
ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 65

Organic Self-Adaptable Real-Time Applications

Lial Khaluf
Email: lial.khaluf@googlemail.com

Franz-Josef Rammig
University of Paderborn
Email: franz@upb.de

Paderborn, Germany

Abstract—Nowadays, computing systems tend to find inspiration
for their behavior in organic systems. Approaches have been
published to develop a system behavior with the potential to
react to environments. In the real-time domain, such approaches
are still very rare and limited. In this paper, we provide an
approach which is able to adapt at runtime and, at the same
time, preserve all real-time constraints. In accordance to “Organic
Programming”, we make use of the concept of cells. A cell is an
extension of a task allowing its adaptation. Cells exist by means of
classes, which consist of a limited set of cell variants. All variants
of a cell share the same fundamental functionality, however
under different computing time demands and different costs.
Our approach consists of an adaptation algorithm that behaves
as a real-time cell. Under the assumption that the ecosystem of
the real-time environment is given in the form of a set of real-
time cells, each one with multiple variants, it provides a selection
mechanism in the space of this ecosystem. The system goals aim to
reduce system costs under the constraint of meeting all real-time
requirements.

Keywords–Real-time cell; variant; organic programming; opti-
mization; self-adaptability.

I. INTRODUCTION

Turning any physical process into an online process is a
current trend in many kinds of businesses. This evolution is
reflected by transforming the current physical systems into
Cyber Physical Systems. In such systems, the correct function-
ality of the system is influenced by its reaction to internal and
external events. Such adaptation capabilities apply in general
to control processes as, for example, in the medical or energy
sectors, etc. In most cases, the nature of such processes belongs
to embedded systems where timing constraints have to be
achieved. Cyber Physical Systems add several advantages over
traditional systems, such as self-adaptability as reaction to
failures as well as unexpected conditions [1]. In this sense,
such a system is evaluated by its ability to adapt itself to
environmental changes in real-time. Many approaches have
been proposed to solve this challenge. However, most of the
existing approaches have several limitations related to the
ability of reacting to unexpected events, or reacting in an
undefined way. In order to overcome these deficiencies, we
introduce in this paper a solution that mimics the organic
behavior of objects in our real world. Real world objects have
the ability to change their structure or behavior when they react
to any environmental event, as cells do in an organism [2]. For
this reason, our solution does not limit itself to a predefined
set of events or reactions. It is assumed that the system has the
ability to grow at runtime. In other words, it is assumed that the
system is able to have new resources, new events and reactions
at runtime. Currently, we apply our algorithm on a single node

system, with the ability to import the needed information from
the outside which can be considered as a remote node. This
information consists of the different reactions that the system
may apply in response to specific events that may result from
an internal or external environmental change. The reactions
are developed by external sources, and added to the system
at runtime. The solution we provide applies for all kinds
of real-time systems. This is done by providing the system
with organic properties at the level of real-time tasks. Such
tasks, in our case, are transformed into cells, called real-time
cells. A real-time cell is an extension of a real-time task by
mechanisms empowering it to self-adaptation. Whenever an
adaptation takes place, both the adaptation and the resulting
adapted system have to respect real-time restrictions. For this
purpose, a selection process is part of the adaption mechanism.
Its search space is restricted to a current ecosystem given by a
limited number of cell classes, each one with a limited number
of variants. Under the constraint that all real-time restrictions
have to be satisfied, this selection process aims to minimize
the overall system costs. We assume a relatively low frequency
of adaptation requests. Such requests react to requested im-
provements or slight environmental changes. In this paper,
we mostly concentrate on the central essential question: how
adaptation requests can be handled under real-time constraints.
In Section 2, we present the related work. Section 3 describes
the problem we are facing and provides a solution for it. In
the last section, we conclude the achievements of the paper
and present possible future work.

II. RELATED WORK

In [2], a new model for organic programming is introduced.
It aims to overcome limitations of the traditional programming
models such as the Object Oriented Programming (OOP) [28],
Model Driven Architecture (MDA) [27] or Aspect Oriented
Programming (AOP) [26], where abstract classes or models
are difficult to change. The idea behind the approach in [2] is
to have a system that is able to grow and evolve continuously.
However, it was not made for real-time systems. In our
approach, we concentrate on having a system consisting of
cells with defined properties that enable self-adaptability in
real-time.

The approach in [3] and [4] defines different profiles
with different resource requirements for each task. It enables
choosing the best combination of profiles at runtime to adapt
the system to certain situations. However, these profiles are
developed offline, and new ones cannot be added to the system
at runtime, which decreases the system adaptation ability.
Our approach applies the concept of organic programming by
giving the ability to modify tasks online in a way that preserves



ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 66

all real-time constraints. Cells can be developed and added
online to the system.

In [5], we find a summarized description for the state of the
art in terms of modeling dimensions, research challenges, and
requirements of self-adaptive systems. A self-adapting system
has the following dimensions: (1) Goals: Evolution, Flexibility,
Duration, Multiplicity, Dependency, Change, Source, Type,
Frequency, Anticipation, (2) Mechanisms: Type, Autonomy,
Organization, Scope, Duration, Timeliness, Triggering, and
(3) Effects: Criticality, Predictability, Overhead, Resilience
[5]. In our approach, system goals may change according to
adaptation scenarios. Events that trigger an adaptation depend
on the system where we apply the developed algorithm. The
type of change that causes an adaptation could be functional,
non functional, or technological. In our approach, there is
no restriction on this issue; changes are foreseeable, but can
change over time.

Mechanisms of adaptability summarize how the system can
react to changes, in terms of space and time required. The
algorithm we provide may act by decisions taken automatically
or by other parties. The adaptation is done by a central
component. The scope of adaptation could be local or global.
The duration of the adaptation is influenced by execution time
of the central component.

The set of dimensions and effects deals with results of
adaptation, such as the overhead. In our approach, missing a
deadline may confirm the failure of the system.

In [6], a second roadmap for state of the art is presented.
Challenges of a self-adaptive system are described.

The first challenge is to understand the different alternatives
that may represent designer or developer decisions. In our
approach, we have developed a general strategy that applies
for different kinds of real-time systems. We have an abstract
implementing component, which fits as a reusable component.

The second challenge is concerned with understanding the
nature, goals, and lifecycle of the system. In [6], a comparison
between the basics for traditional software processes, and self-
adaptive processes is described. The first one is illustrated
in [7] by the traditional approach to corrective maintenance,
and the second in [8] and [9] by the automatic workaround
approach. The traditional approach reports the problem to the
developers. The automatic workaround approach moves the
corrective actions to runtime by applying alternative proce-
dures when a failure happens. In our approach, the alternative
procedure might be a new request or an update request.
Analyzing causes of the failure may be assigned to a human or
a subsystem. In the workaround approach, recovering methods
are developed at design phase. In our approach, this can be
done at runtime. In the workaround approach, if a recovering
method does not exist, a report is sent to the developers, which
is the same action taken in our approach.

The third challenge is concerned with decentralization
of control loops. Controlling a system could be done in a
centralized [10]-[12] or decentralized manner [13]-[17]. The
self-adapting component is central in our approach, as network
reliability in terms of time and trustworthy is a main concern
in real-time systems.

The fourth challenge is the verification and validation of the
system. In our approach, verification is done for requirements
of real-time systems, apart from the context of the system.

In our approach, we define the optimization constraints in
a multi-dimensional multiple choice knapsack problem. Most
common solutions can be found in [18] and [19]. In our
approach, we use a genetic algorithm inspired from [18] to
solve a knapsack problem. The reason is that it can provide
the whole solution (individual consisting of best variants in
terms of time and cost) at once if available. This allows to
use required parameters of the individual elements in order to
calculate the parameters of other elements. The most important
fact for our application is that it is an ”Anytime Algorithm”
in the sense that at any time the current valid solution of the
algorithm can be used. This solution may be far away from
an optimal one. However, if the initial population is a valid
solution, it is guaranteed that at any time a valid solution can
be provided.

III. PROBLEM DESCRIPTION AND SOLUTION CONCEPT

In our assumption, we consider periodic, aperiodic tasks
or if both then evidently together. Dependability may exist
between aperiodic tasks. A request can be adding a task, delet-
ing a task, updating a task, adding a set of dependent tasks,
deleting a set of dependent tasks, updating a set of dependent
tasks. We assume a mixed hard-deadline periodic and aperiodic
task environment. Figure 1 shows an example of request types.
In case 1, the algorithm should solve the case of Task 5 not
being accepted by the underlying schedulability algorithm. In
case 2, the algorithm should solve the case of Task 1 update
not being accepted by the underlying schedulability algorithm,
and the question of how to make an update of Task 1.

In this paper, we only consider the activities on one single
local node. System tasks, and tasks that are triggered have to
be executed on this node. We assume that task management
is carried out by a Real-Time Operating System (RTOS)
with Earliest Deadline First algorithm (EDF) as the principal
scheduling method. Furthermore, we assume that aperiodic
tasks are handled via a Total Bandwidth Server (TBS) [20] and
that the underlying RTOS runs the Stack Resource Protocol
[21] to avoid unlimited blocking and deadlocks. In order to
be able to run the adaptation algorithm, we come up with
the concept of real-time cells. A cell is a task that is able
to change its structure and behavior at runtime, to allow
adaptations in real-time. The change is decided by a central
cell called “Engine-Cell”. Assuming that the system before
update is correctly functioning, we strictly follow the concept
of transactions. If a solution for an update request is found after
applying the update operations, the system state is updated. If
a solution is not found, the system goes back to the previous
state.

The above mentioned Engine-Cell runs the adaptation
algorithm using a two dimensional array as model of the
underlying ecosystem. Each column stands for a class of cells
which all share the same principal functionality. Each cell
in the column is a variant, where these variants accomplish
the same task, but with different costs and execution time
demands. The Engine-Cell runs an adaptation algorithm, which
intends to select over all cell classes the best combination of
variants that allows to accept the newly arrived requests. The
objective is to fulfill all real-time constraints and to provide
a globally maximum quality of the adapted system. As this
selection process takes place on the ecosystem defined by the
mentioned two-dimensional array, the search space is restricted



ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 67

to the bounded set of cells with bounded number of variants
which is present at time of adaptation.

We also assume a remote node (as model of the en-
vironment) that is dedicated to install variant updates, and
newly deployed cells. An update request means updating a cell
according to a provided change of parameters without altering
the principal behaviour. The remote node is used for providing
external storage, and also to be uploaded in an appropriate
place for developers. Modelling the current state of the system
and cell classes and viewing these models by developers are
not discussed in the scope of the paper. At each execution of
the Engine-Cell, new requests may have arrived to the system.
The adaptation algorithm is run by the Engine-Cell, trying

Figure 1. Request Types

to find a feasible solution by selecting variants over all cell
types. A real-time cell becomes active when it is accepted
by the system for execution. The Engine-Cell is called an
Active Engine-Cell (AEC) once it is activated. Any other Real-
Time Cell (RTC) is called an Active Real-Time Cell (ARTC)
once it is accepted for execution. The Engine-Cell is treated
here as a periodic cell and stays active as long as the system
is running. We make the general assumption for all periodic
cells (including AEC) that the relative deadline is equal to
the period. As investigating the acceptance of newly arrived
requests is part of the Engine-Cell algorithm, we ensure that
the system state does not change during the execution of the
Engine-Cell.

The parameters controlling the Engine-Cell are defined as
follows:

1) Hyperperiod: is the hyperperiod of the currently ac-
cepted periodic ARTCs. The next point in time where
a hyperperiod completes execution is abbreviated as
NHP (Next Hyperperiod). Adaptation takes place
only once per hyperperiod. It becomes effective not
earlier than NHP.
At the start of the system, the hyperperiod is cal-
culated as the least common multiple of the periods
of periodic ARTCs that initially might exist at the
system startup. The resulting value is set as initial
value for the AEC’s period. We examine the total
utilization (AEC and ARTCs). If it is smaller or equal
to 1, we have found the shortest possible period for
AEC (which at the same time by definition is the
hyperperiod). If the total utilization is beyond 1 then
the hyperperiod has to be extended by a harmonic
multiple until the total utilization is no longer beyond
1. Calculating an initial NHP is carried out either
offline or as part of the initialization when starting
the system.
Note: the response time on adaptation requests de-
pends on the load of the system. A highly loaded
system means a smaller fraction of the processing
capacity to be dedicated for the AEC. At the same
time, the execution time demand of the AEC tends
to increase if some fixed upper bounds (such as
dimensions of the RTCArray) change.

2) NumOfPARTCs: is the number of the current periodic
ARTCs in the system.

3) NumOfAARTCs: is the number of the current aperi-
odic ARTCs in the system.

4) RTCArray: is the data structure that holds the differ-
ent variants of RTCs in the system. Figure 2 shows
the RTCArray consisting of different RTCs. Each
column is called an RTClass. Each RTClass holds
a number of variants, which are RTCs dedicated to
fulfill the same task, with different cost and execution
time requirements. Switching between the different
variants online enables to execute tasks in the best
way regarding system resources. All periodic vari-
ants, that belong to the same class, have the same
period. All aperiodic variants that belong to the same
class, have the same deadline. The RTCArray is a
dynamic component. RTCs can be added to it online.
The upper bounds of its dimensions can grow online.
Other parameters include the Worst-Case Execution



ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 68

Time (WCETEC), the worst case period (WCTEC),
and additional properties of the EC.

Another set of properties is defined for ordinary RTCs:

1) VariantsAllowed: is a Boolean property. When it is
equal to true, all variants that belong to the class of
the respective RTC variant should be examined to
select the best variant in the adaptation algorithm.
Otherwise, the respective RTC variant is considered
mandatory to be processed by the algorithm.

2) UpdatingPoints (UP): is a set of points in the code
of the RTC routine. At these points, the RTC could
be substituted by another variant within the same
class from the RTCArray. All variants, which have
the same RTClassID, have a set of updating points
with the same number of points, where each point
in a specific set has a counter part point in all the
other considered sets. UpdatingPoints is of relevance
only in case of aperiodic tasks. Instances of such
tasks may have a long execution time, exceeding
the current hyperperiod. Therefore, just waiting for
the next instance would not be appropriate. In case
of periodic tasks, we restrict updates on the natural
updating point, defined as the release time of the next
instance of a periodic task [22].

3) ETexecuted : is the time that has been spent in
executing an aperiodic RTC before the previous NHP.

4) NextUpdatingPoint: a variable that saves the next
updating point which has not been yet reached by
the executed code of the RTC.

5) Triggered: is a Boolean property that reflects the
status of an RTC. If it is equal to true, this means
that the RTC is triggered for execution.

6) TriggeringTime: is the time at which an RTC is
triggered (chosen from the RTCArray).

7) TriggeringRange: is the range of time within which
the arrival time of an RTC could be set. Our goal is
to set the arrival time of requests greater or equal to
NHP, because at this point, we assume that all ac-
cepted periodic requests are simultaneously activated
(i.e., we assume all phases to be 0).

8) Deletion: a Boolean property, that is set to true if the
request means deletion of a cell. It is set to false,
otherwise.

9) Active: is a Boolean variable that is set to true when
the cell is accepted for execution.

Figure 2. RTCArray

Other properties not described in the scope of this paper
include the ID of the RTC (RTClassID/VariantID) inside
RTCArray, the cost of an RTC, the importance factor, the
factor of essentiality, the static parameters, and the updated
cost, which should be calculated for an RTC, when it replaces
another executing RTC.

In the following:
- We use the term ExpPARTCs to refer to the set of current

periodic ARTCs excluding the RTCs, which belong to the
deletion requests.

- We use the term ExpAARTCs to refer to the set of current
aperiodic ARTCs excluding the RTCs, which belong to the
deletion requests.

The Engine-Cell algorithm can be sketched as follows (See
Figure 3):

Step 1: Gathering and filtering the newly deployed
RTCs: The first step of the AEC is to collect the newly
deployed RTCs, and store them in a WorkingRTCArray (a
copy of RTCArray) following a procedure that ensures to
keep the upper bound of the WorkingRTCArray dimensions
preserved. As newly deployed RTCs enlarge the solution space
RTC classes and/or variants may need to be dropped following
some importance criteria.

Step 2: Triggering and handling the newly arrived
requests: In this step, a TriggeredQueue is constructed from
the WorkingRTCArray. Triggering a request from the Work-
ingRTCArray turns the Triggered property into true. Arrival
times of requests are set greater or equal to NHP according
to their TriggeringRange. The DeletionTime of requests that
have to be deleted is set to the next updating point. If a request
includes a set of dependent cells, we assume that their modified
arrival times and deadlines are calculated offline following the
rules of Modified Earliest Deadline First algorithm EDF* [23].

Step 3: Calculating the cost of quality factors for the
system: The total cost of factors available by a node Costtotal
is calculated.

Step 4: Adaptation algorithm: In this step, we construct
the lowest-cost feasible solution over the entire set of RT-
Classes stored in an AdaptationRTCArray which is constructed
in the beginning of this step. This data structure further reduces
the search space to be considered by excluding deleted cells
and aperiodic cells that have their absolute deadline within
the current hyperperiod. The reason for the latter exclusion
is following the general assumption that adaptations become
active not earlier than in the next hyperperiod.

To construct AdaptationRTCArray, we first copy variants
of WorkingRTCArray into AdaptationRTCArray. We then
reduce AdaptationRTCArray to contain only all classes of
ExpPARTCs and such ExpAARTCs with absolute deadlines
exceeding NHP. For each aperiodic ARTC that should be
deleted and has an absolute deadline exceeding NHP, we add
a column including the ARTC as the only variant. After that,
we add a column that includes the AEC. We add the newly
triggered requests, and finally the updating requests:

• Adding an aperiodic update is done (only if there
exists an updating point after NHP in the aperiodic
variant that is running) by adding the arrived RTClass
which includes the triggered updating variant. The
precise algorithm to identify the set of aperiodic



ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 69

ARTCs that can be updated and to calculate the
time characteristics for the updates are omitted here.
The number of those aperiodic ARTCs is denoted by
NumOfANHP. The updated variant has been excluded
when constructing ExpAARTCs.

• Adding a periodic update is done by adding the arrived
RTClass, which includes the triggered updating variant
to AdaptationRTCArray. The updated variant has been
excluded when constructing ExpPARTCs.

• In case there is an update request for a set of aperiodic
dependent RTCs the same rules as of updating a single
(independent) variant are applied.

By the above operations, a reduced array is constructed
that contains only those entries which are relevant for the

Figure 3. Nassi-Schneidermann Diagram for EC Algorithm

adaptation algorithm. For technical reasons, the columns in
the array are reordered, so that periodic columns come first,
then AEC, and finally aperiodic columns.

Let us assume that the number of columns in Adaptation-
RTCArray = Num. Ǹ denotes the number of columns, which
represent the newly triggered aperiodic requests.

If (NumOfANHP > 0) then we calculate arrival times,
execution times, and Cost-Update for the running aperiodic
ARTCs that are stored in AdaptationRTCArray, and deadlines
exceed the NHP. The details of these calculations are omitted
here.

The heart of the adaptation algorithm is to find a selection
of variants for all RTC classes in the relevant ecosystem. This
relevant ecosystem has been determined by the activities de-
scribed above and stored in AdaptationRTCArray. The solution
is a one dimensional array Solution that is assumed to contain
one variant from each column in the AdaptationRTCArray. The
chosen variants should pass the schedulability test of the Total
Bandwidth Server (TBS) [20], and achieve the lowest possible
accumulated cost.

To find the solution, we solve the following multiple
choice multi dimensional knapsack problem.

max
∑Num

i=1

∑ni

j=1−Costijxij

Subject to:
∑Num

i=1

∑ni

j=1 W
k
ijxij ≤ Rk

Where:∑ni

j=1 xij = 1; i = 1..Num & xij ∈ {0, 1} and j = 1..ni,
k = 1:3

By Num is denoted the number of columns (RTC classes)
in AdaptationRTCArray while by ni is denoted the number
of variants in the ith column. Note that three constraints are
formulated for the three values of parameter k. Constraint 1
handles periodic tasks including the AEC, constraint 2 the
aperiodic ones, and constraint 3 is an optional one limiting
the total cost. For these three constraints, the weights W k and
the constraining condition Rk are defined differently.

Constraint 1: W 1
ij = Factor1/Factor2

For any of the periodic RTCs: Factor1 = Cij , Factor2 =
Tij

For the AEC, Factor1 = WCETEC , Factor2 =
WCTECTemp

WCTECTemp denotes the expected hyperperiod of the
AEC. It is calculated the same way the initial hyperperiod
is calculated. Here periodic cells are ExpPARTCs in Adap-
tationRTCArray, and newly triggered periodic requests in
AdaptationRTCArray. Expected period of AEC is used instead
of its current period. In each hyperperiod, only one execution
of the AEC is assumed. For this reason, we finally update
WCTECTemp, the expected period of the AEC, to be equal
to the expected hyperperiod.

For any of the aperiodic RTCs: Factor1 = 0, Factor2 = 1
Constraint 2: W 2

ij = Factor1− Factor2

For any of the periodic RTCs and the AEC: Factor1 = 0,
Factor2 = 0.

For any of the aperiodic RTCs: Factor1 = dSpecified,ij ,
Factor2 = dCalculated,ij .

Where:



ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 70

dSpecified,ij : The specified absolute deadline for any
aperiodic variant, which belongs to an aperiodic variant in
AdaptationRTCArray is equal to its arrival time + relative
deadline of the variant.

By dCalculated,ij we denote the deadline calculated by the
TBS rule.

dCalculated,ij = max (dCalculated(i−1)ji−1
, ArrivalT imeij)+

Cij,new/Us.
Us = 1− Up.
Constraint 3: Depending on the different kinds of RTCs to

be considered in solving the knapsack problem, the weights
Wij for the optional third constraint are defined as follows:

W 3
ij = Cost for periodic RTCs stored in AdaptationRTCAr-

ray
W 3

ij = Cost for aperiodic RTCs that are stored in Adapta-
tionRTCArray

After defining the weights of the different variants, we can
start discussing the conditions. The constraining conditions Rk

for the three constraints are defined as follows:
R1 = 1(EDF constraint for periodic cells). R2 = 0 (no

aperiodic task missing its deadline). R3 = Costtotal.
The limit Costtotal is optional. If a solution is found, the

newly arrived requests are accepted.
The algorithm which we are applying to solve the knapsack

problem is a genetic algorithm. In the algorithm, an individual
contains exactly one variant for each column in Adaptation-
RTCArray. In total, there exist up to fh individuals. Each
of them is a potential solution of the knapsack problem. We
select smaller subsets of individuals and call them Generations.
Let us assume that the number of individuals in a generation
≤ upper bound of number of RTCs in a class in the Work-
ingRTCArray. In the initial generation, the first individual is
given by selecting from each RTClass the variant with the
lowest respective utilization. This individual allows a simple
decision whether a solution exists, as if this individual does
not fulfill the constraints then there cannot exist any solution.
If the knapsack constraint

∑Num
i=1

∑ni

j=1 W
k
ijxij ≤ Rk has a

solution for a set of individuals, we choose the individual
which minimizes the accumulated cost of the chosen RTCs.
The lowest-cost individual of a generation is a preliminary
solution of the knapsack problem. The previous operations are
bounded by upper bounds of RTCArray dimensions, and the
given time bound for the iteration. A generation is constructed
from a previous one by applying selection and mutation. This
process is iterated until no improvement can be observed or
a given time limit is reached. The latter termination condition
guarantees boundedness.

Step 5: Activate the accepted requests, and update
the AEC: The Active property of accepted RTCs becomes
true. They are put into the ready queue as managed by the
underlying RTOS. The AEC updates its properties. Updating
requests take place in the WorkingRTCArray. After that, Adap-
tationRTCArray is set to empty. Cells are still enforced when
having them replaced by other variants because, by definition,
updating points are designed for this reason. Values of still to
be used variables are transmitted to the updating variants, and
accomplishing the same functionality must be ensured by the
developer.

Step 6: Turning the triggered requests into non-
triggered: The Triggered Property of requests RTCs is turned
into false. After that, WorkingRTCArray is copied to RTCAr-
ray if the solution is accepted, and then it is set to empty.

Step 7: Notify the system, in case the requests are not
accepted. : Algorithm variables are reset to their initial values.

In [24] we modelled each of the previous steps by a Nassi-
Schneidermann diagram [25]. This helps to understand the
specification of code structure and points out the calculation
of time complexity.

Concerning the time complexity of the developed adap-
tation algorithm, we can show that per single execution (i.e.,
once per hyperperiod) the algorithm can be solved in quadratic
time in the upper bounds of dimensions of RTCArray and
upper bound of number of RTCs inside a dependent set request
[24]. Parameters of time complexity are bounded. In case of
solving the knapsack problem, this boundedness is enforced by
setting an upper bound of execution time in the iterative genetic
algorithm. Together with the fact that there are no unbounded
blockings possible due to parameters not under control of the
algorithm (assumption of Stack Resource Protocol included
in the underlying RTOS) this implies the boundedness of the
algorithm.

IV. CONCLUSION

In this paper, we have developed an approach that enhances
real-time operating systems by an organic adaptability feature.
This implies building an infrastructure of the system, which
can change its behavior at runtime. The basic unit in this
infrastructure is a cell. A cell is a task that can change its
structure and behavior by selecting a variant of it at runtime.
The way variants are chosen at runtime follows resource and
time limitations, in order to enhance the quality of the system.
The boundedness of our algorithm has been proven. Many
new trends can be developed in the context of the described
problem, such as distributing the central algorithm that is run
by the Engine-Cell on several nodes in order to save more
processor utilization on one node, obtaining fault tolerance,
dealing with the boundedness of the algorithm in case of a
non- deterministic network, such as in a multi-agent system,
measuring the optimization output by running the algorithm
on a real-time operating system and observing the results, and
having several controlling cells other than the Engine-Cell or
having several variants of it, etc.

V. ACKNOWLEDGEMENT
This work is based on a PhD thesis done at University of

Paderborn, Germany [24].

REFERENCES

[1] E. A. Lee, “Cyber Physical Systems: Design Challenges,” 11th IEEE
Symposium on Object Oriented Real-Time Distributed Computing
(ISORC), pp. 363-369, 2008.

[2] O. Imbusch, F. Langhammer, and G. von Walter, “Ercatons and Or-
ganic Programming: Say Good-Bye to Planned Economy,” Dagstuhl
Seminar Proceedings 2006.

[3] S. Oberthür, L. Zaremba, and H. Simon Lichte, “Flexible Resource
Management for Self-X Systems: An Evaluation,” in Proceedings of
ISORCW2010.30, pp. 1-10, 2010.

[4] S. Oberthür, “Towards an RTOS for Self-Optimizing Mechatronic
Systems, Dissertation,” Paderborn, Germany, October 30, 2009.



ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 71

[5] H. C. C. Betty at al. (Eds.), “Self-Adaptive Systems,” LNCS 5525,
pp. 1-26, Springer Verlag, Berlin Heidelberg, 2009.

[6] R. de Lemos et al. (Eds.), “Self-Adaptive Systems,” LNCS 7475, pp.
1-32, Springer Verlag, Berlin Heidelberg, 2013.

[7] E. Burton Swanson, “The dimensions of maintenance,” In Proceed-
ings of the 2nd International Conference on Software Engineering
(ICSE 1976), pp. 492-497. IEEE Computer Society Press, 1976.

[8] A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè, “Automatic
workarounds for web applications,” In: FSE 2010: Proceedings of
the 2010 Foundations of Software Engineering Conference, pp. 237-
246. ACM, New York, 2010.

[9] A. Carzaniga, A. Gorla, and M. Pezzè, “Self-healing by means of
automatic workarounds,” In SEAMS 2008: Proceedings of the 2008
International Workshop on Software Engineering for Adaptive and
Self-Managing Systems, pp. 17-24. ACM, New York, 2008.

[10] D. Garlan, S.W. Cheng, A.C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infras-
tructure,” IEEE Computer 37, pp. 46-54, 2004.

[11] IBM: “An architectural blueprint for autonomic computing,” Tech.
rep. IBM, January 2006.

[12] P. Oreizy et al., “An architecture- based approach to self-adaptive
software,” IEEE Intelligent Systems 14, pp. 54-62, 1999.

[13] Y. Brun and N. Medvidovic, “An architectural style for solving com-
putationally intensive problems on large networks,” In Proceedings
of Software Engineering for Adapting and Self-Managing Systems,
SEAMS 2007, Minneapolis, MN, USA, May 2007.

[14] I. Georgiadis, J. Magee, and J. Kramer, “Self-Organizing Software
Architectures for Distributed Systems,” In: 1st Workshop on Self-
Healing Systems. ACM, New York, pp. 33-38, 2002.

[15] S. Malek, M. Mikic-Rakic, and N. Medvidovic, “A Decentralized Re-
deployment Algorithm for improving the Availability of Distributed
Systems,” In A. Dearle, R. Savani (eds.) CD 2005. LNCS, vol. 3798,
pp 99-114. Springer, Heidelberg, 2005.

[16] P. Vromant, D. Weyns, S. Malek, and J. Andersson, “On interacting
Control loops in self-adaptive systems,” SEAMS 2011, Honolulu,
Hawaii, pp. 202-207, 2011.

[17] D. Weyns, S. Malek, and J. Andersson, “On decentralized self-
adaptation: lessons from the trenches and challenges for the future,”
In: Proceedings of the 2010 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS 2010, pp. 84-93.
ACM, New York, 2010.

[18] A. Duenas, C. Martinelly, and G. Tütüncü, “A Multidimensional
Multiple-Choice Knapsack Model for Resource Allocation in a
Construction Equipment Manufacturer Setting Using an Evolutionary
Algorithm,” APMS 2014, Part I, IFIP AICT 438, pp. 539-546, 2014.

[19] M. Hifi, M. Michrafy, and A. Sbihi, “Heuristic algorithms for the
multiple-choice multidimensional knapsack problem,” Journal of the
Operational Research Society, Palgrave Macmillan, vol. 55, pp. 1323-
1332, 2004.

[20] M. Spuri and G. C. Buttazzo, “Efficient Aperiodic Service under
Earliest Deadline Scheduling,” Real-Time Systems Symposium, pp.
2-11, 1994.

[21] T. P. Baker, “A Stack-Based Resource Allocation Policy for Realtime
Processes,” In: Proceedings of the IEEE Real-Time Systems Sympo-
sium (RTSS), pp. 191-200, 1990.

[22] L. Khaluf and F. Rammig, “Organic Programming of Real-Time Op-
erating Systems,” In the ninth international conference on Autonomic
and Autonomous Systems (ICAS), pp. 57-60, 2013.

[23] H. Ghetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of
real-time tasks under precedence constraints,” Journal of Real-Time
Systems, 2, pp. 181-194, 1990.

[24] L. Khaluf, “Organic Programming of Dynamic Real-Time Applica-
tions,” a PhD thesis, University of Paderborn, 2019.

[25] I. Nassi and B. Schneiderman, “Flowchart Techniques for Structured
Programming,” Technical Contributions, Sigplan Notices, pp. 12-26,
1973.

[26] G. Kiczales et al., “Aspect Oriented Programming,” in ECOOP’97
— Object-Oriented Programming, pp. 220-242, 1997.

[27] R. Petrasch, O. Meimberg, “Model Driven Architecture,” ISBN 3-
89864-343-3, 2006.

[28] T. Benaya and E. Zur, “Understanding Object Oriented Programming
Concepts in an Advanced Programming Course,” in ISSEP 2008:
Informatics Education - Supporting Computational Thinking pp. 161-
170, 2008.


