
Transfer Learning Approach for Autonomous Agents in Collective Games

Ventseslav Shopov, Vanya Markova

Institute of Robotics
Bulgarian Academy of Sciences

Bulgaria
Email: vkshopov@yahoo.com, markovavanya@yahoo.com

Abstract—The aim of this study is to present a new approach for
Transfer Learning in collective games. This framework is a set
of methods for transferring accumulated knowledge. In this way,
autonomous agents share their knowledge in order to achieve
better performance. The main hypothesis in the study is that the
group of agents who exchange knowledge performs better than
the same group without Transfer Knowledge, under the same
conditions.

Keywords–autonomous agents; reinforcement learning; transfer
learning.

I. INTRODUCTION

The subject of the study is the transfer of knowledge in
training and decision-making for autonomous agents. In this
study, we look at the environment as collective sequential
games. Our goal is to clarify whether Markov Decision Process
(MDP) solving methods can be applied to collective games
with partially observable goals and partially dynamic environ-
ments.

In addition, we raise the question of how effective transfer
of knowledge in training and decision-making by autonomous
agents in collective games is.

Exploring these issues is important for the development of
training with support in general, and in particular for the trans-
fer of knowledge between agents in partially observable and
dynamic environments. Knowledge transfer can significantly
speed up training and decision-making by autonomous agents.
Such research can be found in machine learning, the video
game industry, and robotics.

In this study, we build upon a recent method for knowl-
edge transfer, which formulates the sequencing problem as
a Markov Decision Process. Recently, various representations
that make such knowledge transfer possible for multiple agents
in different domains have been explored [1]. In addition, some
generalisation of curriculum MDP model have been proposed
[2] to handle different kinds of transfer learning algorithms.
Another approach formulates the design of a curriculum as a
Markov Decision Process, which directly models the accumu-
lation of knowledge as an agent interacts with tasks to produce
an agent-specific curriculum [2] such that overall performance
or learning speed is improved [3].

There are several studies that introduce methods to generate
a curriculum based on task descriptors [4], or by data-driven
automated similarity measures [5]. Other methods combine
feature-based control in a non-rewarding discrete environment,
and imitation learning applied to an ambiguous and uncon-
strained third party agent [6].

Some recent studies have been performed in regard of
creating frameworks for selecting source tasks in the absence
of a known model or target task samples based on meta-data
[7] or guided by policy sketches. [8]

In our study, we make an effort to allow the application
of already developed and tested methods and algorithms to
solve MDP in fields such as multi-agent systems and collective
games. TL can also accelerate the learning process in various
areas of machine learning, the video game and robotics indus-
tries. Given certain limitations, it is possible to use solutions
that have already been tested, which may lead to a reduction
in time of developing new applications.

The main hypothesis of this study is that, subject to certain
limitations, it is possible to use classical MDP solving methods
for partially observable and dynamic environments. It is also
possible to apply knowledge transfer to groups of autonomous
agents. Such a transfer leads to acceleration of training and
decision-making in collective games.

The article is organised as follows: In Section 2, we briefly
look at the theory underlying the proposed solutions, and then
we describe the theoretical limitations of our approach and
the respective implementation. In Section 3, we experimentally
examine the applicability and effectiveness of our approach. In
the last part, we describe our findings.

II. METHODS AND MATERIALS
A. Theory

1) Sequential games: We consider sequential games, which
are n-player non-zero sum games played on finite trees. Each
node of the tree is controlled by either of the players, and the
game is played by moving a token along the branches of the
tree, from the root node, up to the leaves, which are libelled
by a payoff. We also associate a preference relation with each
player that indicates how he ranks the payoffs. Let us now
formalise the basic notions about these games. The definitions
and notations of this section are inspired from [9].

Definition 1. A sequential or extensive form game G is a
tuple (N ;A;H;O; d; p; (≺i) where:

N is a non-empty finite set of players;
A is a non-empty finite set of actions;
H is a finite set of finite sequences of A which is prefix-

closed. That is, the empty sequence ε is a member of H; and
h = a1, ..., ak ∈ H implies that hl = a1, ..., al ∈ H for
all l < k. Each member of His called a node. A node h =
a1, ..., ak ∈ H is terminal if ∀a ∈ A, a1, ..., ak, a /∈ H . The
set of terminal nodes is denoted by Z.

O is the non-empty set of outcomes, d : H \ Z → N
associates a player with each non-terminal node;

51Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

p : Z → O associates an outcome with each terminal node;
For all i ∈ N :≺i is a binary relation over O, modelling

the preferences of player i.
From now on, we fix a sequential game G =

(N,A,H,O, d, p, (≺i)i∈N).
Then, we let Hi = (h ∈ H \ Z | d(h) = i) be the set of

nodes belonging to player i. A strategy si : Hi → A of player
i is a function associating an action with all nodes belonging
to player i, s.t. for all

h ∈ Hi : hsi(h) ∈ H , i.e., si(h) is a legal action from
h. Then, a tuple s = (si) ∈ N associating one strategy with
each player is called a strategy profile. For all strategy profiles
s, we denote by (s) the outcome of s, which is the outcome
of the terminal node obtained when all players play according
to s. Single-agent Reinforcement Learning (RL) concepts are
given first, followed by their extension to the multi-agent case.

2) Markov Decision Process: We formulate the transfer
learning problem in sequential decision making domains using
the following framework of Markov Decision Process. We use
the following definition of MDP as a 5-tuple

< S,A, P,R, γ > (1)

where the set of states, set of actions, transition function
and reward function are described. And

P : S ×A→ Π(S) (2)

is a transition function that maps the probability of moving to
a new state given an action and the current state,

R : S ×A→ R (3)

is a reward function. that gives the immediate reward of taking
an action in a state.

And
γ ∈ [0, 1] (4)

is the discount factor. The gradient formula can be written
as [10]. So the MDP of the agent is described in (1), where s
is the set of states, a is the set of actions, p is the transition
function and r is a reward function. The transition function p
maps the the probability of moving to a new state given an
action and the current states and is shown in (2). The reward
functions r that gives the immediate reward of taking an action
is described in (3). The discount factor γ is bounded as is
shown in 4.

Multi-agent Markov games can be defined by N agents
with a set of global or local observations O1, ..., ON , a set
of actions A1, ..., AN , a set of states S and a state transition
function

T : S ×A1 ×A2 × ...×AN → S (5)

which determines the Markov process. For each agent i,
it interacts with the environment by taking actions following
its policy πQi

: Ai → [0, 1] transformed into the next state
and gets a reward ri : S × Ai → R to judge the policy’s
performance. Each agent tries to maximise the accumulated
discount return

R =
∑

t = 0T γtrt (6)

and T is the expect time horizon and γ is the discount
parameter. In this paper, only local observations are available
for all games.

3) Reinforcement Learning: To solve sequential decision-
making problems, the agent should learn about the optimal
value of each action, defined as the expected amount of future
rewards when taking this action and following the optimal
policy afterwards. Under a given policy π , the true value of
an action a in a state s is

Qπ(s; a) = E[R1 + γR2 + . . . |S0 = s;A0 = a;] (7)

where r ∈ [0; 1] is a discount factor which trades off the
importance of immediate and later rewards. The optimal value
is then Qπ∗(s; a) = maxQ(s; a) . An optimal policy can be
easily learned from the optimal values by selecting in every
state the highest valued action.

4) Q-Learning: The optimal action values can be derived
through Q-learning [11] [12], a form of time learning. The real
problems are too large to learn all the action values in all states
separately. Instead, we can learn a parametric value Q(s; a; qt).
In this way, Q-learning values update the parameters after
taking action At at St and observe the immediate reward Rt+1

so that the resulting state St+1 is then

qt+1 = qt + α(Y Qt −Q(St;At; qt))∇qtQ(St;At; qt) (8)

where q is a scalar value and the target Y Qt is defined as

Y Qt = Rt+1 + γmax
a

Q(St+1; a; qt) (9)

In order to update the current value Q(St;At; qt) towards
a target value Y Qt the agent applies stochastic gradient descent
approach.

5) Deep Q Networks: Deep Q networks (DQN) are multi-
layered neural networks. These networks, for a given state s,
output a vector of action values Qtheta(s; a; q), where θ are
the parameters of the network. If an action space contains m
actions and state space is a n-dimensional vector, the neural
network maps Rn to Rm. In addition, in Deep Q Network there
is target network [13], with parameters θ−. This additional
network is the same as the original network except that its
parameters are copied every τ steps from the online network,
so that θ−t = t, and are not changed on all other steps. So, the
target used by DQN is then

Y DQNt = Rt+1 + γmax
a

Q(St+1; a; θt) (10)

6) Double Q-learning: To prevent overoptimistic value
estimation, we can decouple the selection from the evaluation.
This is the idea behind Double Q-learning [14]. In the original
Double Q-learning algorithm, two value functions are learned
by assigning each experience randomly to update one of the
two value functions, such that there are two sets of weights,
and 0. For each update, one set of weights is used to determine
the greedy policy and the other to determine its value. For
a clear comparison, we can first untangle the selection and
evaluation in Q-learning and rewrite its target 10 as

Y Qt = Rt+1 + γQ(St+1,maxaQ(St+1; a; qt); qt) (11)

The Double Q-learning error can then be written as

Y DoubleQt = Rt+1 + γQ(St+1,maxaQ(St+1; a; qt); qt) (12)

52Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

7) Autonomous agents: the autonomous agent in our ap-
proach has the following main features: - Autonomy -
Reactivity - Proactivity - Communicativeness It is impor-
tant to emphasise that our agents are autonomous not only
during decision-making but also during training. This means
that agents are able to learn and adapt to changes in the
environment without the need for external training.

B. Implementation
To enable the MDP agent to work in Partially Observed

Markov Decision Process (POMDP), its learning algorithm and
decision-making algorithm must be expanded. The drawback
of this approach is that already trained agents and knowledge
gained in the MDP training process can not be reused.

The environment for partially observable dynamic collec-
tive games in the MDP environment is important due to two
reasons: to be able to apply methods and algorithms devel-
oped for classic MDP cases of partially observable dynamic
collective games; and it allows to transfer knowledge between
agents trained in MDP and POMDP.

In this study, we describe the agent environment as MDP.
We are driven by the desire to present the various properties
of the autonomous agent so that the agent is compatible with
the MDP constraints. Moreover, we strive for a generalised
approach to the training of our autonomous agents.

By expanding agents’ space, we present POMDP as MDP.
Such representation is only possible if the following limitations
are met: Partial environmental observability can be eliminated
through communication between agents; dynamic changes in
the environment are reflected by expanding the transition
function.

Our goal is not to expand the environmental model. In
addition, environments represented by POMDP can describe
significantly complex systems of interactions with those de-
scribed with classic MDP. Thus, by expanding the agent’s
state space by adding global states of the medium, the agent
is compatible with the classical MDP environments.

But the extension of the MDP notation leads to some
drawbacks: such as the need to modify learning algorithms s
that the incompatibility of policies resulting from such training
has made the transfer of knowledge between MDP trained
agents enriched by such trainees POMDP environments. In the
case of sequential collective games, describing the environment
as partially observable does not necessarily have to be achieved
by introducing POMDP. The agents themselves are able to
change the environment, but by clearly announcing the changes
in the environment, the agents through communication are able
to bypass the limit of partial observability.

The imposition of restrictions and the expansion of the state
space takes place in two stages:

a set pair < sagent, senv > is created. The so-called pair
is used for a generalised representation of agent states in a
partially observed collective game environment. By imposing
these limitations, we allow the use of MDP solving methods
to be applied in the field of collective games with a dynamic
environment.

We start with expansion of the state space, where state
space is:

S = {si}, i = 1, ..N (13)

so we expand space of agent sagent with the space of the
environment senva: so we form a tuple:

si =< sagent, senv > (14)

where sagent as a result of agent’s actions and senv as a
result of environment changes.

However, to incorporate in natural manner the changes in
environment we also have to expand the transition function:

< s′agent, s
′
env >= T (si) = T (sagent, senv) (15)

so that the agents state is defined as follow:

s′agent = Pr[sagent(t+ 1) = s′agent(t) = s, at = a] (16)

and the environment changes reflect in environment state:

s′env = Te[senv(t+ 1) = s′env(t) = s, at = a] (17)

Thus, by expanding the state space and the transition
function we map the constrained unobservables and dynamic
of the environment into combined state space and extended
transition function.

Each agent may have an individual transition function, so
different agents can interact in a team, but the degree of knowl-
edge transfer depends on how different the transition function
differs between agents. So, to achieve full portability of the
methods, as well as knowledge transfer between individual
agents the function of the transition of the environment is have
to be the same for all agents.

III. EXPERIMENTS AND RESULTS
We gather evidence to support the hypothesis that we will

speed up the learning process for knowledge transfer. It per-
forms the following experiments: for a given map several com-
binations of autonomous agents should be generated. These
agents should be grouped in three main parts: competitive,
cooperative and neutral.

The map is described by its size n×n and the complexity
factor Rc. The map generates random k treasure chests with
treasure. The treasure value is 100. Additionally, k traps are
generated. These pits can not be set right beside the treasures.
If an agent gets into a pit, a -100 prize is generated. As a
result of the complexity factor Rc, obstacles are generated. If
an agent hits an obstacle, he returns to the starting position. The
obstruction generation algorithm does not allow the creation
of a closed area. We only issue instances when the number
of agents is equal to the number of treasures. A game ends
when the agent finds the treasure and takes it, falls in a trap
or makes more than n2 moves. For each move, except the last
agency, agent get a small negative reward (for example -1).

Once the agent starts to learn it use a Reinforcement
Learning approach. As a base algorithm, we use SARSA. For
one agent, we have one pit and one treasure. Solving this
problem is trivial.

If we put one agent in map with one treasure then agent
quickly learns how to get the treasure. A problem arises when
there are two agents and two treasures. Once the first agent
reaches his treasure and takes it then in the map will remain
an ”empty” chest. The second agent, if closer to a treasure
already taken, will try to take it, but the chest is now empty.
So the second agent will go down to a local minimum and end
the game with negative reward.

If the agency is a cooperative then when the first agent
gets its treasure it reports to others that treasure is already

53Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Figure 1. We compare cooperative and competitive strategies in simple
one-goal map. In this map there are only one trap and relatively small

amount of obstacles.

taken. There are several ways to address this issue, so we
need to expand the MDP model. In order to stay in place, the
agent should initially ”change” the environment so that the
”changed” environment is in consistency with a policy that
will lead to the treasure.

We compare three approaches:

• Non-cooperative game with non-cooperative learning:
where the first one has reached treasure ends the game
with a 100 prize, and the next may fall to the local
minimum.

• Cooperative Game with Deliberative Cooperative
Learning: A binary vector for treasure is generated
at the coordinator. In practice, the number of states in
which there is a permanent effect on all possible trea-
sure states is increased. If only the positive reward of
the training process are combined against a sufficiently
high level.

Figure 2. We compare competitive, cooperative and deliberative strategies in
complex multi-goal map. In this map there are plenty of traps and relatively

big amount of obstacles.

As can be seen in Figure 1, if we have only one prize,
then cooperative behaviour has no advantage over competitive
behaviour. In Figure 2 one can see that with the growing
number of agents in the team, the use of the deliberate
approach is better than the rest of the algorithms.

IV. CONCLUSION
A new approach is proposed to transfer knowledge among

agents in collective games.The approach suggested in this
article allows knowledge from pre-trained agent for pre-defined
environments to be used. Our approach allows to speed up
the training of agents. Instead of random values initialisation
of utility or quality function, we can take such values from
an already trained agent. By expanding the state space and
transition function in MDP classes, we allow, subject to certain
limitations, that MDP solving methods be applied to partially
observable and partially dynamic environments. In addition, it
is possible to transfer knowledge into collective applications.

From the results of our research it follows that in the
case of only one treasure, complex cooperative interaction has
no advantages over competitive approaches. In other words,
the use of deliberative techniques in simple systems is over-
engineering. And only with the increasing complexity of the
choice between individual goals, the cooperative behaviour
demonstrates the advantages of the deliberative approach.

REFERENCES
[1] S. Narvekar and P. Stone, “Learning curriculum policies for reinforce-

ment learning,” arXiv preprint arXiv:1812.00285, 2018.
[2] S. Narvekar, J. Sinapov, and P. Stone, “Autonomous task sequencing

for customized curriculum design in reinforcement learning.” in IJCAI,
2017, pp. 2536–2542.

[3] S. Narvekar, J. Sinapov, M. Leonetti, and P. Stone, “Source task creation
for curriculum learning,” in Proceedings of the 2016 International Con-
ference on Autonomous Agents & Multiagent Systems. International
Foundation for Autonomous Agents and Multiagent Systems, 2016, pp.
566–574.

[4] M. Svetlik et al., “Automatic curriculum graph generation for reinforce-
ment learning agents,” in Thirty-First AAAI Conference on Artificial
Intelligence, 2017, pp. 2590–2596.

[5] H. B. Ammar et al., “An automated measure of mdp similarity for
transfer in reinforcement learning,” in Workshops at the Twenty-Eighth
AAAI Conference on Artificial Intelligence, 2014.

[6] P. Fournier, O. Sigaud, M. Chetouani, and C. Colas, “Clic: Curriculum
learning and imitation for feature control in non-rewarding environ-
ments,” arXiv preprint arXiv:1901.09720, 2019.

[7] J. Sinapov, S. Narvekar, M. Leonetti, and P. Stone, “Learning inter-task
transferability in the absence of target task samples,” in Proceedings
of the 2015 International Conference on Autonomous Agents and
Multiagent Systems. International Foundation for Autonomous Agents
and Multiagent Systems, 2015, pp. 725–733.

[8] J. Andreas, D. Klein, and S. Levine, “Modular multitask reinforcement
learning with policy sketches,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
166–175.

[9] M. J. Osborne et al., An introduction to game theory. Oxford university
press New York, 2004, vol. 3, no. 3.

[10] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[11] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, 1992, pp. 279–292.

[12] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, Cambridge, 1989.

[13] V. e. a. Mnih, “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, 2015, pp. 529–538.

[14] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning.” in AAAI, vol. 16, 2016, pp. 2094–2100.

54Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

