
Digital Management of Multiple Advertising Displays

Arménio Baptista, Alina Trifan, António Neves
DETI/IEETA

Universidade de Aveiro
Aveiro, 3810-193

{armenio, alina.trifan, an}@ua.pt

Abstract—The technological boom that we have been experiencing
in the last decade has impacted the retail sector in many ways.
Captivating customers through smart advertising, engaging them
in the retail process and enhancing their experience has been a
long-time desideratum in this industry. Recent technology makes
it possible to follow unprecedented approaches for achieving these
goals. In this paper, we present a strategy based on a series of
autonomous stations (either static, such as monitors, or mobile,
such as autonomous robots) that can be used in any type of
multimedia advertising across one or multiple entities. We present
preliminary developments of this concept in an attempt to impact
modern advertising. As a final product, this project aims to
produce an autonomous system capable of displaying multimedia
contents across several monitors.

Keywords–Advertising; Cloud-based platform, Digital Contents
Management; Multimedia.

I. INTRODUCTION

One of the keys to the success of the retail industry passes
by advertising to the general public, mainly by using marketing
strategies [1]. The technological evolution, more and more,
has an important role in the marketing and the advertise of
products [2]. In [3], experimental results show that sales in
hypermarkets are enhanced when digital displays are used.

The main focus of this paper is to propose a solution to
control the multimedia resources and display them using a
unique platform which provides the management and manip-
ulation over the resources in order to produce a final content
to better fit the monitor associated to a terminal. This solution
allows the control, maintenance, composition and division of
the multimedia resources across the stations, displaying the
information that the user selects into the different terminals.
It also proposes a solution to control the permissions to
the resources for each user logged in the platform. In order
to handle the multimedia files uploaded by the users, the
solution proposes the use of the FFmpeg library [4], which
has compatibility with all major formats and codecs.

As it is a project in development, there are much aspects to
improve and features to add. However, this paper exposes all
the decisions made until date, starting with a system overview,
following the management of the multimedia resources and
the users and finally some preliminary results. This paper is
structured in three other sections.

Section II overviews the methods that we followed in
implementing this system. We present preliminary results in
Section III and we assess the importance of this work and
discuss future work directions in Section IV.

II. METHODOLOGY

The main goal of this project is to design a system capable
to store, manipulate and manage multimedia contents uploaded
by the users. This involves three major agents: the Web
server, the control dashboard and the monitors, resulting in
an architecture, as presented in Figure 1.

Figure 1. Proposed system architecture.

This architecture allows the Web server to control all the
monitors (using HTTP requests to communicate) and expose a
Web site so the users can manage them. Making the Web server
a unique point of communication, the synchronization of the
updates made by the users and the monitors is immediate.

A. Resources division
In order to split and organize the multimedia resources,

a solution of three components is proposed, as described in
Figure 2:

• Contents: base element of the multimedia resources,
which is basically an image or video uploaded by the
users.

• Timelines: set of Contents with a predefined se-
quence, much similar to a video composed of different
contents. If the Content is an image, the user may
define the duration of the image to be shown in the
Timeline.

• Views: set of Timelines with a predefined sequence
that is associated to a physical terminal. The final
product to be displayed on the monitor and the only

36Copyright (c) IARIA, 2018. ISBN: 978-1-61208-634-7

ICAS 2018 : The Fourteenth International Conference on Autonomic and Autonomous Systems

Figure 2. Resources composition.

way to create a View is with the connection of a
terminal.

This division between the resources gives freedom to the
users to create and dispose multimedia contents into any order
and consequently display them. It also allows the users to reuse
the Timelines in different Views without the need to recreate
them again.

B. Users
In order to restrict the improper access of the users to the

multimedia resources, a login system is proposed with different
credentials and permission levels of the users. Therefore,
before accessing the control dashboard, the system asks for
the login credentials of the user. Django [5] has an user
authentication system, which facilitates the implementation.

To control the users, the system has an administrator
superuser that has access to a section in the dashboard that
allows the management of the users (creation, edition, deletion
and permissions). Then, the system has two types of users:

• Administrator: user responsible to manage the users
access to the dashboard and their permissions for each
resource. Additionally, the manager can add, edit and
delete any resource, having no restrictions for his
actions.

• Regular User: user with permissions predefined by
the administrator and only with access to the resources
predefined by those permissions.

C. Permissions
Given a scenario where the system is deployed in a shared

environment between different users and the discretion of
the resources needs to be maintained in order to block the
modification of resources not owned by that user, a solution
of permissions with two levels is proposed:

1) Resource level: The resource level has three different
types of permissions: Contents, Timelines and Views. This
permission defines what resources the user can create and edit
and only the allowed ones will be displayed in the interface
of the corresponding user.

2) Object level: The object level is basically what resources
the user can access. By default, the user only has access to the
resources he has created, although, the administrator can give
access to a certain resource to a user.

The users with Timelines and Views permissions can view
all the underlying resources in order to create a Timeline or
View. To create a View, the user can use any of the underlying
Timelines and to create a Timeline, the user can use any of
the underlying Contents.

These blocking permissions allow, not only the creation
of users to a specific task, but also provide the cooperation
of users to a final multimedia product. As an example of
specific tasks we can think of giving Content and Timeline
permissions (Resource level) to a designer responsible to
provide multimedia contents to the system or giving View
permissions to a user responsible to the monitors inside of
a specific building.

D. Website - control dashboard
In order to facilitate the control over the system, a website

using the Django web framework was created. This dashboard
gives control over four main resources: Contents, Timelines,
Views and Users. Only the users with permissions over the
resources can access and control the respective resource and
only the administrator can edit these permissions and have
access to the Users page. However, a regular user can edit
his/her own profile information.

E. Image and video handling
Developing a system that handles multimedia contents

needs the proper handling of the uploaded files. The system
supports two types of files:

• Image: JPEG [6], PNG [7] among other image file
formats supported by ffmpeg.

• Video: AVI and MP4 video file formats, among other
video/audio containers supported by ffmpeg. All the
video codecs supported by ffmpeg can be used (ex.
H.264 [8], H.265 [9], just to name a few).

The upload of the files is made with the File Upload of
Django and saved in a media directory of the server.

1) View creation: Upon the configuration of a View, if it
has Timelines associated, the server begins the process to cre-
ate the MP4 file associated to the view. This file is compressed
using the H.264 standard [8], encoded with YUV420 at 25
frames per second, as all subjacent videos of the Timeline.

To better fit the resolution associated to the monitor, all the
Contents are adapted to this resolution. In other words, when
a View is configured with Timelines associated, the system
goes through all the Contents associated to these Timelines
and makes the changes needed to fit the screen resolution.

To create, manipulate and merge these files, the FFmpeg
library was chosen since it has compatibility with all major
video and image formats. The FFmpeg library adapts the
Contents using mostly padding and resize transformations.
When iterating over the frames of the Contents, the FFmpeg
library resizes the frames which have different size from the
resolution and applies padding to keep the Contents aspect
ratio.

F. Connecting a monitor
The interaction between the different terminals (a single

board like a Raspberry PI [10] and a monitor) and the Django
server is made with HTTP requests from a terminal. In order

37Copyright (c) IARIA, 2018. ISBN: 978-1-61208-634-7

ICAS 2018 : The Fourteenth International Conference on Autonomic and Autonomous Systems

Figure 3. Monitor lifecycle.

to do this, a Python script was created and is responsible to
control the terminal and its lifecycle (see Figure 3). When the
terminal starts, the script runs on boot and goes through a
series of steps in order to register in the server (if it is the first
time connecting) and download the video.

Firstly, the terminal sends a HTTP POST request method
with some information of his own:

• MAC address: this information allows the server to
distinguish the different terminals and allows the user
to know which View is associated to a terminal.

• Screen resolution: the resolution is used by the server
to adapt the Contents associated with some View to
its screen resolution.

The server, receiving this information, checks if the MAC
address already exists and returns the path in the server to the
video corresponding to that View.

Secondly, the terminal tries to download the video from the
server with a HTTP GET request. If it fails (if the View wasnt
configured yet or the server is down), the terminal waits a short
time, thirty seconds by default, and tries to download it again.
This loop is repeated until the video successfully downloads.

Finally, the video is played in loop and the terminal enters
in a loop which keeps sending HTTP GET requests (with a
time interval) to the server to check for changes in the video.
This polling requests ensure if changes are detected, the video
being displayed in the monitor is updated.

III. RESULTS

While the work presented in this paper is a project in
development, preliminary results regarding the current stage of
development are presented in this section in order to confirm
the effectiveness of the system.

A. Dashboard
As noticeable in Figure 5, the dashboard has a top Navi-

gation bar, which has a Dropdown button so the user can edit
his personal informations or logout, and a left Navigation bar
with four possible navigations. This left Navigation bar only
shows the possible navigations to which the user has access.
When accessing a resource from the left Navigation bar, one
of the pages presented in Figure 5 (except User) is displayed.
This page allows the visualization over the existing Contents,
Timelines or Views that the user has access. It also allows to
create (except for Views as explained in Section II-F), edit or

delete a resource and, if the user is the administrator, to edit
the permissions (object level) of the users to that resource.

Figure 4. Edition of a created Timeline.

When editing a resource, a form is displayed so the user
can edit the data associated to that resource, as shown in
Figure 4. In the case of Contents, the name can be edited
and a file upload button allows a new upload. However, when
editing a Timeline or a View, a table with the Contents or
Timelines associated to the resource, respectively, is displayed.
This table allows the addition of objects from the dropdown
button. Moreover, the objects from the table can be dragged
and dropped into the intended order. When editing a Timeline,
the table also has a duration input field for each image object.
By filling in this field the user can specify the intended duration
of each image that will be part of the timeline. In addition, a
preview window displaying the video reproduced from the last
Timeline submission is available.

B. Permissions

The platform that we propose supports user permissions
at two distinct levels. On one hand, at the level of the
resources and on the other hand, at the level of the objects. The
administrator manages these permissions through the graphical
interface as we will describe next.

1) Resource level: When creating a user, the administrator
fills a form with some information associated to the user as
in Figure 6. Note that this form has three Checkbox fields,
each one for a resource (Content, Timeline and View). These
Checkboxes are the permissions at resource level of the user
being created and will define which resources the user will
have access in the left Navigation bar.

38Copyright (c) IARIA, 2018. ISBN: 978-1-61208-634-7

ICAS 2018 : The Fourteenth International Conference on Autonomic and Autonomous Systems

Figure 5. Visualization of Contents, Timelines and Views.

Figure 6. User edition with resource level permissions.

2) Object level: In Figure 5, there is a padlock for each
object of the table. This padlock redirects to a page where the
administrator edits the permissions over the respective object,
as in Figure 7. This page lists all users with resource level
permission over the resource of the object, so the administrator
can grant access to that object.

Figure 7. Modification of object level permissions of a Content.

C. Multimedia contents transformation
In Figure 8, it is possible to verify the transformations of

FFmpeg. The figure shows five frames of a Timeline with three
Contents (an image, a video and another image) with these
resolutions:

• Image 1: 1000x665 px
• Video: 1280x720 px

• Image 2: 6000x1977 px

Before explaining the FFmpeg transformations to these
5 frames, it is important to refer 3 effects: letterboxing,
pillarboxing and windowboxing [11]. Letterboxing consists
in the transformation of frames with widescreen aspect ratio
(16:9) to a standard-width video ratio (4:3) while preserving
the frames original aspect ratio. This transformation consists
of a padding transformation both on top and bottom of the
frames.

On the contrary, the pillarboxing effect, consists in the
transformation of a standard-width video format into a
widescreen aspect ratio by applying padding into the frames
both on left and right.

Windowboxing consists of the combination of both effects:
letterboxing and pillarboxing. This is noticeable when the
frames of a video are centered in the screen with a padding
effect all around them. This happens when the resolution of the
screen is bigger than the frames and no resize transformation
is used.

Using FFmpeg with the arguments:

• ”scale” and ”force original aspect ratio”
• ”pad”

makes it is possible to apply the intended transformations
to the frames.

The ”scale” parameter allows to specify the scale
resolution to apply into the frames, while using the
”force original aspect ratio” to maintain the original aspect
ratio of the images. This transformation will upscale the
frames, if the resolution of the screen is bigger than the
frames, and downscale, in the opposite situation. The ”pad”
parameter allows to apply padding to the frames after the
scale transformation. When the frames of the Contents have
a different aspect ratio of the screen, the letterboxing and
pillarboxing are perceptible.

Back to Figure 8, the example uses the FFmpeg to fit a
monitor with a 1366x768 resolution which has a 1.78:1 aspect
ratio. In Image 1 from Figure 8, as the resolution of the image
is smaller than the screen, FFmpeg resizes the frames using
an upscaling transformation to fit the screen. Although, as the
aspect ratio of the image (1.5:1) is smaller than the screen
(1.78:1), FFmpeg also applies a padding effect, resulting in a
pillarboxing effect.

In the Video from Figure 8, FFmpeg resizes the frames
using an upscaling transformation. In this case, the aspect ratio
of the frames (1.78:1) and the screen (1.78:1) are equal, so

39Copyright (c) IARIA, 2018. ISBN: 978-1-61208-634-7

ICAS 2018 : The Fourteenth International Conference on Autonomic and Autonomous Systems

Figure 8. Expansion of a Timeline with five frames from three Contents (Image 1 (fox), Video (tree frames) and Image 2 (mountain landscape).

FFmpeg doesn’t apply the padding effect and the frames fit
perfectly the screen.

Image 2 from Figure 8 is exactly the opposite of Image
1. The resolution of the frames is much bigger than the
screen and FFmpeg resizes the frames, but using a downscale
transformation. As for the padding effect, the frames of the
image (3:1) have a much bigger aspect ratio than the screen
(1.78:1), so FFmpeg applies padding to the frames, resulting
in a letterboxing effect.

With these FFmpeg arguments, the result will never reach
a windowboxing effect, because the ”scale” parameter will
always try to resize the frames to fit the screen and the ”pad”
parameter will compensate the difference between the aspect
ratios, either with letterboxing or pillarboxing effects. Using
the FFmpeg upscaling transformation over the frames of the
Contents may have influence in the final quality of the frames
if the resolution of the image is much smaller than the screen,
which forces the users to upload Contents with an appropriate
resolution.

D. Final result

Figure 9. Monitor displaying a video using a Raspberry Pi to communicate
with the system.

In Figure 9, we can see a real Full HD monitor (1920x1080
px of resolution and a 1.78:1 aspect ratio) with a Raspberry
PI single board connected to the developed system displaying
the final output, the video stream for that View.

IV. CONCLUSION

The main goal of this paper was to propose a solution
to manage multiple multimedia contents in order to display
them in multiple monitors. The system we have presented, as
a whole, is operational and ready to manage the upload of
multimedia contents and display them. It implies the existence
of a computer to host the server (with proper image and video
processing capability), monitors to display the contents, single

boards to connect to the monitor (like a Raspberry Pi) and,
of course, network connection between the server and the
terminals.

A global overview over the results, highlights some features
that we intend to improve, as future work. Such features are:

• The aspect of the dashboard that needs to be more
appealing and intuitive to the user and display for
example, snapshots of the Contents;

• A more advanced Timeline editor in order to give the
user a greater control over the sequence of Contents;

• The capability to fetch information in real time about
the monitor in order to show the status in the dash-
board; Moreover, making it possible to run certain
commands over the monitor, like turn on and turnoff
would be a desired improvement of this work.

In the future, as the system improves, we intend to ex-
pand the supported formats of Contents, like supporting some
presentation formats (PDF or PowerPoint), as well as audio
files. This enhancement of the system would eventually imply a
reformulation of Timelines creation in the dashboard. Another
interesting feature that we plan to develop is the support for the
interaction between the target audience and the system, either
by a physical contact or even by voice control. This interaction
would allow the user to pause and skip contents, for example.

While this is still a project in development, the preliminary
results are optimistic and encourage us to improve the current
solution by extending several of its features, as detailed.

ACKNOWLEDGMENT

This work was partially funded by FEDER (Programa
Operacional Factores de Competitividade - COMPETE) and
by National Funds through the FCT - Foundation for
Science and Technology in the context of the project
UID/CEC/00127/2013.

REFERENCES
[1] A. Di Rienzo, F. Garzotto, P. Cremonesi, C. Frà, and M. Valla,

“Towards a smart retail environment,” in Adjunct Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2015 ACM International Symposium
on Wearable Computers. ACM, 2015, pp. 779–782.

[2] N. I. Bruce, B. Murthi, and R. C. Rao, “A dynamic model for
digital advertising: The effects of creative format, message content,
and targeting on engagement,” Journal of Marketing Research, vol. 54,
no. 2, pp. 202–218, 2017.

[3] A. L. Roggeveen, J. Nordfält, and D. Grewal, “Do digital displays
enhance sales? role of retail format and message content,” Journal of
Retailing, vol. 92, no. 1, pp. 122–131, 2016.

[4] “FFmpeg,” http://ffmpeg.org/, accessed: 2018-04-18.
[5] “Django,” https://djangoproject.com, accessed: 2018-04-18.
[6] G. K. Wallace, “The jpeg still picture compression standard,” IEEE

transactions on consumer electronics, vol. 38, no. 1, pp. xviii–xxxiv,
1992.

40Copyright (c) IARIA, 2018. ISBN: 978-1-61208-634-7

ICAS 2018 : The Fourteenth International Conference on Autonomic and Autonomous Systems

[7] C. Wilbur, “Png: The definitive guide,” Journal of Computing in Higher
Education, vol. 12, no. 2, pp. 94–97, 2001.

[8] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the h. 264/avc video coding standard,” IEEE Transactions on circuits
and systems for video technology, vol. 13, no. 7, pp. 560–576, 2003.

[9] V. Sze, M. Budagavi, and G. J. Sullivan, “High efficiency video coding
(hevc),” Integrated Circuit and Systems, Algorithms and Architectures.
Springer, vol. 39, p. 40, 2014.

[10] “Raspberry PI,” https://www.raspberrypi.org/, accessed: 2018-04-18.
[11] C. Poynton, Digital video and HD: Algorithms and Interfaces. Elsevier,

2012.

41Copyright (c) IARIA, 2018. ISBN: 978-1-61208-634-7

ICAS 2018 : The Fourteenth International Conference on Autonomic and Autonomous Systems

