
D-Joseph: An Efficient Approach for Dynamic Software Reconfiguration in Data

Stream Processing Systems

Rafael Oliveira Vasconcelos1,2, Igor Vasconcelos1,2, Markus Endler1
1Department of Informatics Pontifical Catholic University of Rio de Janeiro (PUC-Rio)

Rio de Janeiro, Brazil

email: {rvasconcelos, ivasconcelos, endler}@inf.puc-rio.br
2Department of Informatics

University Tiradentes (UNIT)

Aracaju, Brazil

Abstract— While many data stream systems have to provide

continuous (24x7) services with no acceptable downtime, they

also have to cope with changes in their execution environments

and in the requirements that they must comply (e.g., moving

from on-premises architecture to a cloud system, changing the

network technology, adding new functionality or modifying

existing parts). On one hand, dynamic software

reconfiguration (i.e., the capability of evolving on the fly) is a

desirable feature. On the other hand, stream systems may

suffer from the disruption and overhead caused by the

reconfiguration. Due to the necessity of reconfiguring (i.e.,

evolving) the system whilst the system must not be disrupted

(i.e., blocked), consistent and non-disruptive reconfiguration is

still considered an open problem. This paper presents and

validates D-Joseph, a non-quiescent approach for dynamic

software reconfiguration that preserves the consistency of

distributed data stream processing systems. Unlike many

works that require the system to reach a safe state (e.g.,

quiescence) before performing a reconfiguration, the proposed

approach enables the system to smoothly evolve (i.e., be

reconfigured) in a non-disruptive way without reaching

quiescence. The evaluation indicates that the proposed

approach supports consistent distributed reconfiguration and

has negligible impact on availability and performance.

Furthermore, the implementation of the proposed approach

showed better performance results in all experiments than the
quiescent approach and Upstart.

Keywords-Online Dynamic reconfiguration; Adaptability;

Software adaptation; Data Stream Processing.

I. INTRODUCTION

Many stream processing systems have to provide services
for 24x7, with no acceptable downtime [1]. However, they
commonly have to cope with changes in their execution
environment (e.g., moving from on-premises architecture to
cloud architecture or changing the network technology) and
in the requirements that they must comply with [2] (e.g.,
adding new functionality or modifying existing parts). The
authors [2] further emphasize that changes are hard to predict
at design time. The continuous service execution makes it
difficult to fix bugs and add new required functionality on-
the-fly as this requires non-disruptive replacement of parts of
a software version by new ones [3]. Ertel and Felber [3]
further explain that prior approaches to dynamic
reconfiguration (a.k.a. dynamic adaptation, live update or

dynamic evolution) require the starting of a new process and
the transfer of states between the components being swapped
[4]. However, some authors argue that the cost of redundant
hardware may be considerable high [5].

Despite extensive research in dynamic software
reconfiguration, safe reconfiguration is still an open problem
[1]. A common approach is to put the component that has to
be updated into a safe state, such as the quiescent state [6],
before reconfiguring the system [7]. Thus, a safe
reconfiguration must drive the system to a consistent state
and preserve the correct completion of on-going activities
[2]. At the same time, dynamic reconfiguration should also
minimize the interruption of the system’s service (i.e.,
disruption) and the delay with which the system is updated
(i.e., its timeliness) [6]. Furthermore, coordinating (i.e.,
orchestrating) the restart of all the exchanged or added
components is very challenging if the system’s service must
not be interrupted [3].

Aligned with the aforementioned requirements,
applications in the field of data stream processing require
continuous and timely processing of high-volume of data,
originated from a myriad of distributed sources, to obtain
online notifications from complex queries over the steady
flow of data items [8]. Intelligent Transportation Systems,
Network Monitoring, Stock Exchange, Smart Cities, Smart
Energy management and logistics are some examples of
application areas that require processing data streams. Thus,
while dynamic reconfiguration is a desirable feature, such
systems shall not suffer performance degradation due to the
potential disruptions and overhead caused by the
reconfiguration.

In order to enable dynamic software reconfiguration for
stream based systems, our work allows the concurrent
execution of multiple versions of a software component.
Concisely, the proposed approach is based on the idea that a
tuple (a.k.a. message) has to be entirely processed by a
specific version of each component. However, there is no
problem in updating a component C while a tuple T traverses
the system as long as the system keeps the previous and the
new versions of C (and of its dependent components) until
all previous' version tuples are flushed (i.e., draining the
tuples between the source and sink nodes).

The remainder of the paper is organized as follows.
Section II presents an overview of the key concepts and
system model used throughout this work. Section III delves

92Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

into details D-Joseph. Section IV summarizes the main
results of the assessment conducted to evaluate the proposal.
Finally, Section V reviews and discusses the central ideas
presented in this paper.

II. FUNDAMENTALS

This section presents the main concepts about data
stream processing, as well as our system model and related
works.

A. Data Stream Processing

Data stream processing is a computational paradigm [9]
that is focused at sustained and timely analysis, aggregation
and transformation of large volumes of data streams that are
continuously updated [8]. Data stream is a continuous and
online sequence of unbounded items where it is not possible
to control the order of the data produced and processed
[10][11]. Thus, the data is processed on-the-fly as it travels
from its source nodes downstream to the consumer nodes,
passing through several distributed processing nodes [12],
that select, classify or manipulate the data. This model is
typically represented by a graph where vertices are source
nodes that produce data, operators that implement algorithms
for data stream analysis, or sink nodes that consume the
processed data stream, and where edges define possible data
paths among the nodes (i.e., stream channels).

In order to cope with the high processing demand, stream
processing systems typically employ Single Instruction,
Multiple Data (SIMD) parallelism and use multiple instances
of an operator (i.e., processing units), where each operator
instance is responsible for processing a subset of the data
stream independently of the remaining data stream, and
hence without need to manage communication or
synchronization among those operators [13]. Therefore,
many stream processing systems are inherently distributed
and may consist of dozens to hundreds of operators
distributed over a large number of processing nodes [12],
where each processing node executes one or several
operators.

B. System Model

Our notion of a stream processing system is a directed
acyclic graph that consists of multiple operators (i.e.,
components) deployed at distributed device nodes. More
formally, the graph G = (V, E) consists of vertices and edges.
A vertex represents an operator and an edge represents a
stream channel. An edge e = (v1, v2) interconnects the output
of vertex v1 with the input of vertex v2. Vertices without
input ports (i.e., without incoming edges) are referred as
source vertex. Correspondingly, vertices without output ports
are called sink vertices. Finally, vertices with both input and
output ports are called inner vertex. A tuple t = (val, path*)
consists of a value (val) and an execution path (path*) that
holds the operators, and their versions, that a tuple t traveled
through G. For instance, a tuple t that traveled from source
vertex SO1 to sink vertex SI1 via operators O1 and O2 holds
path = {SO1, O1, O2}. The tuple’s val field is transformed
(i.e., processed) along the graph. A stream s = (t*) between
v1 and v2 consists of an ordered sequence of tuples t* where

t1 < t2 represents that t1 was sent before t2 by a node n1. A
vertex is composed of fselect, foutput and fupdate functions. When
a vertex v1 generates a tuple (i.e., sends it via the output
port), its succeeding vertices (i.e., the vertex that receive the
stream from v1) receives such tuple via the function fselect,
which is in charge to select, or not, this tuple to be processed
by the function fupdate.

In order to standardize the terms and notations used
throughout this work, an operator (a.k.a. graph vertex) [14]
will be generically referred to as a component. A node is any
physical device node (e.g., desktop and smartphone) that
executes a component. A Processing Node (PN), in turn, is a
node that holds at least one inner operator (i.e., an operator
with input and output ports). Furthermore, as data stream
systems must be elastic to adapt to variations in the volume
of the data streams [15], we consider that some PNs share
their workload [16].

Taking into account that many current distributed
systems follow the mobile-cloud architectural paradigm
[17][18], our model is composed of Client Nodes (CNs),
which may be mobile or stationary nodes, and PNs deployed
in the cloud. The CNs are interconnected to the cloud
through a Gateway (GW), which in turns forwards the
stream to the PNs. Considering that we model our system as
distributed data stream system, some software components
are concerned with communication issues, while other are
concerned with processing issues (i.e., the analysis,
aggregation and transformation the data stream). The GW,
for instance, is a node in charge of forwarding the data
stream from/to the CNs to/from the PNs and interconnecting
the CNs to the Reconfiguration Manager (RM). Conversely,
a CN has some communication component for enabling the
interaction with the GW while CN may also have a
processing component that performs some pre-processing on
the produced data before sending the stream to the cloud.

In addition to these nodes, the RM manages software
component deployments, and coordinates the execution of
the reconfiguration by the nodes. The RM is responsible for
coordinating (i.e., initiate and orchestrates the execution of
all the operations that encompass a distributed
reconfiguration) the system-wide reconfiguration process
(e.g., deployment of new software components) on many
CNs. For example, if the reconfiguration is the deployment
of a new component version, the RM sends the code that
implements the new component to the nodes and then verify
whether all of them successfully deployed it. The red dashed
lines represent the reconfiguration control channel between
the RM and the other nodes, while the black lines represent
the system data flow. Thus, all reconfigurations performed at
the nodes are driven and orchestrated from the RM.

C. Related Work

Software reconfiguration at runtime is a research topic
that combines issues and approaches from areas, such as
software engineering, programming languages and operating
systems. However, a common problem is the identification
of states in which the system is stable and ready to evolve
[2]. The authors Ertel and Felber [3] propose a framework
for systems that are modeled using (data)flow-based

93Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

programming (FBP) [19]. The idea behind FBP is to model
the system as a directed acyclic dataflow graph where the
operators (vertices) are functions that process the data flow
and the edges define de input and output ports of each
operator. Since the messages are delivered in order, this
proposal forwards special messages informing when a
component (a.k.a. operator) is safe to be reconfigured [3].
Despite the advantages, the problem with the work is that
either all components will perform the reconfiguration or
none of them can proceed with the reconfiguration, similar to
a transaction.

The seminal work by Kramer and Magee [6] proposed
and proved that the quiescence criterion guarantees the
system consistency over the update process. Their model
represents the distributed system as a directed graph whose
nodes interact by means of transactions (i.e., a sequence of
messages that should be atomically executed). The weakness
of their work is that it causes a high disruption since it blocks
all potentially dependent computation during system
evolution.

III. D-JOSEPH

This section presents D-Joseph, our approach to enable
dynamic reconfiguration in distributed stream processing
systems. Differently from other works, D-Joseph does not
need to wait for the system to reach a quiescent state (or safe
state) to reconfigure a fupdate function.

Each component has one or more fselect, fupdate and foutput
functions and components have interdependencies. The
advantage of enabling a component to have more than one
fupdate function executing concurrently is that, in face of a
reconfiguration, the new function is able to process part of
the data stream while the old one is still in use and thus
cannot be deactivated. Accordingly, when a tuple T is
received by an fselect function, it has to choose the right fupdate
to process T. To do so, the fselect function verifies the path of
T when there is more than one fupdate, otherwise there is no
need to verify the path since there is only one fupdate. The fselect
and foutput represent the input and output ports, respectively,
of a component, whereas the fupdate is the algorithm in charge
of processing the transformation on the incoming data
stream. Thus, we are able to reconfigure the algorithms that
process the data streams (i.e., fupdate functions) and the
system’s topology by means of reconfiguring the fselect and
foutput functions.

A. Management of Multiple Versions

In the example of Figure 1, the fselect function of the
Processor component has to know the version of the fupdate
applied at the Pre-Processor component in order to avoid
inconsistency. Figure 1 shows the partial data flow of a tuple
T when the system has the fupdate functions A1, D1 and E1 of
Pre-Processor, Processor and Post-Processor components,
respectively. Figure 2 shows that the versions A2, D2 and E2
were added to the system and that Processor D1 (i.e., the
fupdate function of Processor D1) and Post-Processor E1
transformed the tuple T in order to maintain the system
consistency. Thus, when T arrives at the fselect function of the
Processor component, the fselect function verifies that T

comes from Pre-Processor A1 and then uses the Processor
D1 to transform T. The same happens at Post-Processor
component. Thus, every component has to be aware of its
dependency to be able to choose the right fupdate function.

Figure 1. Teste Partial data flow of the motivating scenario where data is to

be received by Receiver C1

Figure 2. Execution path of the data in a partially reconfigured system

The dependencies can be managed using two approaches,

static or dynamic dependency management. The former,
which is the simplest one, does not take into account the
“downstream” dependent components to generate the
execution path of a tuple. Thus, whenever a component
processes a tuple T, the fupdate function’s version of such
component is added into the tuple’s execution path, as
illustrated by Figure 1 and Figure 2. Finally, when T arrives
to a downstream component, such as the Processor
component, its fselect function verifies the execution path of T
to decide which is the correct fupdate function to process T. To
do so, each component has a list of all its upstream
dependent components. Conversely, the latter approach
verifies if there is any dependent component before adding
the version of the fupdate function into the execution path. If
there is no dependent component, the version is not added
into the execution path. Furthermore, at each component, the
execution path is evaluated to check and discard the versions
that have no more dependent components. In Figure 3, for
instance, G1 is removed from the execution path at the Pre-
Processor component since there is no dependent component
of Data Gathering after Pre-Processor.

Figure 3. Execution path using the dynamic management

The advantage of applying the static dependency

management is that it is simple, has a low execution cost and
the dependency changing (e.g., insertion or removal of

components) does not affect the system since the execution

path field holds all components that a tuple traversed. Thus, a

94Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

reconfiguration is performed in a simpler and faster way.

However, if the execution path grows in size (i.e., there are

numerous inner components between the source and the sink

nodes), it may degrade the system’s performance due to the

network and memory costs. On the other hand, the dynamic

dependency management has the advantage that does not
waste network and memory since the execution path field

holds only useful information, which is an advantage for

huge paths. The weakness is the complexity introduced to

keep the execution path field as short as possible. At each

component, all downstream dependency has to be evaluated

to remove the unnecessary information in the execution path

field.

B. Distributed Reconfiguration

If one (e.g., the system administrator) needs to change
the Pre-Processor and Processor component types for some
reason the new Processor instances must be deployed before
the new Pre-Processor instances. Thus, the reconfiguration
execution of all instances has to be coordinated by the RM.
Whenever the system administrator needs to replace some
components, the administrator uses the RM to start the
dynamic software reconfiguration. To replace the Pre-
Processor and Processor component types, the RM first
deploys the new version of such component on the affect
nodes and then activates the instances. After that, it
deactivates and removes the previous instances.

Figure 4. Partial consistent reconfiguration

Figure 4 shows that the servers must have both versions

(i.e., Processor B1 and B2) while the system is partially
reconfigured because some clients are not yet reconfigured.
As soon as the clients are reconfigured, and there are no
tuples in transit from Pre-Processor A1, the Processor B1
instances are removed from the servers at step A and the
reconfiguration terminates. Therefore, our approach
guarantees that the servers are able to handle data stream
from any client, reconfigured or not.

IV. PERFORMANCE EVALUATION

In this section, we present the evaluation of D-Joseph.
We also have measured the update time and the disruption
caused by our reconfiguration approach varying the number
of CNs and rate (i.e., frequency) of tuple production, as well

as the overhead in terms of throughput imposed by our
approach.

Our hardware test was composed of six Desktops Intel i5,
4GB DDR3 and gigabit Ethernet running Windows 7 64 bit,
and a gigabit switch. We used three computers to emulate the
CNs, and the other three computers to run the PNs and the
RM. Our prototype application used for evaluation has been
implemented using the Java programing language and
Scalable Data Distribution Layer (SDDL), a middleware for
scalable real-time communication [20].

Our evaluation scenario consists of a hospital that
monitors patients. Each patient has a mobile equipment,
composed of some sensors, that continuously monitor each
patient vital signs (e.g., temperature, blood pressure,
respiratory rate and systolic blood pressure). The mobile
equipment sends the patient’s vitals (i.e., tuple) to the
hospital servers every second where the tuples must be
processed as seamless data flow [21][22] in order to generate
timely alerts to the medical staff. The success of such
application depends on the continuous and timely monitoring
of the patients [23].

In order to measure the update time and the service
disruption, we varied the number of CNs from three to 300
and the system’s tuple production rate from 150 tuples/s
(tuples per second) to 15,000 tuples/s, using static and
dynamic dependency management. The JAR file that
encapsulates each deployed component has nearly 4
kilobytes (KB). The first reconfiguration performed is
optimizing the system to discard the tuples that do not meet a
criterion (i.e., if the patient vitals do not meet the SIRS
criteria, they also will not meet the other criteria) and the
second one is changing the temperature unit from Fahrenheit
to Celsius.

Regarding consistency of the reconfiguration approach,
all reconfigurations were performed consistently. This means
that all tuples were properly processed exactly once by the
right fupdate. Thus, we were able to achieve global system
consistency while the system is being reconfigured.

A. Update Time

The update time experiment measured the Round-trip
Delay (RTD), which encompasses the time interval from the
instant of time the RM sends the reconfiguration to the nodes
until it receives an acknowledgment informing that all nodes
completed the execution of the reconfiguration. In other
words, it is the time from the first message sent by the RM
until all components are reconfigured correctly (i.e., the
system has gone from a version v1 to v2). The tuple
production rate informs the production rate of the entire
system, and not for each CN (i.e., the system has the same
production rate in the first three scenarios of Table 1). In the
case of 30 CNs and 150 tuples/s, for instance, each CN
produces five tuples each second (i.e., the tuple production
rate of each CN is 5 tuples/s).

As expected since our approach does not need to wait for
a safe state to proceed the reconfiguration, the update time is
considerably stable. It ranges from 24.07ms in the scenario
with three CNs, production rate of 150 tuples/s to 26.69ms in
the scenario with 300 CNs and 15,000 tuples/s, both using

95Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

the static dependency management. On the other hand, with
the dynamic dependency management, the update time
ranges from 24.07ms to 26.48ms in the same scenarios.

TABLE 1. UPDATE TIME FOR EACH SCENARIO

CNs Tuple Production
Rate (tuples/s)

Static

Dependency
Management

Dynamic

Dependency
Management

Update Time

(ms) Update Time (ms)
3 150 24.29 24.07

30 150 24.18 25.20
300 150 24.88 24.75

3 1,500 25.18 25.2
30 1,500 24.60 21.36

300 1,500 25.62 23.62
3 15,000 25.05 25.63

30 15,000 26.87 26.27

300 15,000 26.69 26.48

B. Service Disruption

In the service disruption experiment, we measured the
impact that a reconfiguration causes on the system’s
throughput and latency, i.e., the time interval between the
tuple being sent by the source node until it is received by the
sink node. In order to measure the service disruption, we
assess the throughput and the latency with 300 CNs and a
tuple production rate of 15,000 tuples/s. We performed two
reconfigurations, at moments T1 and T2, and at each of
them, we compared the throughput of the system with the
throughput a second before these reconfigurations took
place.

According to our experimental results, the service
disruption related to the throughput was negligible. The
throughput for the static dependency management had a
minor increase at the reconfiguration time T (i.e., the
moment in which the reconfiguration was performed) when
compared with T – 1 (i.e., one second before the
reconfiguration), from 14,795 tuples/s to 15,019 tuples/s at
reconfiguration T1 and from 14,869 tuples/s to 14,924
tuples/s at reconfiguration T2. For the dynamic dependency
management, the throughput varied from 15,060 tuples/s to
15,030 tuples/s at reconfiguration T1 and from 15,073
tuples/s to 15,043 tuples/s at reconfiguration T2. In both
dependency management, the throughput was not
significantly affected by the reconfiguration, i.e., the
experiments demonstrate that our approach causes just a
marginal decrease (lower than 0.2%) in the system’s
throughput.

The reconfiguration may affect the latency when the
system has a considerable high workload (e.g., high CPU –
Central Processing Unit – usage). In both static and dynamic
dependency managements, the reconfiguration T1 from v1 to
v2, which reduces the system’s workload by discarding the
tuples that do not meet some criteria, interfered the tuples’
latency for a short period. However, after optimizing the
system and thus reducing its workload, the reconfiguration
T2 had minor impact on latency (≈ 2ms) in both cases.

C. Overhead

We also measured the overhead that D-Joseph imposes

on the prototype application when no reconfiguration is

performed. To do this experiment, we assessed the time

required by the application to generate and process 100,000

tuples, as well as the throughput and latency, with and

without the reconfiguration mechanism. Concerning the

required time to complete the computation of all tuples, the

static dependency management imposed 3.83% of overhead

while the dynamic one imposed 8.98%. The throughput was

reduced by 2.38% and 2.84% using the static and dynamic

dependency management approaches, respectively. Finally,
the latency was impacted by 6.57% and 12.50% % using the

static and dynamic dependency management approaches,

respectively. Thus, for such prototype application, the better

choice is the static dependency management.

D. CN Disconnection

Due to the possibility of disconnections of mobile CNs,
we assessed the amount of time required to complete a

reconfiguration after an MN becomes available again. To do

so, we have forced a CN to disconnect before the

reconfiguration and reconnect after the reconfiguration. The

reconnection time encompasses the time interval from the

instant of time the CN reconnects until it completes the

execution of the reconfiguration. As the number of CNs and

the tuple production rate has minor impact on the update

time (see Section 4.1.1), we conducted this experiment with

1,000 CNs and 1,000 tuples/s. As soon as the CN

reconnects, it took 31.50ms to complete the reconfiguration.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed and validated D-Joseph, a
non-quiescent approach for dynamic reconfiguration that
preserves global system consistency in distributed data
stream systems. Unlike many works that require blocking the
affected parts of the system to be able to proceed a
reconfiguration, our proposal enables the system to smoothly
evolve in a non-disruptive way.

We are aware that more work and research is still needed.
However, considering the encouraging preliminary
performance evaluation, we are confident that our approach
can be used for development of reconfigurable data stream
processing systems. In a scenario with 300 CNs and 15,000
tuples/s, our reconfiguration prototype was able to
reconfigure the entire system in 24.07ms, while the service
disruption in terms of throughput was lower than 0.2% due
to a reconfiguration. On the other hand, the tuples’ latency
may increase due to a reconfiguration. When comparing the
reconfigurable with the non-reconfigurable version of the
application prototypes, the reconfiguration capabilities
imposed an overhead of only 3.83% and 8.98% on the
latency using the static and dynamic dependency approaches,
respectively. Our prototype middleware reduced at most
2.84% of the system’s throughput and increased at most
12.50% the system’s latency when compared to the
corresponding system without reconfiguration support.

96Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

Problems such as parametric variability and

reconfiguration making, which is responsible for deciding

when an reconfiguration is required, which alternative best

satisfies the overall system goal, and which reconfigurations

are needed in order to drive the system to the next state (i.e.,

an optimal state or state with a new functionality), are not
covered by our research. Security is also an important

concern for many real systems, particularly for distributed

systems since nodes are potentially exposed on the Internet.

Therefore, authenticity, integrity and confidentiality emerge

as key aspects. Thus, ensuring that only the system

administrators, or the system itself, have the ability to drive

a software reconfiguration will avoid unauthorized

component deployments, such as viruses, on the nodes.

However, security aspects are beyond the scope of our

current work.

REFERENCES

[1] C. Giuffrida, C. Iorgulescu, and A. S. Tanenbaum, “Mutable
Checkpoint-restart: Automating Live Update for Generic
Server Programs,” in Proceedings of the 15th International
Middleware Conference, 2014, pp. 133–144.

[2] X. Ma, L. Baresi, C. Ghezzi, V. Panzica La Manna, and J. Lu,
“Version-consistent dynamic reconfiguration of component-
based distributed systems,” in Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on
Foundations of software engineering - ESEC/FSE ’11, 2011, p.

245.
[3] S. Ertel and P. Felber, “A framework for the dynamic

evolution of highly-available dataflow programs,” in
Proceedings of the 15th International Middleware Conference
on - Middleware ’14, 2014, pp. 157–168.

[4] C. M. Hayden, E. K. Smith, M. Hicks, and J. S. Foster, “State
Transfer for Clear and Efficient Runtime Updates,” in
Proceedings of the 2011 IEEE 27th International Conference

on Data Engineering Workshops, 2011, pp. 179–184.
[5] C. M. Hayden, E. K. Smith, M. Denchev, M. Hicks, and J. S.

Foster, “Kitsune: Efficient, General-purpose Dynamic
Software Updating for C,” in Proceedings of the ACM
International Conference on Object Oriented Programming
Systems Languages and Applications, 2012, pp. 249–264.

[6] J. Kramer and J. Magee, “The evolving philosophers problem:
dynamic change management,” IEEE Trans. Softw. Eng., vol.

16, no. 11, pp. 1293–1306, 1990.
[7] M. Ghafari, P. Jamshidi, S. Shahbazi, and H. Haghighi, “An

architectural approach to ensure globally consistent dynamic
reconfiguration of component-based systems,” in Proceedings
of the 15th ACM SIGSOFT symposium on Component Based
Software Engineering - CBSE ’12, 2012, p. 177.

[8] G. Cugola and A. Margara, “Processing flows of information:
From data stream to complex event processing,” ACM Comput.

Surv., vol. 44, no. 3, pp. 1–62, Jun. 2012.
[9] H. Schweppe, A. Zimmermann, and D. Grill, “Flexible On-

Board Stream Processing for Automotive Sensor Data,” IEEE
Trans. Ind. Informatics, vol. 6, no. 1, pp. 81–92, Feb. 2010.

[10] L. Golab and M. T. Özsu, “Issues in Data Stream
Management,” ACM SIGMOD Rec., vol. 32, no. 2, pp. 5–14,
2003.

[11] B. Babcock, S. Babu, M. Datar, R. Motwani, and J.
Widom, “Models and issues in data stream systems,” in

Proceedings of the twenty-first ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems - PODS
’02, 2002, p. 1.

[12] M. Cherniack et al., “Scalable distributed stream
processing,” in 2003 Biennial Conference on Innovative Data
Systems Research (CIDR 2003), 2003, p. 12.

[13] R. O. Vasconcelos and M. Endler, “A Dynamic Load
Balancing Mechanism for Data Stream Processing on DDS

Systems,” M.Sc Thesis, Departamento de Informática, PUC-
Rio - Pontifícia Universidade Católica do Rio de Janeiro, Rio
de Janeiro, 2013.

[14] B. Gedik and H. Andrade, “A Model-based Framework
for Building Extensible, High Performance Stream Processing
Middleware and Programming Language for IBM InfoSphere
Streams,” Softw. Pr. Exper., vol. 42, no. 11, pp. 1363–1391,
2012.

[15] R. O. Vasconcelos, M. Endler, B. Gomes, and F. Silva,
“Autonomous Load Balancing of Data Stream Processing and
Mobile Communications in Scalable Data Distribution
Systems,” Int. J. Adv. Intell. Syst., vol. 6, no. 3&4, pp. 300–
317, 2013.

[16] W. Kleiminger, E. Kalyvianaki, and P. Pietzuch,
“Balancing load in stream processing with the cloud,” in 2011
IEEE 27th International Conference on Data Engineering

Workshops, 2011, pp. 16–21.
[17] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing:

state-of-the-art and research challenges,” J. Internet Serv.
Appl., vol. 1, no. 1, pp. 7–18, Apr. 2010.

[18] D. J. Cook and S. K. Das, “Pervasive computing at scale:
Transforming the state of the art,” Pervasive Mob. Comput.,
vol. 8, no. 1, pp. 22–35, Feb. 2012.

[19] J. P. Morrison, Flow-Based Programming, 2nd Edition:
A New Approach to Application Development. Paramount, CA:

CreateSpace, 2010.
[20] L. David, R. Vasconcelos, L. Alves, R. André, and M.

Endler, “A DDS-based middleware for scalable tracking,
communication and collaboration of mobile nodes,” J. Internet
Serv. Appl., vol. 4, no. 1, p. 16, 2013.

[21] S. I. Lee et al., “Remote patient monitoring: what impact
can data analytics have on cost?,” in Proceedings of the 4th
Conference on Wireless Health - WH ’13, 2013, pp. 1–8.

[22] Forbes, “4 Interesting Tech Trends In Patient
Monitoring,” 2014. [Online]. Available:
http://www.forbes.com/sites/robertszczerba/2014/12/10/4-
interesting-tech-trends-in-patient-monitoring. [Accessed: 14-
Jul-2016].

[23] H. Catalyst, “The Year of Healthcare Data Analytics,”
2014. [Online]. Available:
https://www.healthcatalyst.com/2014-Year-Healthcare-Data-

Analytics. [Accessed: 14-Jul-2016].

97Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

