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Abstract— While many data stream systems have to provide 

continuous (24x7) services with no acceptable downtime, they 

also have to cope with changes in their execution environments 

and in the requirements that they must comply (e.g., moving 

from on-premises architecture to a cloud system, changing the 

network technology, adding new functionality or modifying 

existing parts). On one hand, dynamic software 

reconfiguration (i.e., the capability of evolving on the fly) is a 

desirable feature. On the other hand, stream systems may 

suffer from the disruption and overhead caused by the 

reconfiguration. Due to the necessity of reconfiguring (i.e., 

evolving) the system whilst the system must not be disrupted 

(i.e., blocked), consistent and non-disruptive reconfiguration is 

still considered an open problem. This paper presents and 

validates D-Joseph, a non-quiescent approach for dynamic 

software reconfiguration that preserves the consistency of 

distributed data stream processing systems. Unlike many 

works that require the system to reach a safe state (e.g., 

quiescence) before performing a reconfiguration, the proposed 

approach enables the system to smoothly evolve (i.e., be 

reconfigured) in a non-disruptive way without reaching 

quiescence. The evaluation indicates that the proposed 

approach supports consistent distributed reconfiguration and 

has negligible impact on availability and performance. 

Furthermore, the implementation of the proposed approach 

showed better performance results in all experiments than the 
quiescent approach and Upstart. 

Keywords-Online Dynamic reconfiguration; Adaptability; 

Software adaptation; Data Stream Processing. 

I. INTRODUCTION 

Many stream processing systems have to provide services 
for 24x7, with no acceptable downtime [1]. However, they 
commonly have to cope with changes in their execution 
environment (e.g., moving from on-premises architecture to 
cloud architecture or changing the network technology) and 
in the requirements that they must comply with [2] (e.g., 
adding new functionality or modifying existing parts). The 
authors [2] further emphasize that changes are hard to predict 
at design time. The continuous service execution makes it 
difficult to fix bugs and add new required functionality on-
the-fly as this requires non-disruptive replacement of parts of 
a software version by new ones [3]. Ertel and Felber [3] 
further explain that prior approaches to dynamic 
reconfiguration (a.k.a. dynamic adaptation, live update or 

dynamic evolution) require the starting of a new process and 
the transfer of states between the components being swapped 
[4]. However, some authors argue that the cost of redundant 
hardware may be considerable high [5]. 

Despite extensive research in dynamic software 
reconfiguration, safe reconfiguration is still an open problem 
[1]. A common approach is to put the component that has to 
be updated into a safe state, such as the quiescent state [6], 
before reconfiguring the system [7]. Thus, a safe 
reconfiguration must drive the system to a consistent state 
and preserve the correct completion of on-going activities 
[2]. At the same time, dynamic reconfiguration should also 
minimize the interruption of the system’s service (i.e., 
disruption) and the delay with which the system is updated 
(i.e., its timeliness) [6]. Furthermore, coordinating (i.e., 
orchestrating) the restart of all the exchanged or added 
components is very challenging if the system’s service must 
not be interrupted [3]. 

Aligned with the aforementioned requirements, 
applications in the field of data stream processing require 
continuous and timely processing of high-volume of data, 
originated from a myriad of distributed sources, to obtain 
online notifications from complex queries over the steady 
flow of data items [8]. Intelligent Transportation Systems, 
Network Monitoring, Stock Exchange, Smart Cities, Smart 
Energy management and logistics are some examples of 
application areas that require processing data streams. Thus, 
while dynamic reconfiguration is a desirable feature, such 
systems shall not suffer performance degradation due to the 
potential disruptions and overhead caused by the 
reconfiguration. 

In order to enable dynamic software reconfiguration for 
stream based systems, our work allows the concurrent 
execution of multiple versions of a software component. 
Concisely, the proposed approach is based on the idea that a 
tuple (a.k.a. message) has to be entirely processed by a 
specific version of each component. However, there is no 
problem in updating a component C while a tuple T traverses 
the system as long as the system keeps the previous and the 
new versions of C (and of its dependent components) until 
all previous' version tuples are flushed (i.e., draining the 
tuples between the source and sink nodes). 

The remainder of the paper is organized as follows. 
Section II presents an overview of the key concepts and 
system model used throughout this work. Section III delves 
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into details D-Joseph. Section IV summarizes the main 
results of the assessment conducted to evaluate the proposal. 
Finally, Section V reviews and discusses the central ideas 
presented in this paper. 

II. FUNDAMENTALS 

This section presents the main concepts about data 
stream processing, as well as our system model and related 
works.  

A. Data Stream Processing 

Data stream processing is a computational paradigm [9] 
that is focused at sustained and timely analysis, aggregation 
and transformation of large volumes of data streams that are 
continuously updated [8]. Data stream is a continuous and 
online sequence of unbounded items where it is not possible 
to control the order of the data produced and processed 
[10][11]. Thus, the data is processed on-the-fly as it travels 
from its source nodes downstream to the consumer nodes, 
passing through several distributed processing nodes [12], 
that select, classify or manipulate the data. This model is 
typically represented by a graph where vertices are source 
nodes that produce data, operators that implement algorithms 
for data stream analysis, or sink nodes that consume the 
processed data stream, and where edges define possible data 
paths among the nodes (i.e., stream channels). 

In order to cope with the high processing demand, stream 
processing systems typically employ Single Instruction, 
Multiple Data (SIMD) parallelism and use multiple instances 
of an operator (i.e., processing units), where each operator 
instance is responsible for processing a subset of the data 
stream independently of the remaining data stream, and 
hence without need to manage communication or 
synchronization among those operators [13]. Therefore, 
many stream processing systems are inherently distributed 
and may consist of dozens to hundreds of operators 
distributed over a large number of processing nodes [12], 
where each processing node executes one or several 
operators. 

B. System Model 

Our notion of a stream processing system is a directed 
acyclic graph that consists of multiple operators (i.e., 
components) deployed at distributed device nodes. More 
formally, the graph G = (V, E) consists of vertices and edges. 
A vertex represents an operator and an edge represents a 
stream channel. An edge e = (v1, v2) interconnects the output 
of vertex v1 with the input of vertex v2. Vertices without 
input ports (i.e., without incoming edges) are referred as 
source vertex. Correspondingly, vertices without output ports 
are called sink vertices. Finally, vertices with both input and 
output ports are called inner vertex. A tuple t = (val, path*) 
consists of a value (val) and an execution path (path*) that 
holds the operators, and their versions, that a tuple t traveled 
through G. For instance, a tuple t that traveled from source 
vertex SO1 to sink vertex SI1 via operators O1 and O2 holds 
path = {SO1, O1, O2}. The tuple’s val field is transformed 
(i.e., processed) along the graph. A stream s = (t*) between 
v1 and v2 consists of an ordered sequence of tuples t* where 

t1 < t2 represents that t1 was sent before t2 by a node n1. A 
vertex is composed of fselect, foutput and fupdate functions. When 
a vertex v1 generates a tuple (i.e., sends it via the output 
port), its succeeding vertices (i.e., the vertex that receive the 
stream from v1) receives such tuple via the function fselect, 
which is in charge to select, or not, this tuple to be processed 
by the function fupdate. 

In order to standardize the terms and notations used 
throughout this work, an operator (a.k.a. graph vertex) [14] 
will be generically referred to as a component. A node is any 
physical device node (e.g., desktop and smartphone) that 
executes a component. A Processing Node (PN), in turn, is a 
node that holds at least one inner operator (i.e., an operator 
with input and output ports). Furthermore, as data stream 
systems must be elastic to adapt to variations in the volume 
of the data streams [15], we consider that some PNs share 
their workload [16]. 

Taking into account that many current distributed 
systems follow the mobile-cloud architectural paradigm 
[17][18], our model is composed of Client Nodes (CNs), 
which may be mobile or stationary nodes, and PNs deployed 
in the cloud. The CNs are interconnected to the cloud 
through a Gateway (GW), which in turns forwards the 
stream to the PNs. Considering that we model our system as 
distributed data stream system, some software components 
are concerned with communication issues, while other are 
concerned with processing issues (i.e., the analysis, 
aggregation and transformation the data stream). The GW, 
for instance, is a node in charge of forwarding the data 
stream from/to the CNs to/from the PNs and interconnecting 
the CNs to the Reconfiguration Manager (RM). Conversely, 
a CN has some communication component for enabling the 
interaction with the GW while CN may also have a 
processing component that performs some pre-processing on 
the produced data before sending the stream to the cloud. 

In addition to these nodes, the RM manages software 
component deployments, and coordinates the execution of 
the reconfiguration by the nodes. The RM is responsible for 
coordinating (i.e., initiate and orchestrates the execution of 
all the operations that encompass a distributed 
reconfiguration) the system-wide reconfiguration process 
(e.g., deployment of new software components) on many 
CNs. For example, if the reconfiguration is the deployment 
of a new component version, the RM sends the code that 
implements the new component to the nodes and then verify 
whether all of them successfully deployed it. The red dashed 
lines represent the reconfiguration control channel between 
the RM and the other nodes, while the black lines represent 
the system data flow. Thus, all reconfigurations performed at 
the nodes are driven and orchestrated from the RM. 

C. Related Work 

Software reconfiguration at runtime is a research topic 
that combines issues and approaches from areas, such as 
software engineering, programming languages  and operating 
systems. However, a common problem is the identification 
of states in which the system is stable and ready to evolve 
[2]. The authors Ertel and Felber [3] propose a framework 
for systems that are modeled using (data)flow-based 
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programming (FBP) [19]. The idea behind FBP is to model 
the system as a directed acyclic dataflow graph where the 
operators (vertices) are functions that process the data flow 
and the edges define de input and output ports of each 
operator. Since the messages are delivered in order, this 
proposal forwards special messages informing when a 
component (a.k.a. operator) is safe to be reconfigured [3]. 
Despite the advantages, the problem with the work is that 
either all components will perform the reconfiguration or 
none of them can proceed with the reconfiguration, similar to 
a transaction. 

The seminal work by Kramer and Magee [6] proposed 
and proved that the quiescence criterion guarantees the 
system consistency over the update process. Their model 
represents the distributed system as a directed graph whose 
nodes interact by means of transactions (i.e., a sequence of 
messages that should be atomically executed). The weakness 
of their work is that it causes a high disruption since it blocks 
all potentially dependent computation during system 
evolution. 

III. D-JOSEPH 

This section presents D-Joseph, our approach to enable 
dynamic reconfiguration in distributed stream processing 
systems. Differently from other works, D-Joseph does not 
need to wait for the system to reach a quiescent state (or safe 
state) to reconfigure a fupdate function. 

Each component has one or more fselect, fupdate and foutput 
functions and components have interdependencies. The 
advantage of enabling a component to have more than one 
fupdate function executing concurrently is that, in face of a 
reconfiguration, the new function is able to process part of 
the data stream while the old one is still in use and thus 
cannot be deactivated. Accordingly, when a tuple T is 
received by an fselect function, it has to choose the right fupdate 
to process T. To do so, the fselect function verifies the path of 
T when there is more than one fupdate, otherwise there is no 
need to verify the path since there is only one fupdate. The fselect 
and foutput represent the input and output ports, respectively, 
of a component, whereas the fupdate is the algorithm in charge 
of processing the transformation on the incoming data 
stream. Thus, we are able to reconfigure the algorithms that 
process the data streams (i.e., fupdate functions) and the 
system’s topology by means of reconfiguring the fselect and 
foutput functions. 

A. Management of Multiple Versions 

In the example of Figure 1, the fselect function of the 
Processor component has to know the version of the fupdate 
applied at the Pre-Processor component in order to avoid 
inconsistency. Figure 1 shows the partial data flow of a tuple 
T when the system has the fupdate functions A1, D1 and E1 of 
Pre-Processor, Processor and Post-Processor components, 
respectively. Figure 2 shows that the versions A2, D2 and E2 
were added to the system and that Processor D1 (i.e., the 
fupdate function of Processor D1) and Post-Processor E1 
transformed the tuple T in order to maintain the system 
consistency. Thus, when T arrives at the fselect function of the 
Processor component, the fselect function verifies that T 

comes from Pre-Processor A1 and then uses the Processor 
D1 to transform T. The same happens at Post-Processor 
component. Thus, every component has to be aware of its 
dependency to be able to choose the right fupdate function. 

 

 

Figure 1. Teste Partial data flow of the motivating scenario where data is to 

be received by Receiver C1 

 

 

Figure 2. Execution path of the data in a partially reconfigured system 

 
The dependencies can be managed using two approaches, 

static or dynamic dependency management. The former, 
which is the simplest one, does not take into account the 
“downstream” dependent components to generate the 
execution path of a tuple. Thus, whenever a component 
processes a tuple T, the fupdate function’s version of such 
component is added into the tuple’s execution path, as 
illustrated by Figure 1 and Figure 2. Finally, when T arrives 
to a downstream component, such as the Processor 
component, its fselect function verifies the execution path of T 
to decide which is the correct fupdate function to process T. To 
do so, each component has a list of all its upstream 
dependent components. Conversely, the latter approach 
verifies if there is any dependent component before adding 
the version of the fupdate function into the execution path. If 
there is no dependent component, the version is not added 
into the execution path. Furthermore, at each component, the 
execution path is evaluated to check and discard the versions 
that have no more dependent components. In Figure 3, for 
instance, G1 is removed from the execution path at the Pre-
Processor component since there is no dependent component 
of Data Gathering after Pre-Processor. 

 

Figure 3. Execution path using the dynamic management 

 

The advantage of applying the static dependency 

management is that it is simple, has a low execution cost and 
the dependency changing (e.g., insertion or removal of 

components) does not affect the system since the execution 

path field holds all components that a tuple traversed. Thus, a 
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reconfiguration is performed in a simpler and faster way. 

However, if the execution path grows in size (i.e., there are 

numerous inner components between the source and the sink 

nodes), it may degrade the system’s performance due to the 

network and memory costs. On the other hand, the dynamic 

dependency management has the advantage that does not 
waste network and memory since the execution path field 

holds only useful information, which is an advantage for 

huge paths. The weakness is the complexity introduced to 

keep the execution path field as short as possible. At each 

component, all downstream dependency has to be evaluated 

to remove the unnecessary information in the execution path 

field. 

B. Distributed Reconfiguration 

If one (e.g., the system administrator) needs to change 
the Pre-Processor and Processor component types for some 
reason the new Processor instances must be deployed before 
the new Pre-Processor instances. Thus, the reconfiguration 
execution of all instances has to be coordinated by the RM. 
Whenever the system administrator needs to replace some 
components, the administrator uses the RM to start the 
dynamic software reconfiguration. To replace the Pre-
Processor and Processor component types, the RM first 
deploys the new version of such component on the affect 
nodes and then activates the instances. After that, it 
deactivates and removes the previous instances. 

 

Figure 4. Partial consistent reconfiguration 

 
Figure 4 shows that the servers must have both versions 

(i.e., Processor B1 and B2) while the system is partially 
reconfigured because some clients are not yet reconfigured. 
As soon as the clients are reconfigured, and there are no 
tuples in transit from Pre-Processor A1, the Processor B1 
instances are removed from the servers at step A and the 
reconfiguration terminates. Therefore, our approach 
guarantees that the servers are able to handle data stream 
from any client, reconfigured or not. 

IV. PERFORMANCE EVALUATION 

In this section, we present the evaluation of D-Joseph. 
We also have measured the update time and the disruption 
caused by our reconfiguration approach varying the number 
of CNs and rate (i.e., frequency) of tuple production, as well 

as the overhead in terms of throughput imposed by our 
approach. 

Our hardware test was composed of six Desktops Intel i5, 
4GB DDR3 and gigabit Ethernet running Windows 7 64 bit, 
and a gigabit switch. We used three computers to emulate the 
CNs, and the other three computers to run the PNs and the 
RM. Our prototype application used for evaluation has been 
implemented using the Java programing language and 
Scalable Data Distribution Layer (SDDL), a middleware for 
scalable real-time communication [20]. 

Our evaluation scenario consists of a hospital that 
monitors patients. Each patient has a mobile equipment, 
composed of some sensors, that continuously monitor each 
patient vital signs (e.g., temperature, blood pressure, 
respiratory rate and systolic blood pressure). The mobile 
equipment sends the patient’s vitals (i.e., tuple) to the 
hospital servers every second where the tuples must be 
processed as seamless data flow [21][22] in order to generate 
timely alerts to the medical staff. The success of such 
application depends on the continuous and timely monitoring 
of the patients [23]. 

In order to measure the update time and the service 
disruption, we varied the number of CNs from three to 300 
and the system’s tuple production rate from 150 tuples/s 
(tuples per second) to 15,000 tuples/s, using static and 
dynamic dependency management. The JAR file that 
encapsulates each deployed component has nearly 4 
kilobytes (KB). The first reconfiguration performed is 
optimizing the system to discard the tuples that do not meet a 
criterion (i.e., if the patient vitals do not meet the SIRS 
criteria, they also will not meet the other criteria) and the 
second one is changing the temperature unit from Fahrenheit 
to Celsius. 

Regarding consistency of the reconfiguration approach, 
all reconfigurations were performed consistently. This means 
that all tuples were properly processed exactly once by the 
right fupdate. Thus, we were able to achieve global system 
consistency while the system is being reconfigured. 

A. Update Time 

The update time experiment measured the Round-trip 
Delay (RTD), which encompasses the time interval from the 
instant of time the RM sends the reconfiguration to the nodes 
until it receives an acknowledgment informing that all nodes 
completed the execution of the reconfiguration. In other 
words, it is the time from the first message sent by the RM 
until all components are reconfigured correctly (i.e., the 
system has gone from a version v1 to v2). The tuple 
production rate informs the production rate of the entire 
system, and not for each CN (i.e., the system has the same 
production rate in the first three scenarios of Table 1). In the 
case of 30 CNs and 150 tuples/s, for instance, each CN 
produces five tuples each second (i.e., the tuple production 
rate of each CN is 5 tuples/s). 

As expected since our approach does not need to wait for 
a safe state to proceed the reconfiguration, the update time is 
considerably stable. It ranges from 24.07ms in the scenario 
with three CNs, production rate of 150 tuples/s to 26.69ms in 
the scenario with 300 CNs and 15,000 tuples/s, both using 
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the static dependency management. On the other hand, with 
the dynamic dependency management, the update time 
ranges from 24.07ms to 26.48ms in the same scenarios. 

 
TABLE 1. UPDATE TIME FOR EACH SCENARIO 

# CNs Tuple Production 
Rate (tuples/s) 

Static 

Dependency 
Management 

Dynamic 

Dependency 
Management 

  
Update Time 

(ms) Update Time (ms) 
3 150 24.29 24.07 

30 150 24.18 25.20 
300 150 24.88 24.75 

3 1,500 25.18 25.2 
30 1,500 24.60 21.36 

300 1,500 25.62 23.62 
3 15,000 25.05 25.63 

30 15,000 26.87 26.27 

300 15,000 26.69 26.48 

 

B. Service Disruption 

In the service disruption experiment, we measured the 
impact that a reconfiguration causes on the system’s 
throughput and latency, i.e., the time interval between the 
tuple being sent by the source node until it is received by the 
sink node. In order to measure the service disruption, we 
assess the throughput and the latency with 300 CNs and a 
tuple production rate of 15,000 tuples/s. We performed two 
reconfigurations, at moments T1 and T2, and at each of 
them, we compared the throughput of the system with the 
throughput a second before these reconfigurations took 
place. 

According to our experimental results, the service 
disruption related to the throughput was negligible. The 
throughput for the static dependency management had a 
minor increase at the reconfiguration time T (i.e., the 
moment in which the reconfiguration was performed) when 
compared with T – 1 (i.e., one second before the 
reconfiguration), from 14,795 tuples/s to 15,019 tuples/s at 
reconfiguration T1 and from 14,869 tuples/s to 14,924 
tuples/s at reconfiguration T2. For the dynamic dependency 
management, the throughput varied from 15,060 tuples/s to 
15,030 tuples/s at reconfiguration T1 and from 15,073 
tuples/s to 15,043 tuples/s at reconfiguration T2. In both 
dependency management, the throughput was not 
significantly affected by the reconfiguration, i.e., the 
experiments demonstrate that our approach causes just a 
marginal decrease (lower than 0.2%) in the system’s 
throughput. 

The reconfiguration may affect the latency when the 
system has a considerable high workload (e.g., high CPU – 
Central Processing Unit – usage). In both static and dynamic 
dependency managements, the reconfiguration T1 from v1 to 
v2, which reduces the system’s workload by discarding the 
tuples that do not meet some criteria, interfered the tuples’ 
latency for a short period. However, after optimizing the 
system and thus reducing its workload, the reconfiguration 
T2 had minor impact on latency (≈ 2ms) in both cases. 

C. Overhead 

We also measured the overhead that D-Joseph imposes 

on the prototype application when no reconfiguration is 

performed. To do this experiment, we assessed the time 

required by the application to generate and process 100,000 

tuples, as well as the throughput and latency, with and 

without the reconfiguration mechanism. Concerning the 

required time to complete the computation of all tuples, the 

static dependency management imposed 3.83% of overhead 

while the dynamic one imposed 8.98%. The throughput was 

reduced by 2.38% and 2.84% using the static and dynamic 

dependency management approaches, respectively. Finally, 
the latency was impacted by 6.57% and 12.50% % using the 

static and dynamic dependency management approaches, 

respectively. Thus, for such prototype application, the better 

choice is the static dependency management. 

D. CN Disconnection 

Due to the possibility of disconnections of mobile CNs, 
we assessed the amount of time required to complete a 

reconfiguration after an MN becomes available again. To do 

so, we have forced a CN to disconnect before the 

reconfiguration and reconnect after the reconfiguration. The 

reconnection time encompasses the time interval from the 

instant of time the CN reconnects until it completes the 

execution of the reconfiguration. As the number of CNs and 

the tuple production rate has minor impact on the update 

time (see Section 4.1.1), we conducted this experiment with 

1,000 CNs and 1,000 tuples/s. As soon as the CN 

reconnects, it took 31.50ms to complete the reconfiguration. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we proposed and validated D-Joseph, a 
non-quiescent approach for dynamic reconfiguration that 
preserves global system consistency in distributed data 
stream systems. Unlike many works that require blocking the 
affected parts of the system to be able to proceed a 
reconfiguration, our proposal enables the system to smoothly 
evolve in a non-disruptive way. 

We are aware that more work and research is still needed. 
However, considering the encouraging preliminary 
performance evaluation, we are confident that our approach 
can be used for development of reconfigurable data stream 
processing systems. In a scenario with 300 CNs and 15,000 
tuples/s, our reconfiguration prototype was able to 
reconfigure the entire system in 24.07ms, while the service 
disruption in terms of throughput was lower than 0.2% due 
to a reconfiguration. On the other hand, the tuples’ latency 
may increase due to a reconfiguration. When comparing the 
reconfigurable with the non-reconfigurable version of the 
application prototypes, the reconfiguration capabilities 
imposed an overhead of only 3.83% and 8.98% on the 
latency using the static and dynamic dependency approaches, 
respectively. Our prototype middleware reduced at most 
2.84% of the system’s throughput and increased at most 
12.50% the system’s latency when compared to the 
corresponding system without reconfiguration support. 
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Problems such as parametric variability and 

reconfiguration making, which is responsible for deciding 

when an reconfiguration is required, which alternative best 

satisfies the overall system goal, and which reconfigurations 

are needed in order to drive the system to the next state (i.e., 

an optimal state or state with a new functionality), are not 
covered by our research. Security is also an important 

concern for many real systems, particularly for distributed 

systems since nodes are potentially exposed on the Internet. 

Therefore, authenticity, integrity and confidentiality emerge 

as key aspects. Thus, ensuring that only the system 

administrators, or the system itself, have the ability to drive 

a software reconfiguration will avoid unauthorized 

component deployments, such as viruses, on the nodes. 

However, security aspects are beyond the scope of our 

current work. 
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