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Abstract—This paper addresses the problem of funnel output
tracking control for a class of unknown high-order nonlinear sys-
tems with state feedbacks, which requires to achieve output track-
ing with prescribed accuracy when both the system nonlinearities
and the powers of the system are unknown. Therefore, a robust
funnel control algorithm, i.e., a continuous, static, universal, state-
feedback controller is explicitly constructed, which ensures that
the state errors evolve within the predesigned performance space.
The advantages of the proposed funnel output tracking controller
when compared with the current approaches lie in the fact that no
a priori knowledge of system nonlinearities, including generally
required bounding functions, is needed. Furthermore, all the
powers in each high-order subsystem are not required to be
known as well. A simulation example is provided to demonstrate
the effectiveness of the proposed algorithm.

Keywords–nonlinear systems; output tracking; funnel control;
unstabilizable linearization.

I. INTRODUCTION

Owing to its practical significance and theoretical chal-
lenge, the control problem of high-order uncertain nonlinear
systems has attracted considerable research effort. Significant
progress in different directions, including adaptive regulation,
output tracking control with state feedbacks, and finite-time
stabilization [1]-[4], has been achieved by adding a power
integrator technique and a homogeneous domination method.
However, in all aforementioned developments, a priori knowl-
edge of the system nonlinearities and the powers in each
subsystem is needed.

Another important issue associated with the control design
of unknown high-order nonlinear systems is the prescribed
transient behaviour of the closed loop system. Recently, the
work [5] introduced the concept of funnel control, which
not only deals with unknown system nonlinearities, but also
achieves the output tracking with prescribed performance. In
particular, via the backstepping procedure, the funnel control
methodology has been employed for various classes of non-
linear systems, such as Brunovsky, strict-feedback and pure-
feedback systems. Working independently, an alternative ap-
proach, called Prescribed Performance Control, was proposed
to achieve the same control objective [6]. Unfortunately, both
schemes mentioned in [5]-[6] cannot be directly applied to
high-order nonlinear systems even if the powers are precisely
known, due to the singularity around the origin.

Motivated by the above discussions, this paper focuses on
the output tracking problem with prescribed performance via
state feedbacks for high-order nonlinear systems with unknown
powers and functions. By combining the funnel control tech-
nique with barrier Lyapunov functions, the difficulty involved

with the singularity problem can be avoided and a continuous,
static, universal, state-feedback controller is explicitly con-
structed, which ensures the predesigned performance. In the
proposed universal approach, the barrier Lyapunov functions
are employed to enforce the unknown system nonlinearities
to be bounded, making constructions of the adaptive laws or
function approximators not necessary. Furthermore, the precise
knowledge of all the powers in each subsystem is not needed
to be known a priori. Thus, compared with the current state-
of-the-art of the output tracking control, the proposed scheme
relaxes significantly the common assumptions in the related
works and represents a structurally simple and computationally
inexpensive strategy. Finally, simulation results illustrate the
effectiveness of the proposed theoretical findings.

The paper is organized as follows: In Section II, the prob-
lem addressed is stated. In Section III, the main result of this
paper is presented without rigorous stability analysis. Further,
in Section IV, a simulation example is provided to demonstrate
the effectiveness of the proposed scheme. Conclusions are
drawn in Section V.

II. PROBLEM FORMULATION

Notations: R denotes the set of real numbers. R≥0 denotes
the set of nonnegative real numbers. R>0 denotes the set
of positive real numbers. Rn denotes the real n-dimensional
space. W1,∞(R≥0, R>0) denotes the set of differential func-
tions ρ : R≥0 → R>0 with ρ and ρ̇ being essentially bounded
on R≥0.

Consider the following class of single-input-single-output
(SISO) nonlinear systems:

ẋi = di(t, x, u)x
pi

i+1 + ϕi(t, x, u), i = 1, ..., n− 1,

ẋn = dn(t, x, u)u
pn + ϕn(t, x, u),

y = x1, (1)

where x̄i = [x1, ..., xi]
T ∈ Ri, i = 1, ..., n; x = x̄n =

[x1, ..., xn]
T ∈ Rn are the system states with initial condition

x0 = [x0
1, ...., x

0
n]

T , u ∈ R is the control input, y ∈ R is
the output; pi, i = 1, ..., n are the powers of the system; The
system nonlinearities di, ϕi : R≥0×Rn×R → R, i = 1, ..., n
are locally Lipschitz in x and u, and piecewise continuous in
t.

For simplicity of presentation, denote xn+1 = u. The
following assumptions are made.

Assumption 1: The powers pi, i = 1, ..., n are positive odd
integers, which may be unknown.

72Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems



Assumption 2: There exist unknown continuous and strict-
ly positive functions ci : Ri → R and c̄i : Ri+1 → R,
i = 1, ..., n such that

0 < ci(x̄i) ≤ di(t, x, u) ≤ c̄i(x̄i+1), i = 1, ..., n. (2)

Assumption 3: There exist unknown continuous non-
negative functions ϕ̄ij : R

i → R, i = 1, ..., n, j = 0, ..., pi− 1
such that

|ϕi(t, x, u)| ≤
pi−1∑
j=0

|xi+1|j ϕ̄ij(x̄i), i = 1, ..., n. (3)

Assumption 4: The desired trajectory yr is bounded, con-
tinuous and available, and ẏr is bounded but its bound may
not be available.

Remark 1: Assumptions 1-3 are sufficient conditions for
global controllability of the system (1), which are extensively
used in the literature [3]-[4]. It should be stressed that the de-
veloped controller in the sequel does not require the analytical
expressions of system nonlinearities di(t, x, u), ϕi(t, x, u) and
their bounding functions ci(x̄i), c̄i(x̄i+1), ϕ̄il(x̄i), in contrast
to some results in [3]-[4].

The control objective is to design a state-feedback con-
troller

u = α(t, x, yr) (4)

such that

• all signals in the closed loop system are globally
bounded;

• the tracking error e = y − yr evolves within a
prescribed performance funnel

Fρ :=
{
(t, e) ∈ R≥0 ×R

∣∣∣|e| < ρ1

}
, (5)

which is determined by a performance function ρ1 ∈
W1,∞(R≥0, R>0) incorporating the desired perfor-
mance specifications.

III. FUNNEL CONTROLLER DESIGN

In this section, we will construct a funnel controller for
system (1) via barrier Lyapunov functions [7]. The design
procedures of the proposed funnel controller are given as
follows.

Step 1 : Preselect the first performance function ρ1 ∈
W1,∞(R≥0, R>0) that satisfies ρ1(0) > |x1(0) − yr(0)| and
guarantees the desired performance specifications regarding
the steady state error and the speed of convergence. Let
z1 := e = x1 − yr and ξ1 := z1

ρ1
, then, the first virtual law is

designed as

α1 =
−k1ξ1
1− ξ21

, (6)

where k1 is a positive constant.
Step i(i = 2, · · · , n) : Preselect the i-th performance

function ρi ∈ W1,∞(R≥0, R>0) that satisfies ρi(0) > |xi(0)−
αi−1(0)|. Define zi := xi − αi−1 and ξi :=

zi
ρi

, then, the i-th
virtual and actual control laws are designed as

αi =
−kiξi
1− ξ2i

, (7)

u = αn, (8)
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Figure 1. Output tracking performance.

where ki is a positive constant.
Remark 2: The features of the proposed scheme lie in

the fact that the exact knowledge of system nonlinearities,
including generally required bounding functions, is not needed
to be a priori, and all the powers in each high-order subsystem
are allowed to be any unknown positive odd rational numbers.
Moreover, compared with adaptive robust control approaches,
no adaptive techniques are utilized in the developed controller.

Remark 3: In the proposed control design, the prescribed
transient behaviour is imposed by appropriately selecting the
performance function ρ1, other controller parameters ρi, i =
2, ..., n, and ki, i = 1, ..., n, are chosen flexibly according to
the conditions ρi(0) > |xi(0)− αi−1(0)|, i = 2, ..., n.

IV. A SIMULATION EXAMPLE

To illustrate the correctness and effectiveness of the theoret-
ical findings, we consider the following second order nonlinear
system:

ẋ1 = (4− sin(x1))x
3
2 + sin(x1)x2 + x1e

x1 cos(x2),

ẋ2 = (3 + sin(t))u3 + cos(x1)e
x2 sin(x1),

y = x1, (9)

where the initial condition is [x1(0), x2(0)]
T = [−0.4, 0.5]T .

The control purpose is to force the output y to track the desired
trajectory yr = sin 1.5t with steady state error no more than
0.1 and minimum speed of convergence as obtained by the
exponential e−3t.

By selecting appropriately the design parameters and ap-
plying the proposed controller, the simulation result on the
output tracking performance is presented in Figure 1, in which
it can be observed that the prescribed performance of the
tracking error is achieved.

V. CONCLUSION

This paper has studied the funnel output tracking problem
for unknown high-order nonlinear systems. By combining
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the funnel control technique with barrier Lyapunov functions,
we have exploited a constructive approach for designing the
global universal controller, which achieves the predesigned
performance of the state errors. Contrary to the current state-
of-the-art of the output tracking control, the proposed funnel
control does not incorporate any prior knowledge of system
nonlinearities and the powers in each subsystem. Moreover,
instead of utilizing adaptive laws or function approximators,
the unknown system nonlinearities are guaranteed to be bound-
ed via the barrier Lyapunov functions. Simulations performed
on an illustrative example verify and clarify the theoretical
findings. As a future work, we will apply the proposed
method to an underactuated unstable two degree of freedom
mechanical system [1].
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