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Abstract—The proliferation of unmanned vehicle technologies
has drastically increased their use in multiple domains. In the
maritime domain, unmanned surface vehicles often pose special
requirements for on-board health monitoring and fault mitigation
due to long endurance, which increases the likelihood of failures
when operating without human oversight. Whereas such vehicles
can be equipped with numerous on-board sensors, detecting
actual or impending failures is often more complicated than
simply thresholding values of a sensor reading. In this paper,
we will consider the use of Linear Temporal Logic (LTL) as
a means to specify and then evaluate in real-time, the health
status of an unmanned surface vehicle. This is accomplished
by capturing nominal conditions in LTL formulas and then
evaluating these formulas in real-time. The advantage of LTL
is that it allows capturing value-based as well as time-based
expectations for sensor readings when evaluating system status.
We define a formal language which is an extension of LTL,
and a corresponding software evaluation method with bounded
performance. An example demonstration of the feasibility of the
process is presented.
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I. INTRODUCTION

Monitoring the on-board status of unmanned maritime
vehicles can prove challenging, for many reasons. Maritime
vehicles operate in a relatively difficult environment in which
debris, water spray, corrosion and other factors can degrade
the performance of the system in ways that are not always
immediately apparent. Furthermore, the use of automatic con-
trollers often hides the onset of problems by compensating for
such errors. Addressing such issues is often done by installing
sensors that monitor for error conditions; however, there are
difficulties in properly interpreting their readings. For example,
consider an engine temperature gauge with a pre-set maximum
safe limit. Shutting down the system based on that reading
alone runs the risk of making an incorrect choice should the
gauge itself fail and provide erroneous readings. A different
but equally problematic scenario is gauge failure that displays
a nominal temperature even though the actual temperature
exceeds the safe limit. Because of the propensity of individual
sensor failures, it is necessary the cross reference multiple
sensor readings over time before making a determination of
a fault. When under human supervision, sensor information
is typically aggregated by the vehicle and transmitted to a
monitoring/control station that displays all sensor readings,
pushing the responsibility for making fault assessments and
evaluating mission readiness to the human operator. Not only

is this a difficult task for a human, but it is not transferable to
unsupervised operations during which a vehicle must be able
to make a determination of its ability to accomplish its mission
autonomously.

Our approach is based on using Linear Temporal Logic
(LTL) formulas Section III as a means of capturing nominal
performance of the overall system. One advantage of LTL over
other approaches is that LTL can capture the element of time in
addition to fixed-in-time reading. Use of LTL formulas hence
allows evaluating the behavior of the system over time and as-
sessing if it operates within nominal parameters based on richer
information when compared to point-in-time sensor readings.
A key contribution of the paper is an efficient approach to
evaluating the LTL formulas allowing their evaluation to be
performed on-board the unmanned vessel.

The remaining of the paper is organized as follows: Sec-
tion II overviews related work, Section III describes the LTL
formalism in general and the specific portion used in our
proposed system. Section IV outlines the method by which
LTL formulas are evaluated in real-time based on sensor
readings. Section V presents a test case of using LTL formulas
to identify a nuanced failure in a maritime unmanned system
and Section VI concludes.

II. RELATED WORK

LTL has been used to model correctness properties of
low-level software programs [1] and robotic motion planning
[2] [3]. Safety properties can be falsified but not proved in
general, as in sufficiently complex systems these statements are
undecidable [4]. In practice, this is avoided by using a bounded
variant of LTL known as metric temporal logic. This has been
used to find the trajectory of safety properties over time [5].
Effectively, the decidability problem is avoided by evaluating
safety expressions on a single system trajectory (i.e., a trace)
in real-time.

On-board fault detection is also accomplished by using
Bayesian networks [6], which consider the probability of the
actual fault event as well as the reliability of the sensor, and
thus makes a probabilistic estimate of a fault based on multiple
sensor readings. One drawback is that a priori probability
estimates of faults are needed, as well as relative sensor
reliability weightings.

Another common approach for safety monitoring is the
“residual method”, whereby a real-time simulated version of
the system is compared against the real system [7]. The
residual (e.g., squared error) between the simulated and real
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system is computed; if the residual is too large, this indicates
that some non-optimal state has been reached. A drawback of
the residual approach is that you must model the system, and
any errors in doing so, whether arising from system complexity
or computational difficulty, may lead to false-positives. As
well, it is not obvious how one would in general detect the
exact problem that has occured solely from the residual, and
indeed that problem has been an area of active research.

Our implementation is an alternative to both the residual
and Bayesian methods, whereby one explicitly specifies invari-
ants of how system variables must temporally relate to one
another. In this “LTL approach”, an explicit system model or
simulation is not necessary, allowing it to be applied to systems
intractable or uneconomic to explicitly model.

III. LTL OVERVIEW

LTL is essentially a generalization of Boolean logic, which
adds a capability to model “propositions whose truth or falsity
may depend on time” [8]. Practically, this adds a number
of operators which specify temporal relationships between
propositions. One way of thinking about temporal logic is that
unlike first-order logic, it operates on countably infinite ordered
sets [9] (i.e., sequences). In convention with the literature, we
use the term trace to refer to these sequences, and the term
finite trace when the sequence in question has finite size.

Since LTL is a generalization of Boolean logic, it inherits
by default all of the common logical connectives intrinsic to
that logic, which are enumerated by Table I. The so-called
“application syntax” refers to the form used in application,
chosen due to programming convention, as opposed to the
symbolic form used in presentation of this document.

TABLE I. COMMON LOGICAL CONNECTIVES

Operator Symbol Application Syntax
Not ¬p !p
And p ∧ q p && q
Or p ∨ q p || q

In that predicate logic models quantification (e.g., ∀, ∃),
temporal logic models temporal relationships (e.g., A:, E:).The
best way to understand the LTL formalism is by example.
The arguably simplest temporal operation is A:(p), such that
p is an arbitrary boolean proposition with values across time
(i.e., a trace). This expression is read as “always”, and simply
specifies that p is always true across the trace. Figure 1 shows
a case where A:(p) evaluates to true or false, respectively. In
the first example, A:(p) evaluates to false because there exists
a time in the past where p was false. In the second example,
A:(q) evaluates to true for the opposite reason.

The second most basic operator is E:(p), which is the
dual of A:(p). It is read as “eventually”, and has much the
same mathematical meaning: E:(p) is true if p was true at any
point in time. These two operators are dual due to the relation
¬A:(p) ⇔ E:(¬p). This should make intuitive sense: p was
not always true if, and only if, there was a point at which
p was false. That operator relationship is a salient similarity
between temporal and first-order logic. In much the same way,
Figure 2 exemplifies a set of traces where E:(p) evaluates to
true or false, respectively.

The full set of temporal operators considered in our appli-
cation is described in Table II. In addition to the ones already

A:(p) ⇔ False

T T T T T F T T T...

A:(q) ⇔ True

T T T T T T T T T...

Trace of (p)

Trace of (q)

Figure 1. Always Operator on Two Example Traces.

E:(p) ⇔ True

F F T F F F F F F...

E:(q) ⇔ False

F F F F F F F F F...

Trace of (p)

Trace of (q)

Figure 2. Eventually Operator on Two Example Traces.

described, there exist three other operators whose illustrated
explanation we will omit.

TABLE II. LISTING OF TEMPORAL OPERATORS

Operator Syntax Description
Next N: p p was true one time-step ago.
Always A: p p was always true.
Eventually E: p p was eventually true at some point.
Until p U: q p was true up until just before q was true.
Release p R: q q was true up until p was true, after which q was false.

A. Introduction of Boolean Combinations
The true expressiveness of LTL arises from the ability to

nest logical connectives and temporal operators in arbitrary
ways. Referring back to Figure 1, the result of A:(p ∨ q) is
true, because for every false entry in the trace of p, there exists
a corresponding q entry that is true at the same time. The
expression acted upon by a temporal operator may be any LTL
expression, including other temporal operators. For example,
in Figure 3, we see the intermediate values involved in the
expression E:(A:(p)) operating upon a finite trace. A finite
trace for this example was chosen only to keep the example
simple; it works for general traces equivalently.

The key to understanding this nested temporal expression
is that each temporal operator possesses its own trace (Boolean
values through time), corresponding to whether or not the
subsequence formed by taking the past at each point would
result in a true value. However, the proper result of a temporal
expression is the last value of the trace; This is indicated by the
bottom arrow in Figure 3. A conceptual justification for this
is that the last value of the trace is what the value is “now”.
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T T F F F T T F FT

A:(E:(p)) ⇔ True

T T F F F F F F FT

Finite Trace of (p)

Finite Trace of A:(p)

T T T T T T T T TT

Finite Trace of E:(A:(p))

Figure 3. Nested Operator on Finite Trace.

It is important to note that this interpretation is not unique; it
is equally as valid to take the first value of the trace as “now”
and consider all other trace values to be future values.

B. Introduction of Metric Temporal Logic

A common way to introduce real-time in the (LTL) syntax
is by “replacing the unrestricted time operators by time-
bounded versions” [10]. This allows for temporal operators to
factor a metric of time, and to have essentially a time-bounded
range of concern. In addition to making the logic much more
expressive, it also has important considerations for real-time
evaluation of the logic for practical applications.

We utilize MTL operators by defining some slightly mod-
ified syntax. For example, the time-bounded version of “al-
ways” is A:ts(p) where s, t ∈ Z≥. In our formulation, the 0th

entry corresponds to “now”, and all other entries incrementally
refer to past values. Table III defines the application syntax and
mathematical symbology used to denote the metric temporal
operators.

TABLE III. SYNTAX OF METRIC TEMPORAL OPERATORS

Operator Symbol Application Syntax
Always A:ts(p) A:s:t,(p)
Eventually E:ts(p) E:s:t,(p)
Until pU:tsq p U:s:t, q
Release pR:tsq p R:s:t, q

C. Introduction of State Variables

The final extensions we include in our formalism are basic
arithmetic and relational operations, as well as numerical state
variables. State variables are real numbers which possess a
real-valued trace (i.e., values through time). Effectively, this
allows us to construct expressions which model the temporal
relationship of real-valued variables through time. These values
can represent sensor readings or other on-board state varibles.
A comprehensive example of this capability is illustrated by
Figure 4, which shows the intermediate values associated with
evaluating E:(A:20(x > y)), given that x, y ∈ R. This expres-
sion is equivalent to the existence of a three-unit contiguous
time region during which x is larger than y.

1.5 2 2 1.5 1 0.25 0 0 0.251

E:(A:0:2,(x>y))⇔ True

Finite Trace of (x)

T T T T T T

Finite Trace of E:(A:0:2,(x>y))

1.75 1.5 1.5 2 2.5 1 1.5 6 7.51.25

Finite Trace of (y)

F T T T F F T F FF

Finite Trace of x>y

F F F T F F F F FF

Finite Trace of A:0:2,(x>y)

F F FF

Figure 4. Bounded Temporal Expression on State Variables.

IV. METHOD

Real-time evaluation of the LTL formalism described by
Section III was implemented via a Robot Operating System
(ROS) package developed for the purpose. ROS is a commonly
used middleware for developing robotics applications, provid-
ing algorithms and visualization tools. Some of the basic func-
tionality provided is message-passing, which is implemented
through so-called “ROS topics”, and serves as the basis of the
application.

Given user-specified LTL formulas and associated topic
names, the program parses and evaluates the formulas, pub-
lishing the truth result to the rest of the ROS system. The flow
of inputs and outputs involved in this process is illustrated in
Figure 5. Dotted arrows represent external interfaces to the
system.

ROS

LTL Parser

LTL
Evaluator

Usersupplied
LTL Formulas

RPN StackState Variable
Subscription

LTL Truth Value

Terminal Output

Figure 5. System Diagram of LTL Parser and Evaluator.
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The evaluation of an LTL expression occurs in two steps,
as illustrated in Figure 6. Of note is that explicit construction
of the abstract-syntax tree is not performed during parsing, but
is provided here only for explanation.

1) The expression is parsed while converting from infix
to RPN.

2) Variable tokens are replaced with the corresponding
data, and the stack machine is executed.

E:0:60,(A:(x>y)) && A:15:45,(y+x>z)

&&

E: A:

A:

>

>

x y

+

x y

z

&& E: A: > + x y z A: ...

Result ∈ {T,F}

Figure 6. Generation of RPN Stack Machine.

Parsing is performed via Dijkstra’s shunting-yard algo-
rithm, converting the expression string to an array of Reverse
Polish Notation (RPN) tokens. The evaluator then, on each
arrival of new data, evaluates the RPN expression using a
stack-based postfix evaluation algorithm. Each element of the
stack is a trace, and each operator is a function of one or more
traces.

When a real number is encountered in the execution, it is
interpreted as a trace consisting solely of that real number.
Hence, when a variable is introduced and compared to that
number, the result is a boolean trace representing the result of
that comparison over time. For all arithmetic, relational, and
logical operators the result is simply that operator applied pair-
wise to each element of the two corresponding traces. In the
case of 1-arity operators e.g., !p, the operator is simply applied
to each element of the trace. For temporal operators, each trace
element’s result is a function of the previous elements in the
same way as described in Section III. Each element of every
trace is of real type, and is automatically type cast depending
on the operator.

The internal procedure used to calculate the ’Always’ op-
erator is described by Algorithm 1. If a boundedness operator

Algorithm 1: ’Always’ operator. Resultant array is
true up until xi is false.
1 function A (x);

Input : Array of reals x of size n
Output: Array of reals, size n

2 boolean : α = true;
3 α = false;
4 for xi ∈ x do
5 α = xi ∧ α;
6 xi = R(α);
7 end
8 return x;

is applied the procedure described by Algorithm 1 will operate
only on a contiguous subsequence of the input trace. All non-
zero real numbers (approximated by floating point) are type
cast to true if acted upon by a boolean operator.

We achieve bounded performance by allowing the user
to specify the maximum trace size for each LTL formula.
Once the trace reaches that size, all LTL formulas, whether
they are ultimately bounded or not will only act upon data
within the specified time window of the current time. This is
to ensure that the computation required to evaluate a given
LTL formula is sublinear with respect to the current time of
operation. One future work considered is automatic generation
of an appropriate maximum trace size given an LTL formula.

V. RESULTS

This method was applied to an autonomous sea vessel in
order to detect motor misalignment conditions, which occur
when there exists an offset between the steering control value
and the angle between the vessel and one, or both, of the
motors. The control interface is a four-vector, with each
element controlling the rotation (with respect to the craft)
and effort of each of the two motors respectively. We use the
term “effort” a percentage of the total power available to the
system for acceleration that abstracts away physical details.
For context, a simplified diagram of the physical placement of
the motors can be seen in Figure 7. The controls values are
subject to the constraints defined by (1) and (2).

−100 ≥ EN ≤ 100 (1)

−90◦ ≥ θN ≤ 90◦ (2)

The method was implemented as a configurable ROS com-
ponent, which subscribes to the topics necessary to detect the
suboptimal condition. The implementation allows for multiple
LTL formulas each corresponding to a set of ROS topics.
(3) specifies the LTL formula written to detect the motor
misalignment condition, where |x| specifies the absolute value
operation.

A:0:60,(EL = ER ∧ |SL| < 3 ∧ |SR| < 3 ∧ Vyaw > 0.3) (3)

We may break (3) into three logical clauses. If the follow-
ing three conditions are true for the last sixty time units, the
motor is misaligned.
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Motor 1 Motor 2

θ1, E1  θ2, E2 
90° +90°90°+90°

Figure 7. Diagram of Autonomous Vessel in Overhead View.

1) The efforts from both motors are equal.
2) The steering angles from both motors are less than 3

degrees, and...
3) The yaw-velocity of the craft is above a certain

threshold.

The LTL formula was applied to two simulations of the
autonomous vessel, each under an equivalent control trajectory.
In the first (control) simulation, both motors are correctly
aligned. In the second, the left motor is misaligned by 10◦.
The resultant angular velocity of both 10-second simulations
is illustrated by Figure 8. The difference in yaw velocity, and
particularly the spike at 2 seconds in the misaligned case can
be attributed to the alignment discrepancy.

The control trajectory applied was generated by a simple
driver code. For 2 seconds, an effort value of 50 and 100
was applied to the left and right motors respectively. Then,
for the next 2 seconds, an effort value of 100 was applied to
both motors for 2 seconds. Finally, the vehicle was allowed to
coast under no effort. The control trajectory was chosen to be
deterministic and not unlikely to occur during user operation.

0.0

0.1

0.2

0.3

0.4

0 2 4 6 8 10

Y
aw
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o
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)

Time(s)

Nominal

Misaligned

Figure 8. Angular Velocity of Nominal vs. Misaligned Case.

The resultant boolean signal for both the nominal case and
misaligned case is seen in Figure 9. Due to the to the structure
of the LTL formula used, there is a delay present in the result.
It is possible to decrease the delay, but at risk of causing false-

positives. As in most forms of signal processing, a tradeoff in
delay and accuracy is present.

0

1

0 2 4 6 8 10

L
T

L
 S

ig
n

al

Time (s)

Nominal

Misaligned

Figure 9. LTL Signal of Nominal vs. Misaligned Case.

Instead of integrating the squared error between what is
expected to happen (via a physics model) with what was ob-
served, i.e., the “residual method”, we write specific temporal
scenarios, which would only occur if the condition is present.
The LTL approach allows us to both be more specific about
error detection, and can be deployed in scenarios where an
accurate physics model is intractable to compute.

VI. CONCLUSION AND FUTURE WORK

Autonomous systems require ways to detect, interpret, and
even anticipate problems. On-board sensors provide informa-
tion, but unless there is a trivial interpretation (i.e., battery
voltage dropping below a threshold), it is difficult to make
a singular assessment about on-board status based on several
sensor readings. Furthermore, proper interpretation of sensors
cannot be done only for a single time, but must be done over
a history. Proper sensor values may be temporally correlated
in non-trivial ways. LTL is a convenient formalism for cap-
turing the expected behavior of the system via mathematical
modeling. Failures in the system can be directly inferred from
evaluating these LTL expressions.

In this paper, we have demonstrated a practical LTL
evaluation method that has bounded performance with respect
to temporal formula evaluation at given time-points. For tele-
operated systems, we view this as a compression scheme to en-
code high-dimensional temporal data into a form parsable by a
human operator controlling the system. For on-board systems,
this method effectively addresses the problem of autonomously
capturing the nominal performance of the overall system.

There are three major directions planned for future work
of this method. Currently, maximum trace size is manually
set in order to provide bounded performance. However, it
seems possible to automatically derive the maximum trace
size from a provided LTL formula. As well, memoization of
certain intermediary values may improve on the computational
complexity of the method. Finally, a large part of the effort
expended in using this method is coming up with a LTL
formula that captures the desired behavior. Supervised machine
learning techniques could be used to automatically generate
an appropriate LTL formula given examples of nominal and
“problem” mission trajectories, enabling rapid development of
status assessment systems.
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[8] F. KrÃűger, Temporal Logic of Programs, ser. EATCS Monographs on

Theoretical Computer Science. Springer, 1987, vol. 8.
[9] E. A. Emerson, “Temporal and modal logic,” in Handbook of Theoret-

ical Computer Science. Elsevier, 1995, pp. 995–1072.
[10] R. Alur and T. A. Henzinger, “Logics and models of real time: A

survey,” 1992.

14Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems


