
Deep Learning with Evolutionary Strategies for Building Autonomous Agents

Behaviour

Ventseslav Shopov, Vanya Markova

Institute of Robotics
Bulgarian Academy of Sciences

Bulgaria
Email: vkshopov@yahoo.com, markovavanya@yahoo.com

Abstract—In this study, we will consider the construction of the
behaviour of an autonomous agent in an environment that has
many traps and a large number of obstacles. Such environments
require the agent to build a policy that will lead them to the goal
as quickly as possible. As a working basis, we use Reinforcement
Learning and apply approaches from the field of random search
and Evolutionary Strategies.

Keywords–Autonomous Agents; Reinforcement Learning; Evo-
lutionary Strategies.

I. INTRODUCTION
Reinforcement Learning (RL) is a scientific area where

the main topics is agent training without supervision. Thus,
an agent is an autonomous subject who learns and makes
decisions independently. Such an agent, through interactions
with the environment, finds the optimal policy for consistent
decision making [1]–[3].

Deep learning prevails in the areas of studying natural
language, recognising objects in the pictures of classification
in multidimensional cases. Q-nets, AlphaGo, asynchronous
methods and many others are examples of successful Deep
Learning applications [4]–[8]. Deep learning leads to great
benefits in areas of big data and data science. However, there
are cases in which employing greedy optimisation for a reward
can lead to sticking to a local minimum or suffer of slow
converging [9].

Evolutionary Strategies (ES) are an approach that helps to
find global minimums. A comprehensive overview of different
ES techniques in the field of machine learning is given in [10].
Several studies have been done so far [11] [12], however most
of them consider the ES as an alternative to RL.

In our study, we combine ES as they were described in [10]
and Deep Q-Networks [4]–[6] in Reinforcement Learning to
explore the applicability and effectiveness of the agent learning
in the field of Sequential Games. At the moment, many specific
methods of gradient descent have been proposed, but they all
assume that the gradient behaves well: there are no cliffs where
it increases abruptly, or a plateau where it vanishes. The first
problem can be dealt with using the gradient clipping, but the
second is more challenging.

The main objective of this study is to compare the perfor-
mance of classical optimisation methods and ES as well as to
verify how these algorithms affect learning speed. Thus, the
hypothesis in this study is to compare the behaviour of gradient
optimisation algorithms and algorithms for ES.

This paper is organised as follows: in Section 2, we
briefly describe some basic theories of learning in the field of
reinforcement, Deep Learning, and ES. In addition, we present
the implementation of our approach. In Section 3 of our article,
we describe the experiments and collect evidence to support
our hypothesis. We conclude the work in Section 4.

II. METHODS AND MATERIALS

A. Theory
1) Autonomous Agent Behaviour: Information about past

and current states of the agent and environment allows agents
to evaluate their own progress. In reinforcement training, an
agent builds up policies based on progress. The policy deter-
mines the reaction of the agent to the state of the environment.
Through RL, the agent builds such policies that will achieve
the goal with the maximum benefit for the agent.

So, if we describe the states of the agent and environment
as a time series, then the task of making efficient plans will
be significantly aided if the agent could forecast the future
with desirable accuracy. An n-tipple (vector) is a result of one
cycle of the work of the agent. It consists of the parameters
of the behaviour of the agent: b(b1, b2, . . . , bn). The data from
environment are collected and transformed into time series in
the knowledge base of the agent.

2) Markov Decision Process: We formulate the transfer
learning problem in sequential decision making domains using
the following framework of Markov Decision Process. We use
the following definition of Markov Decision Process (MDP)
as a 5-tuple

< S,A, P,R, γ > (1)

where the set of states, set of actions, transition function
and reward function are described. P : S × A → Π(S) is a
transition function that maps the probability of moving to a
new state given an action and the current state,

R : S ×A→ R (2)

is a reward function that gives the immediate reward of taking
an action in a given state. γ ∈ [0, 1) is the discount factor. The
MDP of the agent is described in (1), where S is the set of
states, A is the set of actions, P is transition function and R
is a reward function.

55Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

3) Reinforcement Learning: To solve sequential decision-
making problems, the agent should learn about the optimal
value of each action, defined as the expected amount of future
rewards when taking this action and following the optimal
policy afterwards. Under a given policy π , the true value of
an action a in a state s is

Qπ(s; a) = E[R1 + γR2 + . . . |S0 = s;A0 = a;] (3)

where r ∈ [0; 1] is a discount factor which trades off the
importance of immediate and later rewards. The optimal value
is then Qπ∗(s; a) = maxQ(s; a) . An optimal policy can be
easily learned from the optimal values by selecting in every
state the highest valued action.

4) Q-Learning: The optimal action values can be derived
through Q-learning [13] [14], a form of time learning. The
real problems are too large to learn all the values of action
in all states separately. Instead, we can learn a parametric
value Q(s; a; qt). In this way, Q-learning values update the
parameters after taking action At at St and observe the
immediate reward Rt+1 so that the resulting state St+1 is then

qt+1 = qt + α(Y Qt −Q(St;At; qt))∇qtQ(St;At; qt) (4)

where q is a scalar value and the target Y Qt is defined as

Y Qt = Rt+1 + γmax
a

Q(St+1; a; qt) (5)

Updating the current value Q(St;At; qt) towards a target
value Y Qt the agent applies stochastic gradient descent ap-
proach.

5) Deep Q Networks: Deep Q Networks (DQN) are multi-
layered neural networks.These networks for a given state s
outputs not a single action but a vector of action values
Q(s; a; q), where θ are the parameters of the network. If an
action space containing m actions and state space is a n-
dimensional vector, the neural network maps Rn to Rm. In
addition in Deep Q Networks, there are target network [5],
with parameters θ−. This additional network is the same as the
original network except that its parameters are copied every τ
steps from the online network, so that then θ−t = t, and are
not changed on all other steps. So, the target used by DQN is
then

Y DQNt = Rt+1 + γmax
a

Q(St+1; a; θt) (6)

6) Double Q-learning: The max operator in standard Q-
learning and DQN, in 4 and 6, uses the same values both to
select and to evaluate an action. To prevent this overoptimistic
value estimation we can decouple the selection from the
evaluation. This is the idea behind Double Q-learning [15]. In
the original Double Q-learning algorithm, two value functions
are learned by assigning each experience randomly to update
one of the two value functions, such that there are two sets of
weights, and 0. For each update, one set of weights is used
to determine the greedy policy and the other to determine
its value. For a clear comparison, we can first untangle the
selection and evaluation in Q-learning and rewrite its target as

Y Qt = Rt+1 + γQ(St+1,maxaQ(St+1; a; qt); qt) (7)

The Double Q-learning error can then be written as

Y DoubleQt = Rt+1 + γQ(St+1,maxaQ(St+1; a; qt); qt) (8)

7) Evolution Strategies: If the action values contain ran-
dom errors uniformly distributed in an interval [−ε, epsilon]
then each target is overestimated up to γεm−1

m+1 , where m is the
number of actions [16]. This could leads to local optima. So,
we need a new approach for achieving the exploration strategy
that will lead us to a global optima. Such kind of algorithms
are ES.

ES are a class of black box optimisation algorithms inspired
by natural evolution [17]. At every iteration (generation),
a population of parameter vectors (genomes) is perturbed
(mutated) and, optionally, recombined (merged) via crossover.
The reward (fitness) of each resultant offspring is then eval-
uated according to some objective function. Some form of
selection then ensures that individuals with higher reward tend
to produce the individuals in the next generation, and the cycle
repeats.

Recent work from OpenAI outlines a version of NES
applied to standard RL benchmark problems [11]. We will
refer to this variant simply as ES going forward. In their
work, a fitness function f() represents the stochastic reward
experienced over a full episode of agent interaction, where θ
is the parameters of a policy π.

∇φEθ∼φ[f(θ)] =
1

n

n∑
i=1

f(θit)∇φ log pφ(θit) (9)

where n is the number of samples estimated per genera-
tion. The sample parameters in the neighbourhood of t and
determines the direction in which t must move to improve
the expected reward. Instead of the baseline, the ES relies on
a large number of samples n to reduce the variance of the
gradient estimate. To avoid bias in the optimisation process
due to large scale of reward between domains, we follow the
approach of [11] and rank-normalise f(θit) before taking the
weighted sum.

B. Implementation
The idea is quite simple. With a standard gradient descent,

at each step we look at the inclination of the surface on
which we are located and move in the direction of the greatest
gradient. In ES, we fire a nearby neighbourhood with points
where we can supposedly move, and move in the direction
where most points with the greatest height difference fall (and
the farther the point, the more weight is attached to it).

In the case of a piecewise-step function, the resulting
estimate will represent the gradient of the smoothed function
without having to calculate the specific values of this function
at each point. Also in the case when the loss function depends
on the discrete parameters, it can be shown that the estimate
remains valid, since in the proof one can interchange the order
of taking the expectation. Which is often not possible for
ordinary Stochastic Gradient Descent (SGD).

EεεE(θ + ε) = EεεExE(θ + ε, x) = ExEεεE(θ + ε, x) (10)

The greater the sigma distribution, the less the local
structure of the function manifests itself. When the sampling
algorithm is too large, the optimisation algorithm does not
show narrow minima and hollows, from which one can go
from one good state to another. If it is too small, the gradient
descent may not start if the initialisation point was chosen
unsuccessfully.

56Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Sampling makes noise in the gradient calculation, which
makes learning more sustainable. Just like dropout in learning
neural networks in the usual way. ES does not depend on
frame-skip with RL. Also ES allow learning more easily
than regular SGD, when a large amount of time can pass
between an action in RL and a positive response, and in noisy
conditions, when it is not clear which change helped improve
the result. What are the disadvantages? The computation per
episode is slower than in SGD. And the final results are
not significantly better. Noise in gradients - even with one-
dimensional optimisation, are slightly unstable.

The RL algorithm can query the environment by sending
it the suggested policy π. The model then selects a random
variable e, independent of the past, and generates a vector from
the system in accordance with the policy π and randomness
e.And then the model returns to the our algorithm a sequence
of states, actions, and rewards (s, a, r), which represent a
vector generated from the system in accordance with the policy
π. In this scheme, one request is called an episode. The purpose
of the RL algorithms is to approximate the solution of problem
by making as few calls as possible to the medium.

III. EXPERIMENTS AND RESULTS

For the purposes of our research, we do the following : we
look at a stochastic single player game that strives to maximise
its winnings. The game is a 2d map in which the player must
reach a certain goal by avoiding certain traps. The reward in
the target is 100 and the reward in the trap is -100. For each
idling, the player receives a -5. The game has a stochastic
policy because the probability of going to the next scheduled
state is 0.9 and with probability 0.025 the agent will either
end up in one of the neighbours to the current state or will
remain in the current state. In this way, an odometric error or
a real agent monitoring error is modelled. If the agent made
a transition to an obstacle or out of the map, we see this as a
”collision”. Upon collision, the agent returns, returning to the
current state and receiving a -10 reward. The agent performs
one episode until it reaches a terminal state or by making a
number of steps larger than the size of the environment.

Maps are rated by many parameters as: size, size of hurdles,
trap to size ratios, and reward ratios to size. The latter is always
inversely proportional to the size of the map. We are looking
at a couple of specially made maps:
• map with minimal obstacles and traps. This map is a

virtually ideal playing field. The likelihood of collision
or the agent becoming trapped is minimal. Depending
on the ratio of the reward to the size, the agent is
favourably trained in small-sized maps.

• map with a significant number of obstacles and traps.
In this case, we have an obstacle to size ratio of 0.2
and trap ratios to the size of 0.2. On this map, the
total return is less than the first. However, obstacles
and traps are selected so that there are no conditions
for occurrence of local minima.

• map with a significant number of obstacles and traps
designed to generate a local minimum. This map
has the same ratio of obstacles and traps as in the
previous case, but here the goal is surrounded by traps
and obstacles. We have done this arbitrarily in order
to check how our policy optimisation methods will
behave in such a situation.

We create a model of the RL problem in a way similar to
the one in [18]. This model allows us to get an estimate of
the information our agent can extract from the environment.
The training agent generates policy and applies it to the
environment. In fact, the agent uses this policy for an episode.
In addition, the agent generates a random magnitude that
I apply to policy parameters. This magnitude is different
and independent for each step. In this way, the environment
generates a vector with the responses to the proposed policy
for each step.

Figure 1. We study the performance of the algorithms in simple map.

Figure 2. We study the impact of higher number of obstacles and traps.

This vector has the form < s, a, r > where c is the current
state, and the action a r is the reward. This vector is recorded
for each episode. The optimisation method should change the
policy parameters depending on what reward is awarded at
each episode step. Through this model, we get the opportunity
to generate queries to the environment and get vectors with all
of the agent’s trajectories for each episode.

From a practical point of view, the agent strives to obtain a
policy whereby the overall return is maximum. Creating a stop
criterion is not a trivial task especially if we have a stochastic
pattern of behaviour. Fluctuations in rewards as a result of

57Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

unfavourable coincidence of random events lead to a significant
volatility of the overall return. However, in our research we
are are primarily interested in the comparative characteristics
of the two policy optimisation approaches. Therefore, we will
ignore the convergence criterion and set a final number of
epochs as a measure of completing the training.

We compare the following four algorithms: BRS, BRS-
norm, Natural Evolutionary Strategies (NES) and NES-norm.
BRS and BRS-norm differ only in that the initial initialisation
of the BRS-norm parameters is normalised according to the
maximum and minimum reward. The same applies to NES
and NES-norm.

Figure 3. We see the impact of ”local minima” environment.

Figure 4. The Shapiro tests shows that all results have normal distribution.

The results of first experiment can be seen in Figure 1.
One can see that under favourable conditions the cumulative
reward after training does not differ significantly. The results of
second experiment are shown in Figure 2. Here we can see that
NES and NES-norm have a higher median reward, but their
dispersion also is higher. It is only in the third experiment
(Figure 3) that we see the superiority of ES. It seems that
Basic Random Search (BRS) and BRS-norm are stuck in the
local minima. NES algorithms perform much better although
they show higher volatility.

From Shapiro’s tests (result shown in Figure 4), it can

be seen that as the complexity of the environment increases,
the volatility of the solutions increases. BRS and BRS-norm
demonstrate more stable but significantly lower performance,
while NES and NES-norm achieve a higher overall return but
at the expense of increased volatility.

IV. CONCLUSION AND FUTURE WORK
In this study, we looked at building an autonomous agent’s

behaviour in an environment that has both rewards and traps.
Such environments require agents to build a policy that leads
them as quickly as possible to the goal. On the other hand, the
agent should ”avoid” traps especially in the case of a stochastic
policy of movement.

As a working framework, we used Reinforcement Learn-
ing. We compared approaches from the field of random search
and Evolutionary Strategies. Experiments have shown that
methods based on an evolutionary approach show better results
when the environment is more complex. Especially important
is the superiority of Evolutionary Strategies in cases where the
environment has local minima.

REFERENCES
[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.

MIT press Cambridge, 1998.
[2] C. Szepesvári, “Algorithms for reinforcement learning,” Synthesis lec-

tures on artificial intelligence and machine learning, vol. 4, no. 1, 2010,
pp. 1–103.

[3] D. P. Bertsekas, Dynamic programming and optimal control 3rd edition,
volume II. Belmont, MA: Athena Scientific, 2011.

[4] V. Mnih et al., “Asynchronous methods for deep reinforcement learn-
ing,” in International Conference on Machine Learning, 2016, pp. 1928–
1937.

[5] ——, “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, 2015, pp. 529–538.

[6] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, 2016, pp. 484–489.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, 2015, pp. 436–442.

[8] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016.

[9] J. Lehman and K. O. Stanley, “Novelty search and the problem with
objectives,” in Genetic programming theory and practice IX. Springer,
2011, pp. 37–56.

[10] D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette, “Evolutionary
algorithms for reinforcement learning,” Journal of Artificial Intelligence
Research, vol. 11, 1999, pp. 241–276.

[11] T. Salimans, J. Ho, X. Chen, and I. Sutskever, “Evolution strategies
as a scalable alternative to reinforcement learning,” arXiv preprint
arXiv:1703.03864, 2017.

[12] F. P. Such et al., “Deep neuroevolution: Genetic algorithms are a com-
petitive alternative for training deep neural networks for reinforcement
learning,” arXiv preprint arXiv:1712.06567, 2017.

[13] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, 1992, pp. 279–292.

[14] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, Cambridge, 1989.

[15] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning.” in AAAI, vol. 16, 2016, pp. 2094–2100.

[16] S. Thrun and A. Schwartz, “Issues in using function approximation
for reinforcement learning,” in Proceedings of the 1993 Connectionist
Models Summer School. Hillsdale, NJ. Lawrence Erlbaum, 1993, pp.
255–264.

[17] I. Rechenberg, “Evolutionsstrategien,” in Simulationsmethoden in der
Medizin und Biologie. Springer, 1978, pp. 83–114.

[18] H. Mania, A. Guy, and B. Recht, “Simple random search provides
a competitive approach to reinforcement learning,” arXiv preprint
arXiv:1803.07055, 2018.

58Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

