose of distributed resource scheduling.
Results from the study showed that information proxies may
improve the resource scheduling of large scale distributed
systems. The information proxies help in building
neighborhood nodes that contain information about the co-
located nodes that share similar characteristics.

Artificial intelligence techniques such as multi agent and
mobile computing are proposed in [14] for designing
autonomic cloud computing. In this proposed approach,
autonomous cloud agents are implemented with multi agent
system which is capable of monitoring and correcting
resource scheduling activities. The aim of this approach is to
provide a monitoring system that facilitates autonomic
clouds based on mobile agent computing. An agent enabled
cloud consists of a mobile agent platform distributed on
different virtual machines, and a software agent installed on
the front-end to act as a proxy between the interface and
agents.

An architectural blueprint for autonomic computing
system is presented in [15]. The presented architecture
constitutes layers that are connected using enterprise service
bus patterns in which the layers collaborate using Web
services. The basic building blocks of the layers include
managed resources which contain system components such
as hardware or software, knowledge sources such as
interfaces for accessing and controlling the managed
resources, autonomic managers that perform various self-
management tasks to embody different intelligent control
loops, and manual managers that provide a common system
management interface for the informational technology
professional using an integrated solutions console.

In [16], the authors explore the architectural features and
requirements of cloud computing. General guidelines are
presented to software architects and cloud developers for
creating future architectures. The architectural requirements
are classified according to the stakeholder of such software
system such as cloud providers, the enterprises that use the
cloud, and end-users.

A software defined cloud is proposed as an approach for
automating the process of optimal cloud configuration [17].
Such optimization is obtained by extending the virtualization
concept to all resources in a data center with emphasis on
mobile cloud applications, in which a better quality of
service can be obtained by easy reconfiguration and
adaptation of physical resources in a cloud infrastructure.

In [18], a conceptual architecture of autonomic
computing for cloud resources’ management and provision
that support SaaS applications is presented. The aim of such
proposed model is to maximize efficiency and minimize the
cost of services. In addition, the model aims at ensuring that

76Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

the resource provisioning system is able to allocate resources
only for requests from legitimate users.

An autonomic mobile cloud management framework is
proposed in [21] for efficient service/resource management
of mobile ad hoc cloud computing systems. The security and
privacy of the proposed framework is investigated. The
proposed framework uses mobile cloud application-enabling
fabric to create and manage cloud applications in which a
composition of autonomic cloud elements can be managed.
Autonomic cloud elements can virtualize the physical
resources, compose other elements, and communicate with
other cloud elements using some common interface.

In [22], an elastic architecture is presented for autonomic
cloud computing based on control loops and thresholds
based rules. The experiment shows that cloud computing and
autonomic computing may be leveraged together for
elasticity provisioning. The proposed architecture enables the
resources to be allocated and deallocated as needed, to adjust
to the workload.

An autonomic Service Level Agreement (SLA)
monitoring framework that is managed by trusted third party
is proposed in [23]. The proposed framework uses
calculation formulas to calculate the score of the cloud
service providers and is composed of an SLA establishment
module to support SLA generation and management, and a
service monitoring module to monitor quality of service. The
proposed framework is integrated into a real cloud based on
the Apache CloudStack platform.

In [24], autonomic computing paradigm features have
been used to Supervisory Control And Data Acquisition
(SCADA) system’s security by focusing on the self-
protecting SCADA system. The proposed framework aims at
leveraging autonomic computing elements to cope with
cyber security threats and challenges to SCADA industrial
applications. The hierarchical autonomic managers are
incorporated within the framework to extract and refine
inferences for decision making support.

Most of the aforementioned software architectures and
frameworks are either a domain specific architecture or focus
on certain properties of autonomic computing. We have
observed that most of the existing studies of autonomic cloud
computing did not concentrate on the core issues related to
the design and architectural concerns with respect to
autonomic cloud computing in which the cloud can manage
itself. As stated earlier, cloud computing relies on sharing of
resources, as well as adaption with existing technologies and
paradigms without the need to know such technologies and
paradigms which support independency of such cloud
components. Therefore, we adopt a layered approach for our
proposed architectural style to support independency among
cloud components that support self-management in which
each layer is independent from other layers. In addition, as
discussed in the next Section, we have used the decision
support system’s architectural elements [11] that support
autonomic manager to enhance the self-management of
cloud resources. In the next section, we present our proposed
architectural style for autonomic cloud computing software
system.

III. AUTONOMIC CLOUD COMPUTING ARCHITECTURAL

STYLE

The aim of the proposed software architecture is to
propose a generic architectural style that serves as a software
architecture foundation for autonomic cloud computing
systems that are not limited to certain domain. As stated
earlier, we have used the decision making subcomponents
i.e., knowledge base, data mining/Online Analytical
Processing (OLAP), and a judgmental heuristics of the
decision support system approach that was described in [11]
to propose an autonomic manager for cloud resources’ self-
management.

Cloud computing facilitates the accessibility to the shared
computing resources by the cloud service providers. As a
result, the software architectural style for such software
system should be flexible and reusable to facilitate the
interaction between the service providers and the computing
shared resources. Therefore, the proposed architecture is
based on a simplified layered approach, which supports
flexibility and reusability of its components. Within the
layered style, each layer is server to the layer above it and
client to the layer below it.

Autonomic computing requires self-managing
environments that, automatically, act and reflect the changes
to cloud elements based on the observed changes, which can
be achieved through employing an autonomic manager. The
autonomic manager monitors and gathers required
information from a system, analyzes collected information to
detect whether it is necessary to take some action, creates a
plan that describes the necessary changes, and executes the
plan to implement these actions [19]. Monitoring cloud
elements and/or services requires software or hardware
sensors to capture the properties of such element or its
related physical or virtual components within the
environment, and an effector to adjust to the produced
changes [20].

Data Center Servers
Shared Virtual

Servers

OS VM JVM ………………..

CORBA / DCOM/ ….

SaaS PaaS IaaS XaaS

Client

Cloud Resources
Layer (Hardware/

Software)

Virtual
Machine Layer

Cloud Service
Provider Layer

Client/Front
End Layer

Sensor

Autonomic
Manager Layer

Effector

Knowledge
Base

DataMining/
OLAP

Judgmental
Heuristic

Database

DB
connectivity

new state

st
at

e/
ch

an
gesymptom/state

RPC/msg

msg

G
ate

w
ay

G
atew

ay
G

atew
ay

A
P

I

R
P

C
/R

M
I

X
M

L

se
rvicin

g
to

o
ls

Figure 1. Autonomic cloud computing software architectural style

77Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

The proposed architectural style consists of five layers in
which the bottom layer is the cloud hardware/software
resources layer, the second layer is the virtual machine layer
that provides flexibility to service providers to utilize cloud
resources, the third layer is the autonomic manager layer
which manages cloud services, the fourth layer is the cloud
service provider layer that provides services to cloud clients
to utilize, and the top layer is the client layer that enables the
user to utilize the provided services. Figure 1 depicts the
proposed software architectural style for autonomic cloud
computing systems. In addition, the specification of the
proposed architectural style is presented in Table I. In the
following subsections, we briefly describe each layer of the
proposed software architectural style for autonomic cloud
computing starting from the bottom layer.

TABLE I. SPECIFICATION OF AUTONOMIC CLOUD COMPUTING

ARCHITECTURAL STYLE

Item Description

Element
types

Standalone subsystems or components

Connectors
Typically procedure call

Message passing

Topology

layout

Hierarchical

Multi-level client-server

Each layer exposes an interface (API) to be used by
above layers

Semantic
constraints

Connectors are protocols of layer interaction

Standardized layer interfaces to maintain layer

independence

Interaction

mechanisms

Each layer acts as a service provider to layers above and

service consumer of layer below

A. Cloud resources layer

The cloud resources layer is the bottom layer that
contains all hardware and software resources including the
shared resources. It consists of data centers, servers, and
other shared virtual resources. The cloud resources layer is
the infrastructure of cloud computing system and it may
include commercialized, as well as public domain and open
source resources. This layer is interconnected with the virtual
machine layer via a gateway, which can be defined as a
proxy to maximize the independency among the different
layers.

B. Virtual machine layer

The virtual machine layer contains the operating system
or virtual machine that facilitates the environment to link
cloud services to cloud resources. It operates as an interface
between the cloud service providers and cloud resources to
maximize the utilization of such resources by cloud services
and, at the same time, to minimize the incompatibility among
the Web services and the available cloud resources. This
layer is connected to the layer above via a gateway which
acts as a proxy between the two layers. It should be noticed
that this layer may be skipped in the case where a service and
the resource belong to the same platform and they have a

well-defined connector. In such case, there is no need for a
virtual machine to be in the middle.

C. Autonomic manager layer

This layer is the autonomic manager which is responsible
for providing the self-management of cloud services. The
autonomic manager is a configurable software and/or
hardware component that consists of sensor, effector, and a
decision making subcomponents i.e., knowledge base, data
mining/OLAP, and judgmental heuristics. The autonomic
manager monitors the managed resources and cloud services,
in which the sensor collects data about cloud elements to
monitor their states. When symptoms are discovered, the
element state is identified and passed to the knowledge base
to check whether an update of such state is available. The
knowledge base looks for a fact or rule that is applicable for
such element’s state, in which a prediction of such state
change is identified by the data mining or OLAP approach.
OLAP is a business intelligence technique that helps in
discovering some knowledge by extracting data from the
database and viewing it from different points-of-view. The
data mining explores data from the database and puts it into
the knowledge base of the expert system to make
knowledge-based reasoning for quantitative analysis to aid
decision making. In other words, the data mining aims to
discover new knowledge by extracting information from a
database, analyzing it from different perspectives, and
transforming it into an understandable structure of
knowledge for further use. In some cases, there is a need for
human intervention and/or interpretation to collect some
information from human experts to identify the element’s
state change. In such cases, the system may use judgmental
heuristics, which is a normative approach that aims to
support the human in combing many factors into an optimal
decision. Judgmental heuristics use a decision-analytic
approach that applies the principles of decision theory and/or
probability theory into the decision analysis. The normative
system is based on graphical probabilistic models, i.e.,
probability distribution over model variables in terms of
directed graph, also known as influence diagram. The
database at this layer can be a traditional database, relational
database, or multidimensional database. The database
structure, e.g., the blackboard, as well as the components
operating on it, are managed by a database management
system (DBMS). In addition, such sub-system is controlled
by the blackboard state. The autonomic manager identifies
the element’s new state, such as new configuration, new
usage for an element, better optimization or utilization,
fixing problem, or fixing security vulnerability. The new
state and a request of change are passed from the sensor to
the effector to execute such state change.

D. Cloud service provider layer

This layer consists of cloud services, such as Software as
a Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS). In addition, it may contain
any other cloud services which we describe as “X as a

78Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Service (XaaS)”. This layer provides the environment of
such cloud services offered by the cloud service providers.
This layer is connected to the layer above via different types
of connectors such as Remote Procedure Calls (RPC),
Remote Method Invocation (RMI), Application
Programming Interface (API), or Extensible Markup
Language (XML).

E. Client/Front end layer

This layer represents the cloud client or the front end
user, which is the consumer of cloud services. This layer
enables the client to request any available service using
servicing tools that may utilize different technologies. Each
service within this layer is defined using a specific
connector, in which the client may utilize the Web services
via the identified connector such as RPC, RMI, XML, API,
or any other servicing tool connector.

IV. CONCLUSION

In this paper, we have introduced a software architectural
style for autonomic cloud computing systems. The proposed
architecture style is based on a simplified layered approach,
and consists of five layers: a cloud hardware/software
resources layer, a virtual machine layer, an autonomic
manager layer, a cloud service provider layer, and a client
layer. Within the layered style, each layer is a server to the
layer above it, and a client to the layer below it.

The proposed software architectural style can
accommodate most cloud computing software systems for
different domains. In addition, this architectural style
minimizes the dependency among its components which can
enhance the reusability, integration with other software
systems, and expandability. Such feature will enable
software architects to design and model their cloud
computing software system in a flexible way that will
maximize the reuse of existing cloud software components
within their software system.

The proposed architectural style is an abstract framework
prototype for autonomic cloud computing software systems,
and in order to understand its advantages and/or limitations,
an experimental and investigation study is needed to judge
the applicability of such framework on real autonomic cloud
computing systems. We plan to conduct an experimental
study using some commercial cloud software systems and
perform a comparison study with the existing relevant
architectural styles to better understand the advantages of
such proposed software architecture.

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud computing”,

Special Publication 800-145, National Institute of Standards and
Technology, U.S. Department of Commerce, 2011.

[2] C.S. Yoo, “Cloud computing: architectural and policy implications”,

Review of Industrial Organization, Vol. 38, No. 4, June 2011, pp. 405-421.

[3] J. O. Kephart and D. M. Chess, “The vision of autonomic

computing”, IEEE Computer, 36(1) , Jan. 2003, pp. 41-50.

[4] P. Kruchten, “Architectural blueprints - the “4+1” view model of

software architecture”, IEEE Software 12 (6), November 1995, pp. 42-50.

[5] N. Medvidovic and R. Taylor, “A classification and comparison

framework for software architecture description languages”, IEEE
Transactions on Software Engineering, Vol. 26, No. 1, January 2000, pp.

70-93.

[6] D. Perry and A. Wolf, “Foundations for the study of software
architecture”, ACM SIGSOFT Software Engineering Notes, Vol. 17, No. 4,

October 1992, pp. 40-52.

[7] ISO/IEC/IEEE 42010:2011(E), “Systems and software engineering-

Architecture description”, IEEE/ISO/IEC, First edition, December 2011.

[8] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, SEI series in Software Engineering, 2nd Edition, Addison-

Wesley, 2003.

[9] M. Shaw and P. Clements, “A field guide to boxology: preliminary

classification of architectural styles for software systems”, IEEE

Proceedings of the 21st Annual International Computer Software and
Applications Conference, COMPSAC ‘97, 1997, pp. 6-13.

[10] D. Garlan and M. Shaw, “An introduction to software architecture”,

CMU Software Engineering Institute Technical Report, CMU-CS-94-166,
January 1994.

[11] Z. Alzamil, “Software architectural style for decision support
systems”, Proceedings of the 11th International FLINS Conference on

Decision Making and Soft Computing (FLINS2014), World Scientific

Proceedings Series on Computer Engineering and Information Sciences,
Vol. 9, August 2014, pp. 3-10.

[12] B. Solomon, D. Ionescu, M. Litoiu, and G. Iszlai, “Designing
autonomic management systems for cloud computing”, IEEE International

Joint Conference on Computational Cybernetics and Technical Informatics

(ICCC-CONTI) , 2010, pp. 631–636.

[13] D. C. Erdil, “Dependable autonomic cloud computing with

information proxies”,. IEEE International Symposium on Parallel and

Distributed Processing Workshops and Phd Forum (IPDPSW) , 2011, pp.
1518– 1524.

[14] A. Cuomo, M. Rak, S. Venticinque, and U. Villano, “Enhancing an

autonomic cloud architecture with mobile agents”, Euro-Par 2011, Parallel

Processing Workshops, 2012, pp. 94–103.

[15] IBM, “An architectural blueprint for autonomic computing”, white
paper, 3rd Edition, june 2005, http://www-

03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.

pdf, [retrieved: September, 2018].

[16] B. Rimal, A. Jukan, D. Katsaros, and Y. Goeleven, “Architectural

requirements for cloud computing systems: an enterprise cloud approach”,
Journal of Grid Computing, Vol. 9, 2011, pp. 3-26.

[17] R. Buyya, R.N. Calheiros, J. Son, A. Dastjerdi, and Y. Yoon,

“Software-defined cloud computing: architectural elements and open
challenges”, 3rd International Conference on Advances in Computing,

Communications and Informatics (ICACCI 2014), September 24-27, 2014.

[18] R. Buyya, R.N. Calheiros, and Li Xiaorong, "Autonomic cloud

computing: open challenges and architectural elements," Third

International Conference on Emerging Applications of Information
Technology (EAIT), Nov. 30-Dec. 1 2012, pp. 3-10.

[19] M. Maurer, I. Breskovic, V. C. Emeakaroha, and I. Brandic,

“Revealing the mape loop for the autonomic management of cloud

infrastructures”, IEEE Symposium on Computers and Communications

(ISCC) , 2011, pp. 147–152.

[20] M. Huebscher and J. McCann, “A survey of autonomic computing -

degrees, models and applications”, ACM Computing Surveys, Vol. 40, No.

3, Article No. 7, August 2008, pp. 7-28.

[21] D. M. Shila, W. Shen, Y. Cheng, X. Tian, and X. Shen “AMCloud:

Toward a secure autonomic mobile ad hoc cloud computing system”, IEEE
Wireless Communications, April 2017, pp. 74-81.

[22] E. F. Coutinho, P. A. Rego, D. G. Gomes, and J. Neuman de Souza

“An architecture for providing elasticity based on autonomic computing

79Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

http://users.ece.utexas.edu/~perry/work/papers/swa-sen.pdf
http://users.ece.utexas.edu/~perry/work/papers/swa-sen.pdf
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
https://dl.acm.org/author_page.cfm?id=81496674176&coll=DL&dl=ACM&trk=0

concepts”, Proceedings of the 31st Annual ACM Symposium on Applied

Computing, 2016, pp. 412-419.

[23] A. Maarouf, Y. Mifrah, A. Marzouk, and A. Haqiq “An autonomic

SLA monitoring framework managed by trusted third party in the cloud
computing”, International Journal of Cloud Applications and Computing,

Volume 8, Issue 2, April-June 2018, pp. 66-95.

[24] S. Nazir, S. Patel, and D. Patel “Autonomic computing architecture
for SCADA cyber security”, International Journal of Cognitive Informatics

and Natural Intelligence, Volume 11, Issue 4, October-December 2017, pp.

66-79.

80Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

