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Abstract—This paper focuses on analysis of effective 

interaction techniques of agents in multi-agent systems used 

for real-time scheduling. The paper describes two approaches 

to the organization of the interaction of asynchronously 

working software agents. The supply network scheduling case 

is considered to show the difference in how the interaction goes 

on. The comparison shows how well each approach allows 

parallel processing, and subsequently, how fast the scheduling 

can be done on multi-core hardware. The pros and cons of the 

approaches are described, as well as ways to achieve better 

quality. Finally, the results of processing of real data using the 

approaches are given. The results show a higher effectiveness 

of one of the approaches in real-time supply scheduling. 

Keywords—real-time; scheduling; software agent; multi-

agent; supply chain; supply network; supply demand; interaction 

protocol; agent negotiation; asynchronous interaction; 

processing speed; parallel processing; schedule quality. 

I. INTRODUCTION 

Growing complexity and dynamics of modern global 
market demand new paradigms in resource management 
[1][2]. New revolutionary approach to increase efficiency of 
business is associated today with real-time economy, which 
requires adaptive reaction to events, ongoing decision 
making on resource scheduling and optimization and 
communication results with decision makers. 

Multi-agent technology is considered as a new design 
methodology and framework to support distributed problem 
solving methods in real-time scheduling and optimization of 
resources [3][4]. 

The main feature of real-time scheduling and 
optimization methods is to produce a result in the specified 
moment of time or time interval, reacting to unpredictable 
external and internal, constructive or destructive events (new 
order coming, order is cancelled, resource unavailable, etc.). 

The quality and efficiency of decision making in resource 
scheduling and optimization process can be influenced by 
the number of factors: the intensity of events flow, the 
number and current state of resources, individual specifics of 
orders and resources, time interval between the events and 
processing time for events, productivity of resources and 
many others. 

A big challenge is to ensure that certain quality of 
scheduling results is achieved in a short time after the event 
to make it possible to finish the processing before the next 

event and to always have a valid schedule needed for 
decision-making. 

Figure 1 illustrates the difference in actuality of 
scheduling results (how well they reflect reality) in the 
changing environment. Having frequent data updates, it 
becomes more important to process them faster to get a valid 
result (green line). Otherwise, one can use a lengthy 
processing to get an optimal result (yellow/red line), but this 
result does not consider the last changes. Then, we are forced 
to always base your decisions on an optimal, but outdated 
picture. 
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Figure 1. Real-time adaptive scheduling results. 

One of the main problems of classical methods and 
algorithms [5][6] is that complexity of scheduling with new 
criteria grows exponentially. This makes their applications 
very limited in practice. Many heuristic methods allow 
obtaining close to optimal solution within a reasonable time. 
Hybrid heuristic algorithms integrate traditional dispatching 
rules with genetic, neural, swarm and other approaches. 
Obvious disadvantages of the centralized methods of 
scheduling and optimization resource management lead to 
development other approaches, in particular distributed 
problem solving methods. Bio-inspired evolutionary (genetic 
and swarm) algorithms are applied both in centralized and 
decentralized systems [7]-[9]. They have proved to be more 
useful, reliable and generic scheduling and optimization tool 
for business. One of new approaches is based on bio-inspired 
distributed problem solving of resource scheduling problems 
based on multi-agent technologies with economic reasoning. 
This approach can combine benefits of bio-inspired, DCOP 
and virtual market methods based on multi-agent technology 

120Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems



and is designed to support self-organization of schedules to 
provide flexibility in event processing. Multi-agent resource 
allocation is used for job scheduling and some other tasks 
[11]. In our paper, we consider a more specific practical case 
of supply scheduling and compare the interaction approaches 
from the perspective of their use in real-time application. 
There are other researches done regarding the use of multi-
agent approach in supply chain scheduling, including 
analysis of high-level protocols (Combinatorial Auctions, 
Bargaining Processes, Random Search, Knowledge Based 
Systems, Learning Systems) [12][13], but they do not focus 
on the analysis of benefits of different agent assumptions in 
asynchronous environment. 

To solve the problem of multi criteria scheduling and 
optimization it is suggested to use Demand-Resource 
Network concept (DRN) based on holonic approach and 
compensation method for real-time resource management on 
a virtual market [10]. In accordance with this distributed 
approach, initial complex problem is decomposed into more 
simple and specific problems – to schedule and optimize 
orders, resources and products with the use of demand and 
supply agents. All agents are working continuously trying to 
maximize their objective functions and use money to solve 
conflicts by negotiations and finding trade-offs (until local 
optimum is reached or time is expired) with compensations 
in case that some of them change position losing money.  

Objectives, preferences and constraints of agents are 
defined by individual satisfaction functions and 
bonus/penalty functions. As the result of agents decision 
making, a local balance is reached and situation when no 
agent can change position is recognize as a consensus which 
stops computations. As a result, the solutions (the schedule 
of resource usage) comes not from one algorithm but evolves 
(emerges) dynamically in process of agents interactions and 
negotiations. Solution search and adjustment process stop 
when the consensus is found or when the time limit is 
exceeded for finding a solution, and if not the whole - but 
partial problem solution will arrive that will be interactively 
finalized by the user. 

The use of multi-agent approach provides many potential 
benefits and possibility to speed up the scheduling by use of 
parallel processing of asynchronous agents. Still, this 
possibility depends on how the agents interact with each 
other and on their dependence on each other in decision 
making. Obviously, the scheduling task requires a lot of 
information to be transferred between the agents to allow a 
better search for result. This transfer not only takes time 
itself, but also may force the agents to wait each other. In this 
paper, we consider two fundamental approaches to agent 
interactions related to the question when the agent should ask 
or wait for information, and when it can make independent 
decisions. 

In Section II, we describe what approaches to agent 
interactions we consider in this paper. In Section III, we 
compare the interaction schemas based on particular supply 
routing example. In Section IV, we show how the lack of 
resources in the supply network affects the interactions, 
performance and quality of results, and propose the ways to 
mitigate the drawbacks. In Section V, we compare the 

approaches based on a more complex case of competing 
orders in supply network. In Section VI, we provide the 
results of comparison based on real supply network data, 
including the difference in performance and quality of the 
approaches. In Section VII, the conclusion is given. 

II. APPROACHES TO AGENT INTERACTION IN SUPPLY 

SCHEDULING 

In this paper, we compare two different approaches to the 
organization of multi-agent interaction in relation to the 
supply scheduling. One approach is based on request and 
reply and follows the rejection presumption principle, which 
means that if no reply is given it is an equivalent of rejection 
(sender must wait for an answer). This approach is referred 
to as rejection assumed interaction in the paper. Another 
approach is based on the acceptance presumption principle, 
which means that without explicit rejection from the 
counterpart of communication the acceptance of request is 
assumed. This approach is referred to as acceptance assumed 
interaction in the paper. Of course, this relates to the requests 
that do not require an informational feedback, but only ask 
another site to do something, while the feedback is optional. 

Let us consider the difference based on a simple example 
of a network consisting of one shop and two storages that 
can supply it (Figure 2 and Table I). 
 

2

3

2

Shop

Storage A

Storage B
 

Figure 2. Example of supply network. 

There is an order at the Shop for one item of Product. 
Transportation costs are listed in Table I, and there are no 
other costs. 

TABLE I. TRANSPORTATION COSTS 

Source Destination Cost per item 

Storage A Shop 2 

Storage B Shop 3 

Storage B Storage A 2 

 
In the simplest example, we have enough stock at both 

storages. The rejection assumed interaction looks as the 
following, in this case (Figure 3). 
 

Shop Storage A Storage B

supply mea

b

c

accepted

 
Figure 3. Interaction based on rejection presumption. 
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It is an obvious case. The order at the shop requests the 
cheapest channel (channel from Storage A costs 2 while the 
other channel is 3) if the Product can be delivered and gets 
the positive reply. The interaction takes three steps in total. 
Two of them (‘a’, ‘b’) are time consuming, as they may 
require some analysis, while ‘c’ does nothing, but still takes 
some time to initialize the agent and process the message. 
For the sake of simplicity, let us decide that steps with 
analysis take 1.0 time unit, while steps without significant 
data processing take 0.1 time units (tu). In this case, the total 
is 2.1 tu. 

If we consider the acceptance assumed interaction for 
this case, the only difference is that we do not need the last 
step (Figure 4), as we assume the request is accepted and the 
supply is possible. Therefore, the total time for processing is 
2.0 tu. 
 

Shop Storage A Storage B

supply mea

b

 
Figure 4. Interaction based on acceptance  presumption. 

It is important to note that even if an additional 
processing is needed at the shop to obtain a final result 
(schedule) after the supply request is considered accepted, in 
acceptance presumption case this happens immediately after 
the request is sent and does not take additional time, as being 
done in parallel with the request processing at the storage. 

III. AGENT INTERACTION IN SUPPLY ROUTING SCENARIO  

Now, let us consider a less trivial case, where Storage A 
is empty. The order at the Shop does not have this 
information and still asks it first in the hope to get cheaper 
supply. This leads to the following sequence of interactions. 
 

Shop Storage A Storage B

supply mea

b

c

d

f

supply me

accepted

costs: 2

g

cancel

h

cancel

i

j

cancelled

cancelled

k

l

supply me

accepted

 
Figure 5. Routing based on rejection presumption. 

Storage A, in this case, at step ‘b’, cannot fulfill the 
request and sends a supply request to Storage B. At step ‘c’, 
Storage B reserves the stock (creates its own schedule) and 
sends the acceptance. Then, on step ‘d’ the Storage A sends 
the acceptance with the additional cost of transportation from 
B to A. This actually tells the order at the Shop that the total 
cost of supply will be 2 (from A to Shop) + 2 (from B to A) 
= 4. This is more than the cost of transportation from B to 
Shop, which is 3. This makes the order to try another 
channel. It cancels the previous request (in order to let A and 
B update their schedule and free the reserved stock) and asks 
the Storage B directly. The whole interaction takes 11 steps, 
with four of them (‘d’, ‘i’, ‘j’, ‘l’) being just fast reply 
processing. Therefore, the total scheduling time is 7.4 tu. It 
might be unclear why the steps ‘j’ and ‘l’ are “short”. It is 
because we consider the scheduling process at Shop to be 
almost completely done at step ‘f’. When Shop gets the cost 
reply from Storage A, it has to re-build the schedule to be 
supplied from Storage B. This may happen in slightly 
different ways across the steps ‘f’, ‘j’, and ‘l’, but the total 
re-scheduling time at Shop is assumed to be 1 tu in average, 
and we just associate this time with the step ‘f’. 

If we use the acceptance assumed interaction, we get a 
significantly different picture (Figure 6). 
 

Shop Storage A Storage B

supply mea

b

d
c

supply me

costs: 2

f

cancel

h

cancel g

supply me

 
Figure 6. Routing based on acceptance presumption. 

We have 7 steps here in total, but all of them are time 
consuming. More important is that the messages are sent to 
several recipients at steps ‘b’ and ‘c’ as we do not wait for 
reply, and the corresponding sites process them in parallel. 
The steps ‘c’ and ‘d’ go in parallel, as well as ‘f’ and ‘g’. 
This allows packing of all the 7 steps into 5.0 tu instead of 
7.4 tu of synchronous interaction. 

It is important to note that rejection assumed interaction 
does not mean synchronous processing (scheduling, in our 
case). There are still things you can do in parallel. For 
example, interactions happening in different parts of the 
network can go in parallel. However, with the increasing 
number of events to be processed also the likelihood of 
touching the same site increases. If this happens, we need to 
wait until the first event is processed completely. 

IV. AGENT INTERACTION IN RESORCE DISCOVERY 

SCENARIO 

However, there is a drawback in acceptance assumed 
interaction, which is clearly seen on the following example. 
Let us take the case, where the stock at the Storage B is 
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limited to just one item. If we use rejection presumption, the 
scheduling process and the result are exactly the same as if 
the stock is not limited, which is correct. But, if the 
acceptance presumption is used, we get the following 
interactions (Figure 7). 

At step ‘g’, it happens that the one item in the stock of 
the Storage B is reserved for the Storage A. The reservation 
takes place at step ‘d’, and the cancellation is now on its 
way, but the direct request comes faster due to asynchronous 
nature. This forces the Storage B to reject the direct request 
from the Shop. Consequently, the Shop asks Storage A 
again. This not only adds the steps to the interaction and 
2.0 tu of processing time, but also leads to the non-optimal 
result. The Shop is supplied, but the cost is higher, because it 
is supplied indirectly. 

This non-optimality can result in a lower quality of the 
final schedule, but it happens only in the specific situation 
when there is lack of stock and re-negotiation between sites 
takes place at the same time. Even if rejection presumption is 
used, similar situation still can happen when several orders 
compete asynchronously. In practical cases, the lack of stock 
affects a very small part of the orders and the decrease in 
scheduling is normally acceptable, as the whole scheduling 
process does not normally achieve a global optimum. Still, 
this decrease can be a problem in some cases. 
 

Shop Storage A Storage B

supply mea

b

d
c

supply me

costs: 2

f

cancel

i

cancel

g

supply me

h

rejected

j

k l

supply me

costs: 2

supply me

 
Figure 7. Resource discovery based on acceptance presumption. 

Fortunately, there are ways to avoid this problem. One of 
them is to postpone rejection. With this approach, the site 
requested for supply does not send the rejection immediately, 
but waits for the specific number of steps (to be decided 
later). If the rejection is still needed after several steps (no 
other requests were cancelled) – it is sent. If we do so in the 
last case, the rejection is not sent on step ‘g’, and on step ‘i’ 
it is no longer needed. The scheduling goes in the same way 
as in the unlimited stock case (no rejection is sent because 
the cancellation comes at step ‘h’) taking 5.0 tu and optimal 
result (Figure 6). The weakness of this method is in the 
necessity to specify the number of steps to postpone the 
rejection. The number should be high enough to let all the 
asynchronous cancellations to come before the rejection 
should be sent. This depends on the structure of the network. 
And, in the cases when the request really should be rejected 
the postponement increases the total scheduling time by the 

number of the specified postponement steps. But the 
rejection postponement is needed only when the stock is 
short, which is less than 5% of the requests during the 
scheduling and does not affect the total timing significantly. 

Another method is to track the final product recipient 
(root order) in the messages so that the site (Storage B, in our 
case) knows whom the stock is reserved to. If it gets a new 
request for the same root order, the previous reservation is 
cancelled automatically. This method also works perfectly 
and does not depend on the network structure. But the need 
to check the reservations in the stock for specific order 
increases the scheduling time at the site. We use this method 
in practice due to its simplicity and reliability. 

V. AGENT INTERACTION IN COMPETING ORDERS 

SCENARIO 

The next two examples concern the comparison of the 
interaction protocols in the situation when there are several 
competing orders in the network. Taking the case where we 
have empty stock at Storage A and sufficient stock at Storage 
B, let us introduce one more sales point in the network to 
make it look like on the following picture. Now, we have an 
order at each of the two shops (Figure 8 and Table II). 
 

2

3

2

Shop Z

Storage A

Storage B

Shop Y
1

2

 
Figure 8. Supply network with two competing orders. 

TABLE II. TRANSPORTATION COSTS IN THE NETWORK WITH TWO 

COMPETING ORDERS 

Source Destination Cost per item 

Storage A Shop Z 2 

Storage B Shop Z 3 

Storage B Storage A 2 

Storage A Shop Y 1 

Storage B Shop Y 2 

 
Following the rejection presumption principle, the sites 

cannot process next request until they get a response from 
other sites regarding the previous request. Thus, in our case 
the Storage A becomes a bottleneck because both shops ask 
it first (as potentially cheaper source), and it cannot answer 
them both until Storage B answers the request. For example, 
the request processing is blocked at the Storage A on the 
steps ‘c’, ‘d’, and ‘e’ on the following diagram (Figure 9), 
which leads to the delay of the processing of the request 
from the Shop Y on step ‘g’. 

Specifically, when Storage A gets a request from Shop Z 
at step ‘c’, it sends a request for this product to Storage B (as 
it does not have it in the stock). When the request from Shop 
Y comes (almost the same time as from Shop Z), it cannot be 
processed until the request to Storage B is accepted. 
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We consider only one product in the network in the 
paper, so the orders compete for the same stock. If you get 
requests for different products, they theoretically may be 
processed immediately one after another, but this is an 
abstract situation. In practical tasks there are much more 
interdependencies between resources and demands other 
than just product type. For example, the channel capacity 
between Storage A and Storage B, or the dispatch capacity at 
Storage B can be limited, or the transportation cost may 
depend nonlinearly on the volume transported. This prevents 
Storage A from answering the second request even if it is for 
a different product, until the acceptance of the first delivery 
is received (or assumed). 
 

Shop Z Storage A Storage B

supply mea

c

d

e

f

supply me

accepted

costs: 2

j

cancel

l

cancel

m

n

cancelled

cancelled

r

s

supply me

accepted

Shop Y

b

g

supply me

h

i

k

accepted

supply me

costs: 2

o

cancel

p

q

cancel

cancelled

cancelled

t

u

supply me

v

accepted

 
Figure 9. Competitive interactions with rejection presumption. 

The complete processing of the two orders with this 
approach takes 22 steps. Considering that some of them are 
done in parallel and some of them are very quick, this exact 
sequence takes 12.4 tu. 

Actually, we do not consider here the fully synchronous 
interaction that requires all events to be processed separately. 
It means that the order from the Shop Z is completely 
processed first, and only then the processing of the order 
from the Shop Y starts. This forces the whole sequence to go 
in one thread and take 16.6 tu. 

The next diagram (Figure 10) shows the interactions 
using acceptance presumption protocols. 

 

Shop Z Storage A Storage B

supply mea

c

e

supply me

costs: 2

g

cancel

h

supply me

Shop Y

b

supply me

costs: 2

cancel

supply me

d f

i

cancel

 
Figure 10. Competitive interactions with acceptance presumption. 

One can see that, in this example, the structure of the 
interactions is the same as in the case where we had only one 
order. The whole process goes as much as possible in 
parallel and takes the same 5.0 tu. The significant difference 
from the rejection presumption case is that at some steps 
several requests are processed by the site simultaneously. 
From one point of view, such steps should take more time, 
but from the other point of view, the processing of several 
requests at once never takes more time than separate 
processing of the same requests. What is more important, 
having several requests at once allows avoiding blind 
decisions that should be re-considered when the next request 
comes. A separate paper is dedicated to this phenomenon. 

VI. COMPARISON BASED ON REAL DATA 

Thus, based on the examples above, the theoretical 
comparison of the two approaches is shown in Table III. 

TABLE III. EXAMPLES SUMMARY 

Case Fully 

synchronous 

processing 

Rejection 

presumption 

(tu) 

Acceptance 

presumption 

(tu) 

One-level 
depth 
interaction. 

2.1 2.1 2.0 

Two-level 
depth 
interaction 
without 
resource 
constraints. 

7.4 7.4 5.0 

Two-level 
depth 
interaction 
with 
resource 
constraints. 

7.4 7.4 7.0 

Two 
orders, 
two-level 
depth 
interaction. 

16.6 12.4 5.0 
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The practical cases are much more complex in terms of 
the depth of interactions as well as of the number of events 
processed in parallel. We used a real client data including 
more than 300 sites in the network (part of which is fully 
interconnected) and about 10 000 orders to model different 
interaction protocols. The network to be scheduled includes 
several factories, their storages that can interexchange 
materials and final products, and customer distribution 
centers that should be supplied. The model also includes 
production scheduling and some other features that affect the 
processing time in different situations. The modelling has 
been done using 16-core processor. Table IV presents the 
results of the modelling. 

TABLE IV. REAL DATA PROCESSING 

 Processing 

time (ms) 

Messages 

between 

sites 

Achieved 

quality ($) 

Fully 
synchronous 
processing 

737236 3200 1813499 

Rejection 
presumption 

191334 3140 1813359 

Acceptance 
presumption 

50275 2333 1812240 

 
The slight difference in quality between the synchronous 

processing and the rejection presumption most probably 
happens because of asynchronous stock competition between 
different orders. 

Comparing the last two rows we can see that the use of 
acceptance presumption approach gives us 3.8 times faster 
processing and decreases the quality by about 0.1%, which 
seems to be a fair price in most cases. 

VII. CONCLUSION 

The acceptance assumed interaction works much better 
than the rejection presumption in multicore and especially in 
distributed environments because waiting for reply there is 
especially costly. However, it is fragile in non-reliable 
communication environments. If the requested site in the 
network does not implement the request and does not send 
the rejection, the requesting site works in wrong assumptions 
and the whole schedule is not consistent. This is why it can 
only be used within well-communicated infrastructure, 
normally related to one company. 

We use the acceptance presumption approach in the 
industrial applications for supply networks management. 

It is also important to make a research how the two 
approaches can be combined in some way during the 

interaction. Although the acceptance presumption looks 
working better in most cases, especially below the resource 
limits, which is over 90% of the practical cases, the rejection 
presumption may still allow getting results of higher quality 
without using workarounds in the low resource situations. 
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