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Abstract—Stream processing has recently caught the 
attention of many researchers and engineers, mainly because of 
the continuous growth of information generated by users. Stream 
processing platforms allow processing and analyzing real time 
data, which helps to make decisions faster. In this work, we 
determine the most relevant tasks performed by the distributed 
stream processing platform named S4. To this end, we develop a 
pool of benchmark applications and we make a profiling of their 
execution using the S4 platform. Results show that the most 
relevant operations are related to the control and manipulation 
of threads.  

Keywords—stream processing; S4; profiling.  

I.  INTRODUCTION  

The world has become fully connected. There is a large 
number and variety of data resources available from hardware 
and/or software systems. There are numerous industries where 
everyday processes and interactions with customers generate 
millions of events that produce traces, with information 
regarding user’s activity. These traces contain valuable 
information for understanding and optimizing processes. In 
addition, those traces can be used to detect anomalies, to 
predict the behavior and trends of customers, among other 
activities that can improve the productivity of a company or 
institution.  

The events are collected from users actions form a 
continuous amount of data stream. Some examples can be 
found in: market analysis; telecom call detail records; video 
surveillance systems; vital signs of a patient in a medical 
system; intrusion records system networks; the behavior in a 
system of Web 2.0, among others. In all these applications it is 
necessary to collect, process and analyze the data stream, and 
then generate results or produce some specific actions. An 
important feature of these applications is that the analysis must 
be done in real time.  

There are many stream processing platforms such as SPC 
(Stream Processing Core) [2], Storm [3], Esc [4] and D-Stream 
[5]. Some research works like TimeStream [13], StreamCloud 
[14][15] and CEC [16], have endeavored to present solutions to 
the problems of load balancing and fault tolerance of the 
stream processing process. 

Recently, a general-purpose distributed platform designed 
to analyze massive data processing called S4 (Simple Scalable 
Streaming System) was proposed by L. Neumeyer, et. al. [1]. 
The S4 world-view is that streams are passed through a graph 
(DAG) formed by processing elements (PEs), which are 
connected each other in a downstream manner. Each PE 

performs a given primitive operation on the received stream 
and generates output streams. Data is routed through the PEs 
by means of keys, which are specified by users.  

In this work, we develop and test a set of applications 
covering different computation/communication aspects using 
the S4 platform. We aim to understand the flow of events 
processed in those applications with different data streams, to 
determine which are the most repetitive and costly tasks 
executed by the S4. We obtain relevant metrics by developing 
prototypes for each application, which are used as benchmark 
to detect bottlenecks in both communication and computation 
operations. The performance information obtained in this work 
can be used to propose improvements to the stream processing 
platform itself. By determining the relevant operations 
executed by the S4 platform and their costs, it is possible then 
to introduce these costs into a simulation model as the ones 
presented in [6] to design and test new algorithms without 
affecting the actual platform running in production. To this 
end, we developed a pool of benchmark applications built with 
different characteristics including processing and 
communication complexities in order to determine the most 
relevant operations. 

Additionally, the results obtained though the benchmark 
applications can be used in elastic stream processing 
programming environments [4], where developers can detect 
possible bottlenecks of PEs, make decisions and take action in 
advance. In this case, the knowledge obtained by executing the 
pool of benchmark applications, can aid to determine which 
PEs should be replicated.   

This paper is structured as follows. Section 2 describes 
stream processing and the S4 platform. Section 3 briefly 
describes profiling and the tool used in this work. Section 4 
describes the pool of benchmark applications used to detect the 
most relevant operations. Section 6 shows the results. Finally, 
Section 7 presents the conclusions and future work. 

II. STREAM PROCESSING 

In this section we discuss the main properties of stream 
processing, when stream processing makes sense, and how it 
fits into big data architectures. We also describe the S4 stream 
processing platform, used to test the benchmark applications 
presented in this paper. 

A.   Streaming Processing and Big Data 

Big data is commonly defined as the three Vs: Volume, 
Velocity and Variety [17]. It is used to describe the exponential 
growth and availability of structured and unstructured data. A 
more recent, definition states that "Big Data represents the 
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Information assets characterized by such a High Volume, 
Velocity and Variety to require specific Technology and 
Analytical Methods for its transformation into Value" [18]. 

 On the other hand, stream processing is used for fast data 
requirements, which includes tacking the velocity of processing 
a huge variety of data in real time. Therefore, both big data and 
stream processing can complement each other.  

Stream processing was first used for finance problems. 
Today, it is used in almost all industries where stream data is 
generated by human activities or automatically by sensors. 
Events are generated on-line in unpredictable time instants. The 
union of events forms a continuous stream of information that 
may have dynamic variations in intensity of traffic. In this 
context, the process used to store and organize/index events in 
a conveniently way to then process them in batch can be very 
costly given the huge volume of data and the amount of 
computational resources required for processing them. But 
even if this is feasible, it is often desirable or even imperative 
to process the events as soon as they are detected to deliver 
results in real time. 

In particular, stream processing corresponds to a distributed 
computing paradigm that supports the process of gathering and 
analyzing large volumes of heterogeneous data streams to 
assist decision making in real time. 

Stream processing appears as result of the rigorous data 
management, which is increasingly demanding because of the 
information generated by business and scientific applications, 
which are fully linked to the technological progress. It is also 
related to the advance in hardware and software databases; the 
management of large amount of data in distributed systems; the 
use of techniques such as signal processing, statistics, data 
mining and optimization theory. 

Stream processing aims to process data in real time and in a 
fully integrated way, to provide information and outcomes for 
consumers and/or end users. Also, it aims to integrate new 
information to support decision making in the medium and 
long term. 

The high volume of event flows coming from different data 
sources makes it impossible to store this information, such as 
model-based on data warehouse where all the data is stored and 
then to make the appropriate processing and analysis. 

Stream processing applications requires fulfilling certain 
performance requirements in terms of latency and throughput. 
Specifically, processing must keep up with the rate of incoming 
data, while it provides a high level of quality of analysis of 
results as fast as possible. Additionally, the application 
components and infrastructure must be fault-tolerant. 

B. S4 - Simple Scalable Streaming System 

S4 acronym for "Simple Scalable Streaming System" is a 
system of general purpose, distributed, scalable, which allows 
applications to process data flows continuously without 
restrictions [1]. S4 is inspired by MapReduce [7], designed in 
the context of data mining and machine learning algorithms of 
Yahoo! Labs for on-line advertising systems. 

In S4, each event is described as a pair (key, attribute). PEs 
are the basic units and messages are exchanged between them. 
The PEs can send messages or post results. PEs are allocated in 
the so-called processing nodes (PNs) servers. The PNs are 
responsible for: a) receiving incoming events, b) routing the 
events to the corresponding PEs and c) dispatching events 

through the communication layer. The events are distributed 
using a hash function over the key of the events. Furthermore, 
the communication layer uses Zookeeper [8], which provides 
management and automatic replacement clusters if a node fails.  

 

 

Figure 1. S4 application design (lang-count example). 

To run an application with S4, we need to deploy an 
Adapter application. Adapters are S4 applications that can 
convert external stream into stream of S4 events. Figure 1 
shows a simple Tweet language count for Twitter. In this 
example, input events contain a language descriptor for a tweet 
from Twitter. The Adapter gathers tweets from twitter and 
filters only the language descriptor. Then, the Adapter sends an 
event to PE1. PE1 listens for Tweet events with all possible 
keys. For each possible key, PE1 emits a new event of type 
TweetLang. PE2-n listen for TweetLang events emitted with 
the key lang. For example, PE1 emits an event with key 
lang=”es”. PE2 receives all events of type TweetLang keyed 
lang=”es”. If the PE corresponding to the emitted key exists, 
the PE is called and the counter of language is incremented. 
Otherwise, a new PE is instantiated and linked to the new key. 
Whenever a PE increments its counter, it sends the update 
count to the PE called PEm and this show the results. 

III.  PROFILING AND TOOLS 

A profiler generates the division of the logical structure of 
the applications so that user can understand how a particular 
run of the application is performed using relevant information 
regarding execution time and memory usage. 

Using a system profiler we can obtain a model to predict 
scaling factors as characteristic functions of the applications 
and hardware parameters [9]. Currently, there are several tools 
available to perform system profiles. S4 requires a JAVA 
profiler, among which we can highlight: Profiler4j [10] 
jvisualvm [11] and Java Profiler Tool [12]. By using these 
tools and the applications described in the next section, we 
intend to obtain a S4 profile to determine which are the most 
costly and the most relevant operations executed by the S4 
stream processing platform. 
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Figure 2. Snapshop of the jvisualvm tool. 

Figure 2 shows the environment of the jvisualvm tool when 
measuring the CPU utilization. The CPU Profiling is used to 
test the performance of the application and it gives detailed 
information about the total execution time and the number of 
calls for each method. In the same way, the Memory Profiling  
is used to analyze the memory usage, by showing the total 
number of executed methods or objects and the amount of 
bytes assigned to each one.  

IV.  BENCHMARKS APLICATIONS 

This section describes a pool of applications developed to 
run on the S4 platform to perform tests in order to obtain a 
system behavior profile. These benchmark applications will 
help us to determine the most costly and most relevant 
operations. Each application has different levels of complexity 
on the tasks performed and different levels of communications. 
The applications described below can be classified into the 
following categories: 1) High communication, 2) dynamic 
creation of processing elements, 3) high, medium and low 
computation. Though this classification, we obtain the S4 
operation costs for each type of benchmark application. 

A. Ping-Pong 

Figure 2 shows a basic communication structure between 
two processing elements. PE A, named “sender”, generates a 
new message and sent it to PE B, named “receiver”. Finally B 
replies this message to A. This benchmark program uses 
different messages sizes. Each event uses messages between 8 
and 256 characters size. This application is classified as low 
computation but with high communication between the 
processing elements. 

 
Figure 3. Ping-Pong application. 

B. Router 

The next application is called “Router”. This application 
generates random values in the Adapter module. The Adapter 
sends messages to the PE R, which determines if this value is 
an even or an odd number. If the received number is even, R 
sends a message (an event) to the Processing Element named 
Even. Otherwise, if the number is odd, R sends the event to the 

Processing Element named Odd. Both Odd and Even PEs make 
a count of the received elements. When all messages are 
dispatched, each PE sends its results to the Processing Element 
named Res, and this PE shows the final results. Figure 3 shows 
the flow of events and the PEs of this application. This 
application is classified as low computation but with high 
communication between the Adapter and the PEs. 

 

Figure 4. Router application. 

C. Counter of Tweets and Re-Tweets 

This application works with the Twitter API to get tweets 
from “Twitter’s global stream of Tweet data”. This application 
is connected to the data repository to extract tweets, which are 
processed by the Adapter. The Adapter receives the tweets, 
creates an event and sends them to the PE named T. This last 
PE classifies the tweet as “No-Re-Tweet” when it corresponds 
to message that has been posted for the first time, or “Re-
Tweet” when it corresponds to a message that has been re-
posted by other users. 

 

Figure 5. Counter of Tweets and Re-Tweets application. 

 

Figure 6. Language word counter application. 

Once the classification process is finished, the message is 
sent to the corresponding PE (RT or NRT), which extracts the 
list of hashtag (represents an idea, it is considered as metadata), 
and stores the five most frequent hashtags. This information is 
sent to the Processing Element named Res. The Res PE 
summarizes the results received. Figure 4 shows the 
corresponding diagram for this benchmark application. This 
application is classified as high communication and as medium 
computation. 
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D. Language word counter 

This application works with Twitter tweets. The differences 
with the previous application are that the event classification 
process is done by tweet language instead of No-Re-Tweet or 
Re-Tweet classification; and this application counts the number 
of words that has a tweet. With this process we stress the 
system because an additional PE is generated for each new 
word entered into the system. Namely, dynamic PEs are 
created every time a new word is found inside a tweet. Figure 5 
shows the diagram for this benchmark application. The 
Processing Element named T, classifies the events into two 
groups L1 and L2, corresponding to languages Spanish and 
English. Each Processing Element used for language 
classification gets tweet and splits them into words. Each word 
is sent to its corresponding Processing Element W. If there is 
no PE for the received word a new PE is created. The words 
are counted in each PE and the results are sent to the Res PE. 
This application has a high communication cost and has 
dynamic creation of processing elements. 

E. Clasifficator for people’s needs in a post-disaster scenario 

The classification process is composed of 4 steps: 
Recollecting, Filter, Relevance and Ranking. The recollecting 
step focuses on collecting data from the source to retrieve data 
from the Twitter API. The filter operator exploits a Naive 
Bayesian model to identify if tweets are objective or subjective. 
To create these models an automatic classification is performed 
through bags of positive and negative words. The bag of words 
were manually created by developers and validated by 
undergraduate students based on the information of other 
disaster tweets datasets. Objective tweets have a higher value, 
because they are more reliable than the subjective ones. If the 
tweet is subjective it is checked whether it is positive or 
negative in order to benefit the tweets based on the identified 
characteristics by applying weights constants in the ranking 
process. 

The topic step is used to identify whether the information is 
coming from a trustworthy source or not. Trustworthiness is 
calculated in two dimensions: author information and tweet 
information. From the author side, information such as the 
number of tweets generated, the number of followers/followees 
and an account verification state are considered to calculate the 
reputation of the author. From the tweet side, the number of re-
tweets, favorite marks, and the associated timestamp are 
exploited to calculate its reputation.  

During the ranking step a normalization process of the 
obtained values is performed. This was computed every certain 
number of tweets, to get statistics such as the maximum 
number of followers, the number of favorites, etc. This data is 
used to normalize each tweet. 

F. DownStream Web Search Engine 

Typically, web search engines are composed by three 
services devised to quickly process user queries in an on-line 
manner: Front-Service (FS), Caching-Service (CS) and Index-
Server (IS). In such systems a query submitted by a user goes 
through different stages. Initially, it is received by the FS, 
which redirects the query to the CS. The CS checks whether 
the same request has already been performed and verifies if the 
result (document IDs) are stored in the cache memory of the 

server. The CS can answer to the FS with a cache hit. In this 
case, the CS sends the query results to the FS, which builds the 
Web page with the query results and sends it to the user. 
Otherwise, if the CS sends a cache-miss to the FS, the FS re-
routes the query to the IS, which will compute the top-k 
document results.  

 

Figure 7. Components of a web search engine. 

These services are deployed on a large set of processors 
forming a cluster of computers. They are implemented as 
arrays of P × R processors, where P indicates the level of data 
partitioning and R the level of replication of data. Hence, this 
architecture makes a high usage of partitioning and redundancy 
to enhance the query response time and throughput. For 
instance, each query is assigned a unique partition of the CS 
using a hash function, and different CS nodes can be associated 
with a partition to answer a query (see Figure 6). 

Figure 7 shows a web search engine application designed 
for the S4 platform. The diagram represents the query flow 
through the web search engine components. Each component is 
composed by a set of different PEs. This application has the 
following structure: the FS is divided into three sub-services 
FS1, FS2 and FS3. Each group executes the tasks performed by 
the FS in different moments of the query processing process. In 
other words, the group named FS1, executes the tasks required 
to route an incoming query to the CS.  The group named FS2, 
executes the tasks required to route the query to the IS, if no 
cache hit was reported, or the tasks required to build the query 
answer and send it back to the user, otherwise. The CS is 
divided into two groups CS1 and CS2. The first group detects 
cache hits and the second group updates the cache with query 
results. There is only one group of IS, because this service is 
used only once during the query process, to compute the top-k 
document results for queries. This application is classified as 
high in communication and high in computation. 

V. RESULTS 

In the following, we show results obtained by executing all 
benchmark applications described in the previous section. 
During each execution, we detect the most costly and relevant 
operations. The profiling execution was captured by the 
jvisualvm tool [11]. Results were obtained in a cluster of 16 
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64-bits CPUs Intel Q9550 Quad Core 2.83 GHZ and 4GB 
DDR3 RAM 1333 Mhz. Additionally, to verify the results,  
tests were also performed on an Intel I5-4200U 1.6 GHZ and 
8GB DDR3 RAM 1600 Mhz.  
            

 

Figure 8. Web search engine diagram for the S4 platform. 

TABLE I.  COMMUNICATION OPERATIONS 

Package 
Operations 

Class Method Cost(ms) 

comm.sta
ging 

BlockingThread
PoolExecutor 
Service 

RunneableWithPermit 
Release.run 

0.0019 

execute 
 

0.0072625 

comm.tcp TCPEmitter 
Init -- 

getPartitionCount 0.0005988 

comm.tcp TCPListener 
EventDecoderHanler.m

essageReceived 
0.0036462 

comm.top
ology 

ZKRemote 
Stream 

createStreamPaths 38.6 
getPath -- 

getCollectionName -- 
addInputStream 93.3 

update -- 
refreshStreams -- 

comm.top
ology 

ZkClient 
readData -- 

getChildren -- 
comm.top
ology 

ZNRecord 
getSimpleField -- 
putSimpleField -- 

comm.top
ology 

PhysicalCluster getNodes -- 

comm.top
ology 

Stream 
Consumer 

Equals -- 
hashCode -- 

s4.comm DefaultHasher hash 0.0002567 

 
For the sake of simplicity, we present the average results 

obtained for each S4 operation using all benchmark application 
described in section IV. We cover all the S4 tasks.   

A. Communication Operations 

In this section, we detect and evaluate the most commonly 
and/or costly operations used for communication. Note that 
although S4 communication classes use objects and methods 
from other libraries or packages, we focus only on those 
belonging to the S4 platform.  

Table I shows the S4 communication operations used to 
create nodes and to obtain information about clusters. TCP 
communications are started, creating path for the streams, 
adding streams and using a hash function to determine the 
route of events. Communication operations not relevant 
because of their low costs, do not have time costs in the fourth 
column of Table I. The results presented are average times 
obtained with all benchmark applications. 

Results show that the most expensive communication 
operations are addInputStream, which publishes interest in a 
stream, by a given cluster and createStreamPaths which 
creates a zookeeper node to produce and consume streams. 

TABLE II.  COMPUTATION OPERATIONS 

Package 
Operations 

Class Method Cost(ms) 

Core S4Boostrap run 1762 

Core App 
init 412 
start 32.4 

createInputStream 94.6 

Core 
ProcessingElemen
t 

handleInputEvent 0.0866573 
isCheckpointable 0.0008995 

recover 0.026 
getInstanceForKey 0.0647487 

setApp -- 
setName -- 

core Stream 
StreamEventProcessi

ngTask.run 
0.1644673 

put 0.0200624 

core 
DefaultCoreModu
le 

loadProperties -- 
configure 17.5 

provideTmpDir -- 

core ReceiverImpl 
checkAndSendIf 

NotLocal 
0.0034892 

receive -- 

base Key 
addStream -- 

get 0.0076047 

B. Computation Operations 

The most important S4 computation operations are related 
to the initialization of objects, creation of communication 
objects for the communication layer, and related to control and 
manipulation of PEs and events arriving to the PEs. Table II 
shows the most relevant transactions. 

Table II, shows that the Bootstrap is the most expensive 
process in terms of time consuming. This operation loads the 
application into main memory and starts it execution. Hence, it 
takes a larger time compared to others operations. The 
application Initialization takes a couple of milliseconds. The 
methods related with the processing elements creation do not 
take a significant execution time. 

Table II, shows that the Bootstrap is the most expensive 
process in terms of time consuming. This operation loads the 
application into main memory and starts it execution. Hence, it 
takes a larger time compared to others operations. The 
application Initialization takes a couple of milliseconds. The 
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methods related with the processing elements creation do not 
take a significant execution time.  

TABLE III.  S4 MOST USES METHODS (STATIC VS DYNAMIC ) 

Operation Static Dynamic Diff 

Receive 
message 

0,00029299 0,00087835 -199,78% 

Create PE 0,02425 0,0182 24,94% 

Set Key 1,518 0,021 98,61% 

TABLE IV.  EXTERNAL TASKS 

Package 
Operations 

Class Method Cost(ms) 

java.net SocketInputStream read 83.901729 

java.net SocketOutputStream socketWrite 
0.2441891

28 
java.util.c
oncurrent     

ThreadPoolExecutor getTask 2213.0740
740 

java.io ObjectStreamClass lookup 0.0001040 

java.io BufferedOutputStream write 0.0000272 

sun.nio.ch EPollArrayWrapper poll 
160.58764

65 

java.util.c
oncurrent.
locks 

LockSupport 
parkNanos 

665.06355
14 

park 
47.150005

7 
 

The operations concerning stream process have no big 
impact on the S4 platform. Although, these operations do not 
take much time, they must take into consideration the method 
that allows connection to Zookeeper for communications, as 
well as the method that checks whether the cluster, which will 
be used for communication, is local or not.  

Table III shows results for the operations concerning to the 
most used methods between static and dynamic PEs creation. 
The operation of receiving a message is most expensive for 
dynamic PE creations applications than statics applications. 
However creating a PE and setting a key for each processing 
elements is most expensive for statics applications.    

C. External Tasks 

Table IV shows the external tasks used by the S4 platform. 
These methods are basically used for the manipulation, use of 
threads and invocations to methods of additional packages. 
Table IV shows the most relevant transactions obtained by 
running the benchmark applications. These methods are 
basically Java core packages (java.net, java.util and java.io) for 
manipulating stream. An external method to highlight is 
EpollArrayWrapper, which manipulates a native array of epoll 
event. Another important method is LockSupport, used for 
thread blocking with locks and synchronizations. The most 
costly operations is the getTask from ThreadPoolExecutor, 
which controls the blocking of tasks of the threads.  

VI.  CONCLUDING REMARKS AND FUTURE WORK 

We presented a profiling study for the S4 Stream 
processing platform to determine the most costly and relevant 

operations. To the best of our knowledge, this is the first work 
concerning benchmark for streaming processing. We 
developed a pool of applications with different complexity. We 
used jvisualvm to make the profiling of the executions. Results 
show that the most relevant operations executed by the S4 
platform are related to the creation of applications and the 
manipulation of events. The most costly operations are Thread 
control and Thread manipulation.  

Future work includes the design and implementation of a 
simulator for the S4 platform, whose parameters will be set by 
the results obtained in this work.  
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