
Towards a Framework for Applying the Visualization of Smart Monitoring
Architectures to a Distributed Ubiquity Mobility Platform

Djamel Khadraoui and Christophe Feltus
Luxembourg Institute of Science and Technology (LIST)

E-mail: djamel.khadraoui@list.lu

Abstract—Smart Mobility is proved to be a high priority topic
in regard to arising European societal challenges. Deploying
smart mobility required both technological and monitoring
knowledge, and one important key features of the initiative
stay in the multiplicity of the final users. Its goal is, depending
on the type of users, to provide the required accurate data
through a dynamic monitoring application. This implies to
collect data coming from physical sensors deployed in all the
parking areas of a region. Those sensors are simple, meaning
that the information that they can collect is limited to an entry
or exit signal of a vehicle. This paper presents an architecture
for applying the visualization of smart monitoring architecture
to a distributed ubiquity mobility platform and show a
deployment in the frame of a use case. The later has been
developed in a European region and consists in a smart
mobility monitoring project.

Keywords-Mobility; Visualisation; Model; Self-adaptability;
Self-management; Monitoring; Automatic Context-aware system.

I. INTRODUCTION
Smart Mobility is proved to be a high priority topic in

regard to arising societal challenges. Deploying smart
mobility required both technological and monitoring
knowledge. In the frame of a use case, which has actually
been developed in a European region, and which consists in
a mobility monitoring project (actually implemented), one
important key feature of the initiative stay in the multiplicity
of the final users. Its goal is, depending on the type of users,
to give the wanted data through a dynamic monitoring
application. This implies to collect data coming from
physical sensors deployed in all the parking areas of a
region. Those sensors are simple, meaning that the
information that they can collect is limited to an entry or
exit signal of a vehicle. Another data that has to be collected
in this scenario is the live traffic data from the same
geographical region; once again, the type of data is simple;
the number of passing vehicles for each road of the region is
collected in a predefined and fixed period of time. The need
of monitoring is not a new challenge in computer science
since a lot of solutions are proposed until this day. The fact
is that the monitoring can be effective for a project only if it
is completely applied for the problem while it should give
the right information to a specific user (physical or not). For
our case, a famous delivery company needs an effective and
complete monitoring for all its parking spots around a big

urban center. So, in collaboration with the city
administration, this company needs a platform to handle a
large amount of data and transform it into valuable
information for their daily operations, optimizing their
routines. This platform aims at monitoring the trips of their
employees around the urban area and to give them an exact
live situation. The solution responds to the business needs of
an organization and provides to the different users a
dynamic monitoring of the data combined with specific
business rules. Using one deployed platform, collected and
analyzed data are accessible from different final users with
distinctive needs. In parallel to the monitoring of their
employees, the targeted system is also able to provide
important information to the city administration around live
traffic levels and parking availability. Another view of the
system could also be the notification to citizens about the
roads congestion of the city. However, the interfaces must
be readjusted for each case and administration solutions
have to be adapted to the user and his rights among the
system. Therefore, it is obvious that the current solution
must be extended with new functionalities that should be
able to be added without any new implementation of the
gathering platform.

Smart monitoring systems consists in solutions which
monitor, control and support the decision making related to
security issue of complexes and critical systems (and
information systems) spread out over disseminated areas.
Hence, smart monitoring architecture seems to be the most
relevant approach for the monitoring and decision making
provided that they are designed to deal with increasingly
sensitive and crucial situations for an economy or country
(like the healthcare, the power distribution, the telecom,
etc.) and consists in complex, sophisticated and integrated
systems which support people in governing and monitoring
a plethora of knowledge generated by critical infrastructures
(CI – in military, energy, transport, industries, and
healthcare) [1]. In our previous work, we have first defined
a metamodel for the components of the smart monitoring
architecture [2]. This metamodel has been elaborated
acknowledging traditional enterprise architecture
metamodel (EAM) and it allows modelling each component
according to a similar structure. Afterwards, we have
proposed a complement [2] to explore the enterprise
architecture model ArchiMate® and to redesign its structure
in order to comply with component software actors’

1Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

characteristics, specificities and domain constraints. The
principal focus of this paper concerns the design and the
consideration of the policies that are centric concepts related
to the activation of component’s comportment. Our new
contribution consists in the modeling of the monitoring
system platform and the definition of the policies according
to these models.

The paper is structured as following: next section
presents the OCTOPUS platform (model and software) that
we designed, Section III presents the OCTOPUS platform
augmented with a smart monitoring solution. Section IV
illustrates the monitoring interface for Smart Mobility in the
frame of the augmented OCTOPUS platform and discusses
the approach. Section V presents related works and last
section concludes the paper and presents futures works.

II. OCTOPUS PLATFORM
OCTOPUS is a multi-agent platform; all the

technologies related to agents are combined to provide a
system for solving a data gathering and monitoring problem
in an adaptive way. Being a multi-agent system, OCTOPUS
has basic MAS characteristics as autonomy, local view and
decentralization.

All the agents are autonomous and partially independent:
the shutdown of an agent does lead to a platform’s
deactivation. Furthermore, the agents can continue their
execution if the system has to reboot for any reason in order
to ensure that their behavior is unchanged and that the data
gathering is operational even if the remote communication
is temporary deactivated.

No local agent has a global view of the platform and the
main behavior aside from data gathering of the agents is to
communicate to remote agents. In this way, a
decentralization of the processes is effective; all the agents
collect specific data and spread information to a controlling
component of the system. This controlling component and
its particular communication with the remainder of the
system is the main defining characteristic of OCTOPUS.

OCTOPUS defines several components to achieve the
deployment of an adaptive multi-agent system with different
views of monitoring data and a particular communication
routine to implement the constraints of the problem. Those
constraints are the rules that each agent has to follow and
depending on them, each agent changes his behavior.

OCTOPUS platform presents a hierarchy between the
sub-platforms; containers grouping agents that are remotely
connected. Throughout this hierarchy, the system defines
types of agents that have a specific role. Each agent’s sub-
platform has an implemented behavior and specific role. A
Brain agent is implemented, which is the management
component, connected to all the agents of the sub-platform.
All data gathering agents are waiting for rules from this
Brain agent and are sending feedback in return. When
necessary, Brain agents can also be part of a global
hierarchy, in which a Super-Brain takes care of their
organization and management. This way, each Brain can

provide a view for a specific level of work; a main,
administration view of the entire system is provided by the
Super-Brain (see Figure 1). The Pn components represent
agent’s sub-platform containing P type agents while the Tn
components represent implemented T type agent’s sub-
platform. In this case, the system is composed of a single
Brain, a communication and organizing instance sub-
platform.

This Brain is a sub-platform containing agents which
remotely connects all the agents existing in its network.
These agents are waiting for information collected from the
T and P sub-platforms. The Brain is able to send this data to
a monitoring interface through messages. The selection of
the view and the type of data to be sent to the monitoring
component remains at the sole discretion of the Brain. The
main purpose of the Brain is to send rules to the connected
sub-platforms of agents and receiving data from them. This
way, the untreated data is sent from lower levels (T and P
sub-platforms) to higher (Brain). Finally, this system
example is a lower level of OCTOPUS itself; it is only one
of the “tentacles” of the final architecture.

Figure 1. OCTOPUS global architecture

Obtaining a complete OCTOPUS instance is possible
with adding one hierarchical level to the previous example.
Figure 1 presents an architecture, in which all the Brains
(with their T and P connected sub-platforms) are linked to a
Super-Brain. Such a component has the same role as a
Brain, but the collected data is coming from Brain sub-
platforms. In this case, a global monitoring of the platform
is possible and the rules are sent to the Brains of the
network. The architecture is typically the same but with one
higher level of hierarchy.

Finally, such architecture introduces a two-way data and
rules flow: data collected from T and P type agents is sent to

2Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

Brain sub-platforms and after analysis, forwarded to the
Super-Brain.

In return, rules are pushed from Super-Brain to the
others Brains and their establishment inside T and P sub-
platforms (through the agents). This bi-directional data flow
is yet another key functionality of OCTOPUS platform. The
generic examples presented in this section are only possible
instances of OCTOPUS, the system can be adapted to
different scenarios, data type and number of agents
following the same hierarchical architecture. The T and P
agents’ type is an example of generic implementation of
agents gathering data. Specific characteristics of agents and
their types are descripted in next sections.

III. OCTOPUS PLATFORM AUGMENTED WITH A
MONITORING SOLUTION

This section introduced the monitoring approach
proposed by our OCTOPUS framework.

A. Smart monitoring platform metamodelling insights

The smart monitoring platform metamodel has been largely,
and with many details, presented in [2]. This section recalls
and summarizes the theoretic foundation and premise of our
research in this area. The goal in modelling the monitoring
system into a layered architecture metamodel is to furnish
CI actors with solutions for governing the platform
(monitoring and decision making support mechanism). In
our previous work [3], extended smart monitoring platform
metamodel using the ArchiMate® metamodel was elaborated
to provide and support the use of a multiple layered
approach of a monitoring component based on dynamic and
autonomous policies.

To generate the OCTOPUS platform, we realized a
specialization of the original ArchiMate® metamodel for the
monitoring components. First, we redefined and structure the
Core of the metamodel in order to figure out the semantic of
the Policy [14] [17] (see Figure 2). The Core represents the
handling of Passive Structures by Active Structures along the
realization of Behaviors.

Concerning the Active Structures and the Behavior, the
Core differentiates between external concepts which
represent the way, in which the architecture is being
perceived by the external elements (as a Sub-Brain of a type
T or P attainable by means of an Interface or communicating
with the Brain), and the internal elements which is composed
of Structure Elements (Roles, Components) and linked to a
Policy Execution concept. Passive Structures contains Object
(e.g., data or organizational object), which represents
architecture knowledge. Secondly, the concept of Policy has
been defined in accordance to the platform metamodeling
approach. The proposed representation is composed of three
elements which allow defining the Policy structure: (1) the
“Event” that is defined as a trigger generated by a Structural
component that generates the realization of a Policy, (2) the

“Context” whish symbolizes a configuration of Passive
Structure that allows the Policy to be realized. In the case of
Octopus, the context includes the sub-region environment
specificities (3) the “Responsibility” [4][5][12][13][16]
which is the more rich semantic concept and which is
defined as a state assigned to a component (human or
software) to specify obligations and rights in a specific
context (Feltus et al., 2014).

Thereby, the responsibility corresponds to a set of
behaviors that have to be realized by means of Structure
Elements. That behavior may also use Objects of y type
Passive Structure or modify values. With these three
elements, we generate an auxiliary Policy artefact that
mirrors the fulfilment of a set of Responsibilities [2] in a
specific monitoring Context and in response to a predefined
Event. Through the Policy Concept, we show that each
operation done by the monitoring components can be
transferred into a Policy Execution.

Although there is a clear semantic difference in
ArchiMate® between the business user (human or machine)
which exploits an application, and the application itself, in
the smart monitoring field, we consider that actors and roles
are played by components that we define as being a specific
Structure Elements acting in Critical Infrastructure
environment. As a result, three level are necessary to
structure the metamodel for the monitoring domain: (1) The
Organizational Layer offers services and products to
external customers that are represented in the organization by
organizational processes performed by Organizational Roles
according to Organizational Policies. (2) The Application
Layer supports the Organizational Layer with Application
Services which are realized by Applications according to
Application Policies. (3) The Technology Layer which offers
Infrastructure Services needed to run applications,
performed by system software, computer and communication
hardware.

Concepts and colors were taken from the original
ArchiMate® language, except for Organizational Function
and the Application Function which were switched with the
Organizational Policy component and the Application Policy
component. Based on the following analysis, we have
defined the Organizational Policy as “the rules which define
the organizational responsibilities and govern the execution
of behaviors, at the organization domain, that serve the
product domain in response to a process domain occurring
in a specific context, which is symbolized by a configuration
of the information domain”

And we have defined the Application Policy as “the rules
that define the application responsibilities and govern the
execution, at the application domain, of behaviors that serve
the data domain to achieve the application strategy.”

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

Figure 2. Smart monitoring platform metamodel

B. Smart monitoring system metamodel layers
The three layers which structure the smart monitoring

platform metamodel (see Figure 2) are from down to top:
the technical level, the applicative level and the
organization or business level.

The Technical Layer is used to represent the structural
aspect of the system and highlights the links between the
Technical Layer and the Application Layer and how physical
pieces of information called Artefacts are produced or used.
The main concept of the Technical layer is the Node which
represents a computational resource, on which Artefacts can
be deployed and executed. The Node can be accessed by
other Nodes or by components of the Application Layer. A
Node is composed of a Device and a System Software [6].
Devices are physical computational resources where
Artefacts are deployed when the System Software represents
a software environment for types of components and objects.
Communication between the Nodes of the Technology Layer
is defined logically by the Communication Path and
physically by the Network.

An Organizational Object defines unit of information
which relates to an aspect of the organization. At the
Application layer, this is used to represent the Application
Components and their interactions with the Application
Service derived from the Organizational Policy of the
Organizational Layer. The concept of the components in the
metamodel is very similar to the components concept of
UML (UML 2) and allows representing any part of the
program. Components use Data Object, which is a modelling
concept of objects and object types of UML. Interconnection
between components is modelled by the Application
Interface in order to represent the availability of a
component to the outside [3] (implementing a part or all of
the services defined in the Application Service). The concept
of Collaboration from the Organizational Layer is present in
the Application Layer as the Application Collaboration and
can be used to symbolize the cooperation (temporary)
between components for the realization of behavior.
Application Policy represents the behavior that is carried out
by the components.

The Organizational Layer highlights the organizational
processes and the associations with the Application Layer.
Firstly, the Organizational Layer is defined as an
Organizational Role (e.g.: Alert Detection Concept). This
role, accessible from outside the monitoring behavioral
structure through an Organizational Interface, performs
behavior based on and according to organization's policy
(Organizational Policy component), which are associated
with the role. Afterwards, the components are able
(depending on their roles – but also function is some cases)
to interact with other roles to perform behavior; this is
symbolized by the concept of Role Collaboration outside.

 Organizational Policies are behavioral components of

the organization whose goal is to achieve an Organizational
Service to a role following Events. Organizational Services
are contained in Products accompanied by Contracts.
Contracts are formal or informal specifications of the rights
and obligations associated with a Product. Values are
defined as an appreciation of a Service or a Product that the
Organization attempts to provide or acquire. The complete
smart monitoring platform metamodel is the union of the
three layers. As shown below, new connections between the
layers have appeared.

For the Passive Structure, we observe that Artefact of the
Technical Layer realizes Data Object of the Application
Layer which, itself, realizes Organizational Object of the
Organizational layer.

The Behaviour concept association shows that the
Application Service uses the Organizational Policy to
determine the services that it sustain. In the same manner, the
Technical Layer bases its Infrastructure Service upon the
Application Policy of the Application Layer. Concerning the
Active Structure connections, the Role concept determines,
together whit the Application Component, the Interface
provided in the Application layer. The Interface of the
Technical Layer is also based on the components of the
Application Layer. The modelling language related to the
above artefact is available in The Open Group [19].

4Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

Figure 3. Smart Mobility management and sub-region interfaces

IV. VALIDATION IN THE FRAME OF A MONITORING
INTERFACE AUGMENTED FOR SMART MOBILITY

This section aims at reporting and evaluating how
OCTOPUS augmented has been designed for a specific
Mobility management steering interface. Therefore, we
review and validate the advantages and the improvements
provided by the implementation that has been specifically
required for this use case in the mobility domain.

As explained earlier, the monitoring architecture is
defined based on generic agents easily instantiable for
whatever cases, but steering interface is always dependent
of the type of monitoring developed. Figure 3 shows the
interface for the implementation of the smart mobility
solution in the region. This interface content a monitoring
frame including static information (e.g., map of the region,
frames for the parking monitoring, etc.) and dynamic
information (e.g., level of traffic jam on specific road,
amount of places available at each parking, etc.)

Aside the monitoring interface, additional management
functionalities are also available. These functionalities are
not presented in the paper. They concern the management of
the users of the solution, the creation of specialized
viewpoints for each type of user requirements, the dynamic
definition of “business rules” in order to configure the
behavior of the different agents and hence, to suggest user
mobility decisions.

This needs to be put in parallel with the three constraints
related to the key management broadcasting mechanism
related to the smart monitoring platform architecture have
been defined by Bailey et al., 2003 [7] and need to be

considered along the modelling of the policies: (1) the
computational capacity limit, which may be represented as
an artefact of a type data object at the application layer of the
MTU, (2) the low data transmission rate which is also a
concept related to the MTU by means of a data object, and
(3) the real-time processing that needs to be consider to
prevent data processing delay and which may be represented
as a data object from the RTUs structures.

The definition and the exploitation of the proposed
augmented OCTOPUS framework in the mobility area has
demonstrate to what extend the solution offers flexibility and
usability to the business administrators. Indeed, most of the
manipulations (e.g., traffic decisions, road optimization,
informed communication, etc.) performed by the platform
operators has been realized more intuitively and with more
accuracy than with previous version of the frameworks.

V. RELATED WORKS
Literatures explain methodologies to model Multi-Agent

System (MAS) [18] and their environments as a one layer
model and give complete solutions or frameworks. Gaia [8]
is a framework for the development of agent architectures
based on a lifecycle approach. AUML
(http://www.auml.org), and MAS-ML [9] are extensions of
the UML language for the modelling of MAS but do no
longer exist following the release by the OMG of UML 2.0
supporting MAS. Prometheus defines a metamodel of the
application layer and allows generating organizational
diagrams, roles diagrams, classes’ diagrams, sequences
diagrams and so forth.

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

The Prometheus approach permits hence to generate
codes but does not provide links between diagrams and
therefore makes it difficult to use for alignment purposes or
with other languages (e.g., MOF, DSML4MAS [10]).
CARBA provides a dynamic architecture for MAS similar
to the middleware CORBA based on the role played by the
agent. Globally, we observe that these solutions aim at
modelling the application layer of MAS [11]. CARBA goes
one step further introduces the concept of Interface and
Service. This approach is closed to the solution based on
ArchiMate® that we design in our proposal but offers less
modelling features. As we have notice that agent systems
are organized in a way close to the enterprises system, our
proposal analyses how an enterprise architecture model may
be slightly reworked and adapted for MAS. Therefore, we
exploit ArchiMate® which has the following advantages to
be supported by The Open Group. It has a large community
and proposes a uniform structure to model enterprise
architecture. Another advantage of ArchiMate® is that it
uses referenced existing modelling languages like UML.

As a conclusion of the related work, we may consider
that our approach may be used in parallel to existing
solutions while, in the same time, complete their added
value in a set of business driven dimensions like the
visualization of the system or the elaboration of integrated
and self-contain two types of policies. The evolution of our
approach may also be regarded following the performance
generated at the metric level. Indeed, contrarily to solutions
presented through the state of the art, our proposal fit fully
with the measurement theory requirement and, hence, may
be more pragmatically devoted to performance based design
of critical and highly sensitive infrastructures.

VI. CONCLUSIONS AND FUTURE WORKS
Monitoring systems are important solutions to secure

critical infrastructures against traditional and cyber-attacks
threats. Those systems need to be accurately managed and
protected in terms of interconnection, homogeneity and real
time reaction. Therefore, the paper proposes an integrated
approach for modelling the monitoring architecture based on
the enterprise architecture modelling language and more
specially ArchiMate® which has been particularly tailored
for smart monitoring systems.

Based on a dedicated metamodel, the paper has
demonstrated how technical, application and organization
policies could be designed and metamodeled, especially
regarding the policy management for interconnected
monitoring systems for two of its functions. All along the
modelling of the platform model and the definition of the
policies according to these models, we have illustrated the
theory with a business case study related to the petroleum
supply chain, and more specially the specific functions of
crude oil supply and crude oil storage and distribution.

REFERENCES
[1] L. Briesemeister, S. Cheung, U. Lindqvist, and A. Valdes,

"Detection, correlation, and visualization of attacks against critical
infrastructure systems," In Privacy Security and Trust (PST).

[2] C. Feltus and D. Khadraoui,.”Designing security policies for
complex SCADA systems management and protection,”
International Journal of Information Technology and Management,
15(4), pp. 313-332.

[3] C. Feltus, M. Ouedraogo, and D. Khadraoui, “Towards cyber-
security protection of critical infrastructures by generating security
policy for SCADA systems,” in Information and Communication
Technologies for Disaster Management (ICT-DM), 2014. IEEE.

[4] G. Neumann and M. Strembeck, “A scenario-driven role
engineering process for functional RBAC roles,” In Proceedings of
the seventh ACM symposium on Access control models and
technologies, 2002, pp. 33-42, ACM.

[5] C. Feltus and M. Petit, “Building a responsibility model including
accountability, capability and commitment," in Availability,
Reliability and Security, 2009. ARES'09. International Conference
on, pp. 412-419. IEEE, 2009

[6] G. Beydoun, C. Gonzalez-Perez, G. Low, and B. Henderson-
Sellers, “Synthesis of a generic MAS metamodel”. In ACM
SIGSOFT Software Engineering Notes, 30(4), 2005, pp. 1-5.

[7] D. Bailey and E. Wright, “Practical SCADA for industry”. Elsevier,
2003, Newnes, 288 pages.

[8] L. Cernuzzi, T. Juan, L. Sterling, and F. Zambonelli, “The gaia
methodology. In Methodologies and Software Engineering for
Agent Systems”, 2004, pp. 69-88.

[9] V. T. da Silva, R. Choren, C. J. De Lucena, “A UML based
approach for modeling and implementing multi-agent systems,“ in
Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems-Volume 2, 2004, pp.
914-921. IEEE Computer Society.

[10] S. Warwas, C. and Hahn, C, “The DSML4MAS development
environment,” in Proceedings of The 8th International Conference
on Autonomous Agents and Multiagent Systems-Volume 2, 2009.

[11] J. J. Gomez-Sanz, J. Pavon, and F. Garijo, “Metamodels for
building multi-component systems,” Proceedings of ACM
symposium on Applied computing. ACM, New York, NY,
USA,2002 pp. 37-41.

[12] C. Feltus, M. Petit, and E. Dubois, “Strengthening employee's
responsibility to enhance governance of IT: COBIT RACI chart
case study”. In Proceedings of the first ACM workshop on
Information security governance, 2009, pp. 23-32. ACM

[13] J. Zachman, “The zachman framework for enterprise architecture".
Zachman International, 2002.

[14] C. Feltus, D. Khadraoui, B. de Rémont, and A. Rifaut, “Business
Gouvernance based Policy regulation for Security Incident
Response,” In IEEE GIIS 2007 Global Infrastructure Symposium,
Vol. 6, 2007.

[15] G. Guemkam, C. Feltus, P. Schmitt, C. Bonhomme, D. Khadraoui,
and Z. Guessoum, “Reputation based dynamic responsibility to
agent assignement for critical infrastructure, “ in Proceedings of the
IEEE/WIC/ACM International Conferences on Web Intelligence
and Intelligent Agent Technology-Volume 02, 2011, pp. 272-275.

[16] C. Feltus, M. Petit, and E. Dubois, “ReMoLa: Responsibility model
language to align access rights with business process requirements,
“ in Research Challenges in Information Science (RCIS), 2011.

[17] A. Rifaut and C. Feltus, “Improving Operational Risk Management
Systems by Formalizing the Basel II Regulation with Goal Models
and the ISO/IEC 15504 Approach”, in ReMo2V, 2006.

[18] B. Gâteau, D. Khadraoui, and C. Feltus, “Multi-agents system
service based platform in telecommunication security incident
reaction,” in Information Infrastructure Symposium, 2009, pp. 1-6.

[19] http://pubs.opengroup.org/architecture/archimate2-doc/ (last access:
February 2017)

6Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

	I. Introduction
	II. Octopus platform
	III. Octopus platform augmented with a monitoring solution
	A. Smart monitoring platform metamodelling insights
	B. Smart monitoring system metamodel layers

	IV. Validation in the frame of a Monitoring interface augmented for Smart Mobility
	V. Related works
	VI. Conclusions and Future works
	References

