
A Study of the Impact of Evolutionary Strategies on Performance of Reinforcement

Learning Autonomous Agents

Ventseslav Shopov, Vanya Markova

Institute of Robotics

Bulgarian Academy of Sciences

Bulgaria

Email: vkshopov@yahoo.com, markovavanya@yahoo.com

Abstract—Algorithms for evolutionary computation, are ap-
plied in reinforcement learning autonomous agent to discover
high-performing reinforcement-learning policies. Evolutionary
reinforcement-learning approaches allow the agent to find good
representations and cope with partial environment observability.
We have compared the performance of classic reinforcement
learning and evolutionary augmented autonomous agent in area
of sequential games.

Index Terms—Autonomous Agents; Deep Reinforcement
Learning; Evolutionary Computation.

I. INTRODUCTION

In recent years, the accuracy of machine learning methods

has improved significantly thanks to progress in Reinforcement

Learning and Deep Learning. Reinforcement Learning (RL)

is a scientific area where the main topics are the autonomous

learning and acting of an agent. So, agent is an environmental

interacting autonomous entity, studying optimal politics for

sequential decision-making in a wide range of areas both in

the natural and social sciences [1]–[3].

The consistent structure in the modeling of different games

has been dealt with in several theoretical and experimental

studies [4] [5], which sets out strategies that summarize the

results that would arise if cooperation or competition were

chosen as one-off long play strategies.

Deep learning predominates in Reinforcement Learning

over the past few years in games, robotics, natural language

processing, and so on. We have seen breakthroughs like a

deep Q-networks, AlphaGo, asynchronous methods and many

others [6]–[8]. The integration of Reinforcement Learning and

Neural Networks has a long history [9] and recent exciting

achievements of deep learning [10] [11] leads to great benefits

in areas of big data and data science. However, for several

reward functions in RL, employing greedy optimization for a

reward without any incentive mechanism can lead to sticking

to a local minimum [12].

Evolutionary strategies are an approach that helps to find

global minimums. A comprehensive overview of different

Evolutionary Strategies techniques in the field of machine

learning is given in the [13]. Several studies have been done

so far [14] [15], however most of them consider the ES as

an alternative to RL. If the agent greedily takes actions that

maximize reward, the training data for the algorithm will be

limited and it may not discover alternate strategies with larger

payoffs. In this article we study, how evolutionary strategies

could help us help to avoid getting into a local minimum in

Reinforcement Learning training.

In our study, we combine Evolutionary Strategies as they

were described in [13] and Deep Q-Networks [6]–[8] in

Reinforcement Learning to explore the applicability and effec-

tiveness of the agent learning in the field of Sequential Games.

The main purpose of this study is to show that by guided

exploration trough Evolutionary Strategies, the convergence of

the learning process is faster. So the hypothesis in this study is

that Deep Reinforcement Learning with Evolutionary Strate-

gies exploration is more effective than Deep Reinforcement

Learning with e-greedy exploration strategy.

This paper is organised as following, in Section2 we briefly

describe some the underlying theory of Reinforcement Learn-

ing, Q-Learning and Deep Q Networks. In addition, we present

the implementation of our approach. In Section 3 of our paper

we describe the experiments and gather evidence to support

our hypothesis.

II. METHODS AND MATERIALS

A. Theory

1) Reinforcement Learning: To solve sequential decision-

making problems, the agent should learn about the optimal

value of each action, defined as the expected amount of future

rewards when taking this action and following the optimal

policy afterwards. Under a given policyπ , the true value of

an action a in a state s is

Qπ(s; a) = E[R1 + γR2 + . . . |S0 = s;A0 = a;] (1)

where r ∈ [0; 1] is a discount factor which trades off the

importance of immediate and later rewards. The optimal value

is then Qπ∗(s; a) = maxQ(s; a) . An optimal policy can be

easily learned from the optimal values by selecting in every

state the highest valued action.

48Copyright (c) IARIA, 2018. ISBN: 978-1-61208-634-7

ICAS 2018 : The Fourteenth International Conference on Autonomic and Autonomous Systems

2) Q-Learning: The optimal action values can be derived

through Q-learning [16] [17], a form of time learning. The

real problems are too large to learn all the values of action

in all states separately. Instead, we can learn a parametric

value Q(s; a; qt). In this way, Q-learning values update the

parameters after taking action At at St and observing the

immediate reward Rt+1 so that the resulting state St+1 is then

qt+1 = qt + α(Y Q
t −Q(St;At; qt))∇qtQ(St;At; qt) (2)

where q is a scalar value and the target Y
Q
t is defined as

Y
Q
t = Rt+1 + γmax

a
Q(St+1; a; qt) (3)

Updating the current value Q(St;At; qt) towards a target

value Y
Q
t the agent apply stochastic gradient descent ap-

proach.

3) Deep Q Networks: Deep Q networks (DQN) are multi-

layered neural networks.These networks for a given state s

outputs not a single action but a vector of action values

Q(s; a; q), where θ are the parameters of the network. If an

action space containing m actions and state space is a n-

dimensional vector, the neural network maps Rn to Rm. In

addition in Deep Q networks there are target network [7], with

parameters θ−. This additional network is the same as the

original network except that its parameters are copied every τ

steps from the online network, so that then θ−t = t, and are

not changed on all other steps. So, the target used by DQN is

then

Y
DQN
t = Rt+1 + γmax

a
Q(St+1; a; θt) (4)

4) Double Q-learning: The max operator in standard Q-

learning and DQN, in 2 and 4, uses the same values both to

select and to evaluate an action. To prevent this overoptimistic

value estimation we can decouple the selection from the

evaluation. This is the idea behind Double Q-learning [18]. In

the original Double Q-learning algorithm, two value functions

are learned by assigning each experience randomly to update

one of the two value functions, such that there are two sets of

weights, and 0. For each update, one set of weights is used

to determine the greedy policy and the other to determine

its value. For a clear comparison, we can first untangle the

selection and evaluation in Q-learning and rewrite its target 4

as

Y
Q
t = Rt+1 + γQ(St+1,maxaQ(St+1; a; qt); qt) (5)

The Double Q-learning error can then be written as

Y
DoubleQ
t = Rt+1 + γQ(St+1,maxaQ(St+1; a; qt); qt) (6)

5) Evolution Strategies: If the action values contain random

errors uniformly distributed in an interval [−ǫ, epsilon] then

each target is overestimated up to γǫm−1
m+1 , where m is the

number of actions [19]. This could leads to local optima. So,

we need a new approach for achieving the exploration strategy

that will lead us to a global optima. Such kind of algorithms

are Evolution strategies.

Evolution strategies (ES) are a class of black box opti-

mization algorithms inspired by natural evolution [20]. At

every iteration (generation), a population of parameter vectors

(genomes) is perturbed (mutated) and, optionally, recombined

(merged) via crossover. The reward (fitness) of each resul-

tant offspring is then evaluated according to some objective

function. Some form of selection then ensures that individuals

with higher reward tend to produce the individuals in the next

generation, and the cycle repeats.
Recent work from OpenAI outlines a version of NES

applied to standard RL benchmark problems [14]. We will

refer to this variant simply as ES going forward. In their

work, a fitness function f() represents the stochastic reward

experienced over a full episode of agent interaction, where θ

is the parameters of a policy π.

∇φEθ∼φ[f(θ)] =
1

n

n∑

i=1

f(θit)∇φ log pφ(θ
i
t) (7)

where n is the number of samples estimated per genera-

tion. The sample parameters in the neighborhood of t and

determines the direction in which t must move to improve

the expected reward. Instead of the baseline, the Evolutionary

Strategy relies on a large number of samples n to reduce

the variance of the gradient estimate. To avoid bias in the

optimization process due to large scale of reward between

domains, we follow the approach of [14] and rank-normalize

f(θit) before taking the weighted sum.
Optimizing for reward only can often lead an agent to local

optima. NS, however, avoids deception in the reward signal by

ignoring reward altogether. Inspired by natures drive towards

diversity, NS encourages policies to engage in notably different

behaviors than those previously seen.
The algorithm encourages different behaviors by computing

the novelty of the current policy with respect to previously

generated policies and then encourages the population dis-

tribution to move towards areas of parameter space with

high novelty. NS outperforms reward-based methods in maze

and biped walking domains, which possess deceptive reward

signals that attract agents to local optima [12].
Optimization if is performed only regarding the reward can

lead the agent to local optima. With ensuring more exploration

trough Novelty Search, however, avoids deception in signal

rewards, ignoring the overall reward. Inspired by nature’s

desire for diversity, the novelty search approach encourages

politics to behave differently than those that have been seen

before. The algorithm encourages different types of behavior,

calculating the novelty of the current policy for newly created

samples, and then encouraging the population. We use the ES

optimization to compute and follow the gradient of expected

novelty [21]. Given an archive A and sampled parameters

θt = θt+i , the gradient estimate can be computed:

∇φEθ∼N(0,I)[N(θt + σǫ,A)|A] =
1

nσ

n∑

i=1

N(θit, A)ǫi (8)

The gradient estimate shows how to change the parameters

of our current policy increase the average novelty in the

49Copyright (c) IARIA, 2018. ISBN: 978-1-61208-634-7

ICAS 2018 : The Fourteenth International Conference on Autonomic and Autonomous Systems

distribution of our parameters. We determine the progress of

the gradient of A at the beginning of an iteration and is updated

only when iteration is at the end. We add only a behavioral

characteristic corresponding to each parameter vector, since

adding these for each sample would cause the archive to be

sipped and delay the calculation of the closest neighbors. To

encourage extra diversity and reap the benefits of population

surveys, we create two populations of agents that we will call

followers as pursuers. Each agent, characterized by a unique

identification number, is rewarded as being different from all

previous agents in the archive (ancestors, other agents and

ancestors of other agents). So, we have numerous agents in

both populations, but we have not done a thorough analysis

of how this variable parameter influences efficiency in different

areas.

The choice of M depends on the domain, and that iden-

tifying which action is a beneficial for future research. We

initialise the arbitrary parameters of M and, at each iteration,

select one for updating. For our experiments, we choose which

one to move from a discrete probability distribution as a

function of the novelty of m. In particular, for each iteration of

agent parameters, the probability of each being selected P (m)
normalized by the sum of novelty in all policies is calculated

[21]:

P (θm) =
N(θm, A)

∑M

j=1 N(θj , A)
(9)

After selecting a certain individual from the population,

we compute the gradient of expected novelty with respect

to current parameter vector, and perform an update step

accordingly as it :

θmt+1 ← θmt + α
1

nσ

n∑

i=1

N(θit, A)ǫi (10)

Where n is the number of sampled perturbations to mt ,

is the step size, and i;mi = mt + i , where θi ∈ N(0; I) .

Once the current parameter vector is updated, b(mt + 1) is

computed and added to the shared archive A.

B. Implementation:

We generate a discrete map with predefined dimensions.

Then randomly place obstacles on the map. The next stage

generates two lists: one with persecutors and one with prey.

We study the influence of the number of pursuers and prey on

the speed of learning learning. We also study the effect of the

number of obstacles on the speed of learning. And also we

study the influence of the amount of reward on the ”elusive”

movements of pursuers on the speed of training.

In our case, a group of predators pursues a group of victims

(evaders). Since in the classic Pursue-evasion process, we

study our problem as an MDP task. All members of both

groups act after all members of the other group have commit-

ted their actions. Therefore, we could describe our approach as

a classical sequential game. The pursuers and evaders have a

short range of views, so they must move continuously. We

determine the stochastic behavior of both groups imposing

some additional rules. With a small probability αevader will

miss the opportunity to leave unnoticed and will give some

handicap to the pursuer. On the other hand, the pursuer with a

low probability αpursuer ”will lose” the evader from the site

and, thus, give the prey a chance to evade.

In general, predators have a small negative reward for every

”empty” step, and the victim has a small positive reward for

every ”evasion”. If the pursuer ”catches” prey, her reward is

significantly increased (by almost two orders of magnitude),

and the victim’s reward will be reduced by the same amount.

Groups are implemented on two lists: one for predators and

one for evaders. When pursuers catch their victim a new prey

is generated in a random place on the map, but out of the field

of view of the pursuers.

In our case, a group of predators pursues a group of

victims (malefactors) Classical reinforcement training consists

in finding the best policy for the entire area with high details.

Our approach is based on the following:

• Classical reinforcement training with e-greedy

• Reinforcement Learning with Evolutionary Strategy

III. EXPERIMENTS AND RESULTS

We gather evidence to support the hypothesis that using the

Evolutionary Strategy will significantly speed up the training

process of Agent’s Reinforcement Learning. Hence, we claim

that building of Multi Agent Deep Reinforcement Learning

with Evolutionary Strategies is more efficient than Classical

reinforcement training with e-greedy.

We perform the following experiment: For a given, map we

should find an optimal autonomous agent group behaviour.

The map is described by its size nxn and complexity rate Rc.

We have two methods: Multi Agent Classic Reinforcement

Learning with e-greedy exploration and Multi Agent Deep

Reinforcement Learning with with Evolutionary Strategies.

And two cases:

• case study I - we have the map with almost no obstacles

• case study II - we have map with big amount of obstacles

We do the following task: for a given map we need to find

optimal behaviour of pursuers. The agent’s task is to travel

on a chased the maximum preys for given amount of time.

The environment is represented as a two-dimensional obstacle

map. The map is described by its size nxn and the rate of

complexity Rc.

We have two cases: in the one case, we have a small number

of obstacles, which leads to a low probability of stranding

the pursuers. Thus, even at low e-greedy values, the learning

process should quickly reach the maximum reward. On the

other hand, we investigate the behavior of agents pursuing the

preys in a map with a large number of obstacles. In this case, if

a greedy strategy is used, it is highly probable that the learning

process will get stuck at a local minimum.

In both cases, the number of hunters and loot is the same,

arguing that the only difference is the number of obstacles.

Hence, the difference between the two experiments is the

probability of falling into a local minimum. From Figure

50Copyright (c) IARIA, 2018. ISBN: 978-1-61208-634-7

ICAS 2018 : The Fourteenth International Conference on Autonomic and Autonomous Systems

0 25 50 75 100 125 150 175
epochs

0

5

10

15

20

25

30

re
wa

rd

RL with ES
RL2

Fig. 1. We study the performance of Reinforcement Learning with
Evolutionary Strategies(RL with ES) and classic Reinforcement Learning on

map with low number of obstacles.

0 25 50 75 100 125 150 175
epochs

0

5

10

15

20

25

30

35

re
wa

rd

RL with ES
RL

Fig. 2. We study the performance of Reinforcement Learning with
Evolutionary Strategies(RL with ES) and classic Reinforcement Learning on

map with big amount of obstacles.

1, it is believed that in maps with a low probability of

trapping the pursuers and respectively a low probability of

getting into a local minimum, the classic approach is better.

However, in the event of a large number of obstacles (see

Figure 2), the probability of jamming between the obstacles

leads to a significantly higher probability of falling into a

local minimum. In this case, the approach with evolutionary

strategies is significantly better.

IV. CONCLUSION

The impact of different factors for building of Multi Agent

behaviour is discussed in this paper. Two different approaches

are presented: Multi Agent Reinforcement Learning (MARL)

and Multi Agent Deep Reinforcement Learning (MADRL).

The impact of four factors on Reinforcement Learning per-

formance has studied. As a measure of performance is used

the summary reward. In all case studies, the Multi Agent

Deep Reinforcement Learning demonstrate significantly better

performance than Multi Agent Reinforcement Learning.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[2] C. Szepesvári, “Algorithms for reinforcement learning,” Synthesis lec-
tures on artificial intelligence and machine learning, vol. 4, no. 1, 2010,
pp. 1–103.

[3] D. P. Bertsekas, Dynamic programming and optimal control 3rd edition,
volume II. Belmont, MA: Athena Scientific, 2011.

[4] W. E. Walsh, R. Das, G. Tesauro, and J. O. Kephart, “Analyzing complex
strategic interactions in multi-agent systems,” in In AAAI-03 Workshop
on Game Theoretic and Decision Theoretic Agents, 2002, pp. 109–118.

[5] M. P. Wellman, J. Estelle, S. Singh, Y. Vorobeychik, C. Kiekintveld, and
V. Soni, “Strategic interactions in a supply chain game,” Computational
Intelligence, vol. 21, no. 1, 2005, pp. 1–26.

[6] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International Conference on Machine Learning,
2016, pp. 1928–1937.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, 2015, pp. 529–538.

[8] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, 2016, pp. 484–489.

[9] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, 2015, pp. 85–117.

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, 2015, pp. 436–442.

[11] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

[12] J. Lehman and K. O. Stanley, “Novelty search and the problem with
objectives,” in Genetic programming theory and practice IX. Springer,
2011, pp. 37–56.

[13] D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette, “Evolutionary
algorithms for reinforcement learning,” Journal of Artificial Intelligence
Research, vol. 11, 1999, pp. 241–276.

[14] T. Salimans, J. Ho, X. Chen, and I. Sutskever, “Evolution strategies
as a scalable alternative to reinforcement learning,” arXiv preprint
arXiv:1703.03864, 2017.

[15] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune, “Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning,”
arXiv preprint arXiv:1712.06567, 2017.

[16] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, 1992, pp. 279–292.

[17] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, Cambridge, 1989.

[18] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning.” in AAAI, vol. 16, 2016, pp. 2094–2100.

[19] S. Thrun and A. Schwartz, “Issues in using function approximation
for reinforcement learning,” in Proceedings of the 1993 Connectionist
Models Summer School. Hillsdale, NJ. Lawrence Erlbaum, 1993, pp.
255–264.

[20] I. Rechenberg, “Evolutionsstrategien,” in Simulationsmethoden in der
Medizin und Biologie. Springer, 1978, pp. 83–114.

[21] E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. O. Stanley, and
J. Clune, “Improving exploration in evolution strategies for deep re-
inforcement learning via a population of novelty-seeking agents,” arXiv
preprint arXiv:1712.06560, 2017.

51Copyright (c) IARIA, 2018. ISBN: 978-1-61208-634-7

ICAS 2018 : The Fourteenth International Conference on Autonomic and Autonomous Systems

