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Abstract—Given a linear continuous-time infinite-
dimensional plant on a Hilbert space and persistent
disturbances of known waveform but unknown amplitude and
phase, we show that there exists a stabilizing direct model
reference adaptive control law with disturbance rejection and
robustness properties. The plant is described by a closed,
densely defined linear operator that generates a continuous
semigroup of bounded operators on the Hilbert space of states.
There is no state or disturbance estimation used in this
adaptive approach. Our results are illustrated by adaptive
control of general linear diffusion systems.
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I. INTRODUCTION

Many control systems are inherently infinite dimensional
when they are described by partial differential equations.
Currently there is renewed interest in the control of these
kinds of systems especially in flexible aerospace structures
and the quantum control field [1][2]. In this paper, we want
to consider how to make a linear infinite-dimensional system
regulate its output to zero in the presence of persistent
disturbances.

In our previous work [3]-[6] we have accomplished direct
model reference adaptive control and disturbance rejection
with very low order adaptive gain laws for MIMO finite
dimensional systems. When systems are subjected to an
unknown internal delay, these systems are also infinite
dimensional in nature. Direct adaptive control theory can be
modified to handle this time delay situation for infinite
dimensional spaces [7]. However, this approach does not
handle the situation when partial differential equations
(PDES) describe the open loop system.

This paper addresses the effect of infinite dimensionality
on the adaptive control approach of [4]-[6]. We will show
that the adaptively controlled system is globally
asymptotically stable using a new Barbalat-Lyapunov result.
We apply this controller to linear PDEs with analytic
semigroup generators and compact resolvent which model
general linear diffusion systems.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-483-1

Susan A. Frost
NASA Ames Research Center
Moffet Field, CA, USA
emai: susan.frost@nasa.gov

Il. ADAPTIVE REGULATION WITH DISTURBANCE REJECTION

Let X be an infinite dimensional separable Hilbert space
with inner product (X, y) and corresponding norm

HXHE\/(X, X) . Consider the Linear Infinite Dimensional
Plant with Persistent Disturbances:

%x(t) = AX(t) + Bu(t) + " Uy (t)
x(0) = x, € D(A) c X
Bu = ibiui @)

y(t) = Cx(t) + Eu, (t)
y, =(c,, x(t)),i=1..m

where X € D(A) is the plant state, b, € D(A) are actuator
influence functions, ¢, € D(A) are sensor influence
functions, U,y € R™ are the control input and plant output
m-vectors respectively, U is a disturbance with known

basis functions @, . The persistent disturbances U will

enter the plant through the state channels I" and the output
channels E .

In order to accomplish disturbance rejection in a direct
adaptive scheme, we will make use of a definition, given in
[4][7], for persistent disturbances:

Definition 2: A disturbance vector U, € RY is said to be

persistent if it it satisfies the disturbance generator
equations:

{uD(t) =0z, (t) or{uo(t) =0z, (t)

, @
25(t) =Fzp (1) (Zp(D) =Ly (D)

where F is a marginally stable matrix and ¢, (t) is a vector
of known functions forming a basis for all the possible
disturbances. This is known as “a disturbance with known
waveform but unknown amplitudes”. We can easily show
that an operator L exists to relate the persistent disturbances
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to a known basis vector @, (t), but the adaptive controller
will not need to know the actual L .

The objective of control in this paper will be to cause the
output y(t) of the plant to regulate asymptotically:

Y =50 )

and this control objective will be accomplished by a Direct
Adaptive Control Law of the form:
u=G,y+Gpo,

The direct adaptive controller will have adaptive gains
given by:

(4a)

Ge = _yy*J/e;J/e >0

Gp =—Y¢p7p:7p >0
Note that the output feedback gains are directly adapted and
no estimation or identification of plant information is used in
the control law.

(4b)

I1l. IDEAL TRAJECTORIES
We define the Ideal Trajectories for (1) in the following
way:

X, =95,z )
{ P withz, e R™ (5)
u, =S,z

where the ideal trajectory x. (¢) is generated by the ideal
control u,(t) from

X,

= AX, +Bu, +T'u,
(6)
y,=Cx,+Eu, =0
If such ideal trajectories exist, they will be linear
combinations of disturbance state, and they will produce
exact output tracking in a disturbance-free plant (8).

By substitution of (5) into (6), we obtain the Model
Matching Conditions:

AS, +BS, =S,F+H,
To @
CS,=H,=-E@

where S, :R"> — D(A) c X,S, : R - RV,

Because (S,,S,) are both of finite rank, they are
bounded linear operators on their respective domains.

A Special Case occurs when E=0 and
Range(/") — Range(B) . Then there exists S, such that
BS, +I'@ =0 and S;=0. In this case the full system state

X becomes disturbance-free, but in general we really only
want to make the output y disturbance-free.
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IV. NORMAL FORM

We need two lemmae:
Lemma 1: If CB is nonsingular then P, = B(CB)™C isa
(non-orthogonal) bounded projection onto the range of B,
R(B), along the null space of C,N(C) with P, = | — P, the
complementary bounded projection, and
X =R(B)® N(C), as well as
D(A)=R(B)®[N(C)n D(A)]-

Proof of Lemma 1: See [17].

Now for the above pair of projections (Pl'PZ) we have

X b, X (RAP)PX+(PAP,)P,x-+ (RB)U
At A B
PoX _p X _ (P, ARYPX+ (P,AP,)P,x+ (P,B)u
y = (CP,)Px+(CPR,)P,x
C =0

a;’( = A,Px+A,Px+Bu
OP, X

which implies § —2—= A, P.Xx+ A,,P,X
y =CPx=Cx

because y = Cx = C(B(CB)'C)x = CPx
and Px = B(CB)Cx =B(CB)y.
and CP,=C —CB(CB)C =0

and P,B=B - B(CB)'CB =0.
Lemma 2: If CB is nonsingular, then there exists and
invertible, bounded linear operator

C 5
WE{ :|:X—>XER(B)X|2
WZPZ

such that

o) CB| = -1 n -1

B=WB= o | C=Cw™=[I, 0],and A=WAW

This coordinate transformation puts (1) into normal form:
y=A,y+A,z,+CBu
07, — =
E =AY+ Ay,

where the subsystem: (A, , A, , A,, ) is called the zero
dynamics of (1) and

(®)
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A, =CA,B(CB)™ = CAB(CB) *; A, = CAW,’;
Kﬂ =W,A, B(CB) - Kzz =W, AZZWZ*

| (601, P,X) 1
(6,,P,x)
(65, P,X)

and W, : X — I, byW,x = is an isometry

from N(C)intol,.
Proof of Lemma 2: See [17].

Now we can prove the following theorem about the
Existence of Ideal Trajectories:

Theorem 1: Assume CB is nonsingular. Then

o(F)=0,(F)c p(A,)
={AeC/(Al-A,)™":1, -1, is a bounded linear operator}

(o 0,(F)no(A,)=¢ where o(A,)= [p(A,)T)

if and only there exist unique bounded linear operator
solutions (S,,S,) satisfying the Matching Conditions (7).

Proof: Define

= S _ H
S,=WS, = La}and H,=WH, = {Ha] From (7),

b b

we obtain
AS +BS,=SL_+H,
CS,=H,

where (A, |§,6) is the Normal Form (8). From this we
obtain:

=zl
Il

.=H,
2 = (CB)_l[Hsz + ﬁa _(KMHZ + 'E&ng)]

AZZSb _S_bF = ﬁb _Klez

We can rewrite the last of these equations as

(A1 -A,)S, -S, (Al =F)=A,H,-H, =H forall
complex A. Now assume thatF is simple and therefore
provides a basis of eigenvectors {, | for R"°. This is

not essential but will make this part of the proof easier to
understand. The proof can be re-done with generalized
eigenvectors and the Jordan form. So we have

(A1 - 'KZZ)S_bgok _S_b A1 =Fo, = 'E‘mHz - |__|b
[N —7

=0

w

H

which implies
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§b(ok = (41— 'K‘zz)ilFl(Dk because 4, e o(F) P('Kzz)

Thus we have

Sez=> o (A ) —Ap) THEVZ =D ad e R".
k=1 k=1
Since A, eco(F) c P(Kzz) .

all (4,1 —A,)™" are bounded Also

H=A,H,-H, is a bounded operator on R

Therefore S, is a bounded linear operator, and this leads to

operators.

S, also bounded linear.

If we look at the converse statement and let

A EG(F)QG(KZZ) =¢.

Then there exists ¢. # O such that

(21 = A)S,0. =S, (A1 = F)p. = (A1 - A,)S,0.
—
_H,
In this case 3 things can happen when A. ec(A,,):
(A = Kzz) can fail to be 1-1 so multiple solutions of S,
will exist, R(A.1 —A,)) can fail to be all of X so no
solutions S, may occur, or (Al —Kzz)_l can fail to be a

bounded operator so solutions §b may be unbounded. In all
cases these 3 alternatives lead to a lack of unique bounded
operator solutions for S, .
And the proof of Theo. 1 is complete.
It is possible to relate the
o, (Ayp) = {2121 - A, not 1-1}to
transmission (or blocking) zeros of (A, B,C) .

point
the

spectrum
set Z of

Similar to the finite-dimensional case [16], we can see
that

ol

D(A)XR™ — XxR™ linear operator is not 1-1

z

MV(ME[M—A B]

Lemma 3: Z =, (A,)={A/Al - A, isnot1-1} s
called the point spectrum of Kzz . So the transmission zeros of
the infinite-dimensional open-loop plant (A, B,C) are the

eigenvalues of its zero dynamics (A,,, A, , A, ) .
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Proof of Lemma 3:

From )
\7(}’): M_—A B
| C 0
[w™ o][al-A BJwW 0
1o 1| ¢ o]lo 1
- P —————
V(1)
we obtain FI__ A ﬂ not 1-1 if and only if
AM-A B
not 1-1.
C 0
But, using normal form from Lemma 2,
_ Al —A - A CB
_ M-A B e Pz
Vs ] A M oAy O
I, 0 0
And therefore
hl
0=V (1)h=V (1) h, |ifand only if
h3

h, =0;h; = (CB)il'E‘lzhz;(il - 'Kzz)hz =0.

| —
Soh # 0 .ifand only if h, # 0 Therefore {S _

|
o m
| I |

not 1-lifandonly if 1 e o, (A,,).
This completes the proof of Lemma 3.

Using Lemma 3 and Theo. 1, we have the following
Internal Model Principle:

Corollary 1: Assume CB is nonsingular and
O-(A'ZZ):Gp(A'ZZ) :Gp(PZAPZ) where A, =W, B,ARW,.
There exist unique bounded linear operator solutions
(S,,S,) satisfying the Matching Conditions (10) if and
only if O'(F)ﬁz =, i.e., no eigenvalues of F can be
zeros of the open-loop plant (A,B,C).

Note: Al — Kzz
x# 0 such that P,x# 0 and

is not 1-1 if and only if there exists

0= (Al —A,)W,P,x
= (AWW, —W,PAPW, )W, P,x
[ —

|
= [Wz (/1I - Pz APz )Wz*]Wz sz

if and only if

W, (A1 — P,AP,)W, is not 1-1 on N(C).
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But W, is an isometry on N(C).
Therefore o (A,,) = o, (P,AR,).

V. STABILITY OF THE ERROR SYSTEM

The error system can be found from (1), (2) and (6):
Define € = X—X.and Au = U —U, this implies
oe
— = Ae+ BAu
ot 9)
y=y-0=Ay=y-y.=Ce

Now we consider the definition of Strict Dissipativity for
infinite-dimensional systems and the general form of the
“adaptive error system” to prove stability. The main theorem
of this section will later be utilized to assess the convergence
and stability of the adaptive controller with disturbance
rejection for linear diffusion systems.

Noting that there can be some ambiguity in the literature
with the definition of strictly dissipative systems, we modify
the suggestion of Wen in [8] for finite dimensional systems
and expand it to include infinite dimensional systems.

Definition 1: The triple (A, B, C) is said to be Strictly
Dissipative (SD) if A, is a densely defined ,closed operator

on D(A,) < X acomplex Hilbert space with inner

product (X, YY) and corresponding norm "X" =4 (X, X) and
generates a C , semigroup of bounded operatorsU(t) ,and
(B,C) are bounded finite rank input/output operators

with rank M where B:R™ — X andC: X —-R"™ .in
addition there exist symmetric positive bounded operator P
and Q on X such that

0 < pmin HeHZ < (Peve) < pmaxHe 210 < qminHeH2 < (Qeve) < qmaxHeHz
i.e. P,Q are bounded and coercive, and

Re(PAe,e)= %[(PA:e, e)+(PA.e,e)]

= %[(PA:e, e)+ (e, PAe)] (10)

=—(Qe,e) <—q,, [e| ;e € D(A)
PB=C"

where W'is the adjoint of the operator W.

We also say that (A, B, C) is Almost Strictly Dissipative
(ASD) when there exists G,mxm gain such that (A;,B,C) is
SD with A, = A+ BG..C . Note that if P=I in (5a), by the
Lumer-Phillips Theorem [10], p 405, we would have
u.®|<et=0;0=q,, >0.

Henceforth, we will make the following set of assumptions:
Hypothesis 1: Assume the following:
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i.) There exists a gain, G: such that the triple
(A. = A+BG,C,B,C)isSD,ie.
(A,B,C)isASD,

ii.) Aisadensely defined ,closed operator on
D(A) = X and generates a C, semigroup of

bounded operatorsU(t),
iii.) ¢ iISbounded
From (5), we have U, = SZZD and using (4a), we obtain:
Au=u-u.=(G,y+Gyp,)—(S, EEJ)

Lop

* - 11

=G,y +AG,y+AGyp, =C.e, +AGn ()
where
AG=G-G.;G=[G, G,];G.=[G, S,LJ;
G, =S,L;and UE{ y}

Do
From (4), (9) and (11), the Error System becomes

oe .

— =(A+BG,C)e+BAGn =Ae+Bp;

at %,_/

(12)

ee D(A); p=AGn
e, =Ce
AG=G-G,=G =—ey77*y

where y{ye 0}>0
0 7o

Since B,C are finite rank operators, so is BG_C.
Therefore

A = A+BG,C which has D(A)=D(®*) and generates

a C, semigroup Uc(t) because A does (see [9] Theo 2.1 p
497). Furthermore, by Theo 8.10 p 157 in [11], x(t) remains
in D(A) and is differentiable there for all t> 0 .This is
because ~ F(t)=Bp=BAGn s
differentiable in D(A).

We see that (12) is the feedback interconnection of an
infinite-dimensional linear subsystem with

eeD(A) < X and a finite-dimensional subsystem with

continuously

AG e R™". This can be written in the following form

e _
using W = eD=D(A)XR™" = X = XxR™™:
AG
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M _w, = £ (t,w) {A“H Bf)(t)}
ot -eny

W(t,) =W, € D densein X = XxR™"

(13)

The inner product on )? = XXR™™ can be defined as

X, X | .
(W, w,) = [LGJ,[AGZD = (%, %,) +r(AG,AG, )

which will make it a Hilbert space also.

Now we present a new version of Barbalat-Lyapunov
for systems on an infinite dimensional Hilbert space:

Theorem 2 ( Lyapunov-Barbalat): Let
w(t) = w(t,t,,w,) € D and V(t,w) satisfy:
0c||w||2 <V(@,w)<p ||w||2
oV (t,w) N oV (t,w)
ot ow

forall we D . Then W(t) is bounded in X.. Furthermore,
if the following are true:

a) S(w)> y”NVV”Z VYwe D; > 0;with 8 a bounded

V (t,w) =

f(t,w)<-S(w)<0

operator on D < X = XxR™™ — X such that
(Nw), =Nw,
b) Re(Nw,Nf(t,w)) is bounded on bounded sets of

weD.

Proof: See Appendix I in [17].
For this proof, we will need the following version of
Barbalat’s Lemma; see [15] pp210-211.:

Lemma 4: We say f(t) is a uniformly continuous function on
(0,:0) when for all ¢ >0 there exists 5 = §(¢) > 0 such that

|f(t,)— f(t)|<e V[t,—t| <5 . Iff(t) is areal, uniformly

continuous function on (0,00) with .T f(t)dt <o then
0

Now we can prove the stability and convergence of the
direct adaptively controlled error system (15):

Theorem 3: Under Hypothesis 1and Re (A.e,€) bounded on
bounded sets of € € D(A) we will have state and output
tracking of the reference model: EHT)O’ and since C is
a bounded linear operator: e, =y -y, =Ce———0
with bounded adaptive gains

G=[G, G, G, G,|=G.+AG

Proof: See Appendix Il in [17].
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VI. APPLICATION: ADAPTIVE CONTROL OF UNSTABLE

DIFFUSION EQUATIONS

We will apply the above direct adaptive controller on the
following single-input/single-output Cauchy problem which
represents a general linear diffusion problem:

OX
— = Ax+b(u+u,),x(0)=x, € D(A

y =(c,x), withb=ce D(A)
where A has compact resolvent and generates and analytic C,
semigroup.

From the compact resolvent property, we know that
o(A)=0c,(A)and by the analyticity requirement there
will only be a finite number of unstable eigenvalues
A€o, (A).

Consequently, there  exists G. such that

A =A+BG.C satisfies

Re A, <-u<0V4 €0 (4, ) whichimplies that
Re(AX ) = 21(Ax, 0+ (AX )] = S1(Ax, 0+ (4 AX)]
=~(@Qx ) <-u[x|";xeD(A)

Also, since b=c we have Cc* =B . Therefore we have that
(A/B,C)isAsD withP = I .

From Re(A.x,X) < —,uHXHZVX € D(A) we clearly have

Re(A.X, X) bounded on bounded sets of X € D(A).

For this application we will assume the disturbances are
sinusoidal with frequency 1 rad/sec (but this is not a

restriction as long as ¢ is bounded:

0
u, =[1 0]z,
. 0 1
Lp = {_1 O} Zp
implies that
e :[ 0 1}% 1L oo, E[sint}
-1 0 cost
implies that
U=G,y+Gyp, with | 2= W e
Gp ==Yop7p
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So,since B =T, thereisagain S, =—6 such that
BS, +1'0 =B(-0+0) =0 which implies that S, =0
and this is the special case of (7). Finally E=0 and the
eigenvalues of F are ij but the zeros of (A,B,C) are real;

so the matching conditions are satisfied and ideal trajectories
exist. Therefore we satisfy the hypothesis of Theo. 3 and we
have, via the direct adaptive controller, state regulation

X——>—>0 and output regulation Y ————0 with

bounded adaptive gains G = [Ge GD] in the presence of
sinusoidal persistent disturbances.

VII. CONCLUSIONS

In Theorem 1, we showed conditions under which ideal
trajectories exist for a linear infinit-dimensional system to be
capable of rejecting a persistent disturbance in the the output
of the plant. In Theorem 3 we used an extension of Barbalat-
Lyapunov result for linear dynamic systems on infinite-
dimensional Hilbert spaces under the hypothesis of almost
strict dissipativity for infinite dimensional systems, to show
that direct adaptive control can regulate the state and the
output of a linear infinite-dimensional system in the
presence of persistent disturbances without using any kind of
state or parameter estimation.. We applied these results to a
general linear diffusion problem with sinusoidal
disturbances using a single actuator and sensor and direct
adaptive output feedback.

These results do not require deep knowledge of specific
properties or parameters of the system to accomplish model
tracking. And they do not require that the disturbance enter
through the same channels as the control.
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