
Effective Interaction in Asynchronous Multi-Agent Environments for

Supply Scheduling in Real-Time

Alexander Tsarev

Knowledge Genesis Group Ltd.

Samara, Russia

email: mail@identifier.at

Petr Skobelev

Samara State Aerospace University

Samara, Russia

email: petr.skobelev@gmail.com

Dmitry Ochkov

Smart Solutions Ltd.

Samara, Russia

email: ochkov@smartsolutions-123.ru

Abstract—This paper focuses on analysis of effective

interaction techniques of agents in multi-agent systems used

for real-time scheduling. The paper describes two approaches

to the organization of the interaction of asynchronously

working software agents. The supply network scheduling case

is considered to show the difference in how the interaction goes

on. The comparison shows how well each approach allows

parallel processing, and subsequently, how fast the scheduling

can be done on multi-core hardware. The pros and cons of the

approaches are described, as well as ways to achieve better

quality. Finally, the results of processing of real data using the

approaches are given. The results show a higher effectiveness

of one of the approaches in real-time supply scheduling.

Keywords—real-time; scheduling; software agent; multi-

agent; supply chain; supply network; supply demand; interaction

protocol; agent negotiation; asynchronous interaction;

processing speed; parallel processing; schedule quality.

I. INTRODUCTION

Growing complexity and dynamics of modern global
market demand new paradigms in resource management
[1][2]. New revolutionary approach to increase efficiency of
business is associated today with real-time economy, which
requires adaptive reaction to events, ongoing decision
making on resource scheduling and optimization and
communication results with decision makers.

Multi-agent technology is considered as a new design
methodology and framework to support distributed problem
solving methods in real-time scheduling and optimization of
resources [3][4].

The main feature of real-time scheduling and
optimization methods is to produce a result in the specified
moment of time or time interval, reacting to unpredictable
external and internal, constructive or destructive events (new
order coming, order is cancelled, resource unavailable, etc.).

The quality and efficiency of decision making in resource
scheduling and optimization process can be influenced by
the number of factors: the intensity of events flow, the
number and current state of resources, individual specifics of
orders and resources, time interval between the events and
processing time for events, productivity of resources and
many others.

A big challenge is to ensure that certain quality of
scheduling results is achieved in a short time after the event
to make it possible to finish the processing before the next

event and to always have a valid schedule needed for
decision-making.

Figure 1 illustrates the difference in actuality of
scheduling results (how well they reflect reality) in the
changing environment. Having frequent data updates, it
becomes more important to process them faster to get a valid
result (green line). Otherwise, one can use a lengthy
processing to get an optimal result (yellow/red line), but this
result does not consider the last changes. Then, we are forced
to always base your decisions on an optimal, but outdated
picture.

Multi-Agent Systems

Classic schedulers

100%

0%

Timely &
correct

Outdated &
incorrect

Sc
h

ed
u

lin
g

 s
ta

rt

U
p

d
at

e
1

U
p

d
at

e
2

U
p

d
at

e
3

U
p

d
at

e
4

U
p

d
at

e
N

Time

Classic Systems Run-Time

Gap from missed updates!

Figure 1. Real-time adaptive scheduling results.

One of the main problems of classical methods and
algorithms [5][6] is that complexity of scheduling with new
criteria grows exponentially. This makes their applications
very limited in practice. Many heuristic methods allow
obtaining close to optimal solution within a reasonable time.
Hybrid heuristic algorithms integrate traditional dispatching
rules with genetic, neural, swarm and other approaches.
Obvious disadvantages of the centralized methods of
scheduling and optimization resource management lead to
development other approaches, in particular distributed
problem solving methods. Bio-inspired evolutionary (genetic
and swarm) algorithms are applied both in centralized and
decentralized systems [7]-[9]. They have proved to be more
useful, reliable and generic scheduling and optimization tool
for business. One of new approaches is based on bio-inspired
distributed problem solving of resource scheduling problems
based on multi-agent technologies with economic reasoning.
This approach can combine benefits of bio-inspired, DCOP
and virtual market methods based on multi-agent technology

120Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

and is designed to support self-organization of schedules to
provide flexibility in event processing. Multi-agent resource
allocation is used for job scheduling and some other tasks
[11]. In our paper, we consider a more specific practical case
of supply scheduling and compare the interaction approaches
from the perspective of their use in real-time application.
There are other researches done regarding the use of multi-
agent approach in supply chain scheduling, including
analysis of high-level protocols (Combinatorial Auctions,
Bargaining Processes, Random Search, Knowledge Based
Systems, Learning Systems) [12][13], but they do not focus
on the analysis of benefits of different agent assumptions in
asynchronous environment.

To solve the problem of multi criteria scheduling and
optimization it is suggested to use Demand-Resource
Network concept (DRN) based on holonic approach and
compensation method for real-time resource management on
a virtual market [10]. In accordance with this distributed
approach, initial complex problem is decomposed into more
simple and specific problems – to schedule and optimize
orders, resources and products with the use of demand and
supply agents. All agents are working continuously trying to
maximize their objective functions and use money to solve
conflicts by negotiations and finding trade-offs (until local
optimum is reached or time is expired) with compensations
in case that some of them change position losing money.

Objectives, preferences and constraints of agents are
defined by individual satisfaction functions and
bonus/penalty functions. As the result of agents decision
making, a local balance is reached and situation when no
agent can change position is recognize as a consensus which
stops computations. As a result, the solutions (the schedule
of resource usage) comes not from one algorithm but evolves
(emerges) dynamically in process of agents interactions and
negotiations. Solution search and adjustment process stop
when the consensus is found or when the time limit is
exceeded for finding a solution, and if not the whole - but
partial problem solution will arrive that will be interactively
finalized by the user.

The use of multi-agent approach provides many potential
benefits and possibility to speed up the scheduling by use of
parallel processing of asynchronous agents. Still, this
possibility depends on how the agents interact with each
other and on their dependence on each other in decision
making. Obviously, the scheduling task requires a lot of
information to be transferred between the agents to allow a
better search for result. This transfer not only takes time
itself, but also may force the agents to wait each other. In this
paper, we consider two fundamental approaches to agent
interactions related to the question when the agent should ask
or wait for information, and when it can make independent
decisions.

In Section II, we describe what approaches to agent
interactions we consider in this paper. In Section III, we
compare the interaction schemas based on particular supply
routing example. In Section IV, we show how the lack of
resources in the supply network affects the interactions,
performance and quality of results, and propose the ways to
mitigate the drawbacks. In Section V, we compare the

approaches based on a more complex case of competing
orders in supply network. In Section VI, we provide the
results of comparison based on real supply network data,
including the difference in performance and quality of the
approaches. In Section VII, the conclusion is given.

II. APPROACHES TO AGENT INTERACTION IN SUPPLY

SCHEDULING

In this paper, we compare two different approaches to the
organization of multi-agent interaction in relation to the
supply scheduling. One approach is based on request and
reply and follows the rejection presumption principle, which
means that if no reply is given it is an equivalent of rejection
(sender must wait for an answer). This approach is referred
to as rejection assumed interaction in the paper. Another
approach is based on the acceptance presumption principle,
which means that without explicit rejection from the
counterpart of communication the acceptance of request is
assumed. This approach is referred to as acceptance assumed
interaction in the paper. Of course, this relates to the requests
that do not require an informational feedback, but only ask
another site to do something, while the feedback is optional.

Let us consider the difference based on a simple example
of a network consisting of one shop and two storages that
can supply it (Figure 2 and Table I).

2

3

2

Shop

Storage A

Storage B

Figure 2. Example of supply network.

There is an order at the Shop for one item of Product.
Transportation costs are listed in Table I, and there are no
other costs.

TABLE I. TRANSPORTATION COSTS

Source Destination Cost per item

Storage A Shop 2

Storage B Shop 3

Storage B Storage A 2

In the simplest example, we have enough stock at both

storages. The rejection assumed interaction looks as the
following, in this case (Figure 3).

Shop Storage A Storage B

supply mea

b

c

accepted

Figure 3. Interaction based on rejection presumption.

121Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

It is an obvious case. The order at the shop requests the
cheapest channel (channel from Storage A costs 2 while the
other channel is 3) if the Product can be delivered and gets
the positive reply. The interaction takes three steps in total.
Two of them (‘a’, ‘b’) are time consuming, as they may
require some analysis, while ‘c’ does nothing, but still takes
some time to initialize the agent and process the message.
For the sake of simplicity, let us decide that steps with
analysis take 1.0 time unit, while steps without significant
data processing take 0.1 time units (tu). In this case, the total
is 2.1 tu.

If we consider the acceptance assumed interaction for
this case, the only difference is that we do not need the last
step (Figure 4), as we assume the request is accepted and the
supply is possible. Therefore, the total time for processing is
2.0 tu.

Shop Storage A Storage B

supply mea

b

Figure 4. Interaction based on acceptance presumption.

It is important to note that even if an additional
processing is needed at the shop to obtain a final result
(schedule) after the supply request is considered accepted, in
acceptance presumption case this happens immediately after
the request is sent and does not take additional time, as being
done in parallel with the request processing at the storage.

III. AGENT INTERACTION IN SUPPLY ROUTING SCENARIO

Now, let us consider a less trivial case, where Storage A
is empty. The order at the Shop does not have this
information and still asks it first in the hope to get cheaper
supply. This leads to the following sequence of interactions.

Shop Storage A Storage B

supply mea

b

c

d

f

supply me

accepted

costs: 2

g

cancel

h

cancel

i

j

cancelled

cancelled

k

l

supply me

accepted

Figure 5. Routing based on rejection presumption.

Storage A, in this case, at step ‘b’, cannot fulfill the
request and sends a supply request to Storage B. At step ‘c’,
Storage B reserves the stock (creates its own schedule) and
sends the acceptance. Then, on step ‘d’ the Storage A sends
the acceptance with the additional cost of transportation from
B to A. This actually tells the order at the Shop that the total
cost of supply will be 2 (from A to Shop) + 2 (from B to A)
= 4. This is more than the cost of transportation from B to
Shop, which is 3. This makes the order to try another
channel. It cancels the previous request (in order to let A and
B update their schedule and free the reserved stock) and asks
the Storage B directly. The whole interaction takes 11 steps,
with four of them (‘d’, ‘i’, ‘j’, ‘l’) being just fast reply
processing. Therefore, the total scheduling time is 7.4 tu. It
might be unclear why the steps ‘j’ and ‘l’ are “short”. It is
because we consider the scheduling process at Shop to be
almost completely done at step ‘f’. When Shop gets the cost
reply from Storage A, it has to re-build the schedule to be
supplied from Storage B. This may happen in slightly
different ways across the steps ‘f’, ‘j’, and ‘l’, but the total
re-scheduling time at Shop is assumed to be 1 tu in average,
and we just associate this time with the step ‘f’.

If we use the acceptance assumed interaction, we get a
significantly different picture (Figure 6).

Shop Storage A Storage B

supply mea

b

d
c

supply me

costs: 2

f

cancel

h

cancel g

supply me

Figure 6. Routing based on acceptance presumption.

We have 7 steps here in total, but all of them are time
consuming. More important is that the messages are sent to
several recipients at steps ‘b’ and ‘c’ as we do not wait for
reply, and the corresponding sites process them in parallel.
The steps ‘c’ and ‘d’ go in parallel, as well as ‘f’ and ‘g’.
This allows packing of all the 7 steps into 5.0 tu instead of
7.4 tu of synchronous interaction.

It is important to note that rejection assumed interaction
does not mean synchronous processing (scheduling, in our
case). There are still things you can do in parallel. For
example, interactions happening in different parts of the
network can go in parallel. However, with the increasing
number of events to be processed also the likelihood of
touching the same site increases. If this happens, we need to
wait until the first event is processed completely.

IV. AGENT INTERACTION IN RESORCE DISCOVERY

SCENARIO

However, there is a drawback in acceptance assumed
interaction, which is clearly seen on the following example.
Let us take the case, where the stock at the Storage B is

122Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

limited to just one item. If we use rejection presumption, the
scheduling process and the result are exactly the same as if
the stock is not limited, which is correct. But, if the
acceptance presumption is used, we get the following
interactions (Figure 7).

At step ‘g’, it happens that the one item in the stock of
the Storage B is reserved for the Storage A. The reservation
takes place at step ‘d’, and the cancellation is now on its
way, but the direct request comes faster due to asynchronous
nature. This forces the Storage B to reject the direct request
from the Shop. Consequently, the Shop asks Storage A
again. This not only adds the steps to the interaction and
2.0 tu of processing time, but also leads to the non-optimal
result. The Shop is supplied, but the cost is higher, because it
is supplied indirectly.

This non-optimality can result in a lower quality of the
final schedule, but it happens only in the specific situation
when there is lack of stock and re-negotiation between sites
takes place at the same time. Even if rejection presumption is
used, similar situation still can happen when several orders
compete asynchronously. In practical cases, the lack of stock
affects a very small part of the orders and the decrease in
scheduling is normally acceptable, as the whole scheduling
process does not normally achieve a global optimum. Still,
this decrease can be a problem in some cases.

Shop Storage A Storage B

supply mea

b

d
c

supply me

costs: 2

f

cancel

i

cancel

g

supply me

h

rejected

j

k l

supply me

costs: 2

supply me

Figure 7. Resource discovery based on acceptance presumption.

Fortunately, there are ways to avoid this problem. One of
them is to postpone rejection. With this approach, the site
requested for supply does not send the rejection immediately,
but waits for the specific number of steps (to be decided
later). If the rejection is still needed after several steps (no
other requests were cancelled) – it is sent. If we do so in the
last case, the rejection is not sent on step ‘g’, and on step ‘i’
it is no longer needed. The scheduling goes in the same way
as in the unlimited stock case (no rejection is sent because
the cancellation comes at step ‘h’) taking 5.0 tu and optimal
result (Figure 6). The weakness of this method is in the
necessity to specify the number of steps to postpone the
rejection. The number should be high enough to let all the
asynchronous cancellations to come before the rejection
should be sent. This depends on the structure of the network.
And, in the cases when the request really should be rejected
the postponement increases the total scheduling time by the

number of the specified postponement steps. But the
rejection postponement is needed only when the stock is
short, which is less than 5% of the requests during the
scheduling and does not affect the total timing significantly.

Another method is to track the final product recipient
(root order) in the messages so that the site (Storage B, in our
case) knows whom the stock is reserved to. If it gets a new
request for the same root order, the previous reservation is
cancelled automatically. This method also works perfectly
and does not depend on the network structure. But the need
to check the reservations in the stock for specific order
increases the scheduling time at the site. We use this method
in practice due to its simplicity and reliability.

V. AGENT INTERACTION IN COMPETING ORDERS

SCENARIO

The next two examples concern the comparison of the
interaction protocols in the situation when there are several
competing orders in the network. Taking the case where we
have empty stock at Storage A and sufficient stock at Storage
B, let us introduce one more sales point in the network to
make it look like on the following picture. Now, we have an
order at each of the two shops (Figure 8 and Table II).

2

3

2

Shop Z

Storage A

Storage B

Shop Y
1

2

Figure 8. Supply network with two competing orders.

TABLE II. TRANSPORTATION COSTS IN THE NETWORK WITH TWO

COMPETING ORDERS

Source Destination Cost per item

Storage A Shop Z 2

Storage B Shop Z 3

Storage B Storage A 2

Storage A Shop Y 1

Storage B Shop Y 2

Following the rejection presumption principle, the sites

cannot process next request until they get a response from
other sites regarding the previous request. Thus, in our case
the Storage A becomes a bottleneck because both shops ask
it first (as potentially cheaper source), and it cannot answer
them both until Storage B answers the request. For example,
the request processing is blocked at the Storage A on the
steps ‘c’, ‘d’, and ‘e’ on the following diagram (Figure 9),
which leads to the delay of the processing of the request
from the Shop Y on step ‘g’.

Specifically, when Storage A gets a request from Shop Z
at step ‘c’, it sends a request for this product to Storage B (as
it does not have it in the stock). When the request from Shop
Y comes (almost the same time as from Shop Z), it cannot be
processed until the request to Storage B is accepted.

123Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

We consider only one product in the network in the
paper, so the orders compete for the same stock. If you get
requests for different products, they theoretically may be
processed immediately one after another, but this is an
abstract situation. In practical tasks there are much more
interdependencies between resources and demands other
than just product type. For example, the channel capacity
between Storage A and Storage B, or the dispatch capacity at
Storage B can be limited, or the transportation cost may
depend nonlinearly on the volume transported. This prevents
Storage A from answering the second request even if it is for
a different product, until the acceptance of the first delivery
is received (or assumed).

Shop Z Storage A Storage B

supply mea

c

d

e

f

supply me

accepted

costs: 2

j

cancel

l

cancel

m

n

cancelled

cancelled

r

s

supply me

accepted

Shop Y

b

g

supply me

h

i

k

accepted

supply me

costs: 2

o

cancel

p

q

cancel

cancelled

cancelled

t

u

supply me

v

accepted

Figure 9. Competitive interactions with rejection presumption.

The complete processing of the two orders with this
approach takes 22 steps. Considering that some of them are
done in parallel and some of them are very quick, this exact
sequence takes 12.4 tu.

Actually, we do not consider here the fully synchronous
interaction that requires all events to be processed separately.
It means that the order from the Shop Z is completely
processed first, and only then the processing of the order
from the Shop Y starts. This forces the whole sequence to go
in one thread and take 16.6 tu.

The next diagram (Figure 10) shows the interactions
using acceptance presumption protocols.

Shop Z Storage A Storage B

supply mea

c

e

supply me

costs: 2

g

cancel

h

supply me

Shop Y

b

supply me

costs: 2

cancel

supply me

d f

i

cancel

Figure 10. Competitive interactions with acceptance presumption.

One can see that, in this example, the structure of the
interactions is the same as in the case where we had only one
order. The whole process goes as much as possible in
parallel and takes the same 5.0 tu. The significant difference
from the rejection presumption case is that at some steps
several requests are processed by the site simultaneously.
From one point of view, such steps should take more time,
but from the other point of view, the processing of several
requests at once never takes more time than separate
processing of the same requests. What is more important,
having several requests at once allows avoiding blind
decisions that should be re-considered when the next request
comes. A separate paper is dedicated to this phenomenon.

VI. COMPARISON BASED ON REAL DATA

Thus, based on the examples above, the theoretical
comparison of the two approaches is shown in Table III.

TABLE III. EXAMPLES SUMMARY

Case Fully

synchronous

processing

Rejection

presumption

(tu)

Acceptance

presumption

(tu)

One-level
depth
interaction.

2.1 2.1 2.0

Two-level
depth
interaction
without
resource
constraints.

7.4 7.4 5.0

Two-level
depth
interaction
with
resource
constraints.

7.4 7.4 7.0

Two
orders,
two-level
depth
interaction.

16.6 12.4 5.0

124Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

The practical cases are much more complex in terms of
the depth of interactions as well as of the number of events
processed in parallel. We used a real client data including
more than 300 sites in the network (part of which is fully
interconnected) and about 10 000 orders to model different
interaction protocols. The network to be scheduled includes
several factories, their storages that can interexchange
materials and final products, and customer distribution
centers that should be supplied. The model also includes
production scheduling and some other features that affect the
processing time in different situations. The modelling has
been done using 16-core processor. Table IV presents the
results of the modelling.

TABLE IV. REAL DATA PROCESSING

 Processing

time (ms)

Messages

between

sites

Achieved

quality ($)

Fully
synchronous
processing

737236 3200 1813499

Rejection
presumption

191334 3140 1813359

Acceptance
presumption

50275 2333 1812240

The slight difference in quality between the synchronous

processing and the rejection presumption most probably
happens because of asynchronous stock competition between
different orders.

Comparing the last two rows we can see that the use of
acceptance presumption approach gives us 3.8 times faster
processing and decreases the quality by about 0.1%, which
seems to be a fair price in most cases.

VII. CONCLUSION

The acceptance assumed interaction works much better
than the rejection presumption in multicore and especially in
distributed environments because waiting for reply there is
especially costly. However, it is fragile in non-reliable
communication environments. If the requested site in the
network does not implement the request and does not send
the rejection, the requesting site works in wrong assumptions
and the whole schedule is not consistent. This is why it can
only be used within well-communicated infrastructure,
normally related to one company.

We use the acceptance presumption approach in the
industrial applications for supply networks management.

It is also important to make a research how the two
approaches can be combined in some way during the

interaction. Although the acceptance presumption looks
working better in most cases, especially below the resource
limits, which is over 90% of the practical cases, the rejection
presumption may still allow getting results of higher quality
without using workarounds in the low resource situations.

ACKNOWLEDGMENT

This work was carried out with the financial support of
the Ministry of Education and Science of the Russian
Federation.

REFERENCES

[1] G. Rzevski and P. Skobelev, Managing complexity, 2014, WIT Press,
Boston.

[2] A. Park, G. Nayyar, and P. Low, Supply Chain Perspectives and
Issues, A Literature Review, April 21, 2014, Fung Global Institute
and World Trade Organization.

[3] A. Mohammadi and S. Akl, Scheduling Algorithms for Real-Time
Systems, Technical Report, 2005, no. 2005-499, School of
Computing Queen’s University, Kingston.

[4] M. Joseph, Real-time Systems: Specification, Verification and
Analysis, Prentice Hall, 2001.

[5] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Springer,
2008.

[6] J. Leung, Handbook of Scheduling: Algorithms, Models and
Performance Analysis, CRC Computer and Information Science
Series, Chapman & Hall, 2004.

[7] S. Binitha and S. Sathya, “A survey of bio inspired optimization
algorithms”, Int. Journal of Soft Computing and Engineering, 2012,
vol. 2, issue 2, pp. 2231-2307.

[8] S. Sun and J. Li, “A two-swarm cooperative particle swarms
optimization”, Swarm and Evolutionary Computation, 2014, vol. 15,
pp. 1-18. Elseiver.

[9] M. Tasgetiren, M. Sevkli, Y. Liang, and M. Yenisey, “Particle swarm
optimization and differential evolution algorithms for job shop
scheduling problem”, International Journal of Operational Research,
2008, vol. 3, no. 2, pp. 120-135.

[10] V. Vittikh and P. Skobelev, “Multiagent interaction models for
constructing the demand-resource networks in open systems”,
Automation and Remote Control, 2003, vol. 64, issue 1, pp. 162-169.

[11] Y. Chevaleyre, et al. “Issues in Multiagent Resource Allocation”,
https://staff.science.uva.nl/u.endriss/MARA/mara-survey.pdf,
retrieved: March 2015.

[12] M. Barbuceanu and M. S. Fox, “Coordinating multiple agents in the
supply chain”, Proceedings of the fifth workshops on enabling
technology for collaborative enterprises, WET ICE'96, IEEE
Computer Society Press, 1996, pp. 134-141.

[13] T. Stockheim, M. Schwind, O. Wendt, and S. Grolik. “Coordination
of supply webs based on dispositive protocols”, 10th European
Conference on Information Systems (ECIS), Gdañsk, 6-8 June 2002.

[14] A. Oliinyk, “The multiagent optimization method with adaptive
parameters”, Artificial Intelligence journal, 2011, no. 1, pp. 83-90.

125Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

https://staff.science.uva.nl/u.endriss/MARA/mara-survey.pdf

