ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

Application Design and Profiling of Stream Procesg)

Veronica Gil-Costa, Jair Lobos

Universidad Nacional de San Luis, CONICET
San Luis, Argentina
Email: {jlobos,gvcosta}@unsl.edu.ar

Abstract—Stream processing has recently caught the
attention of many researchers and engineers, mainlgecause of
the continuous growth of information generated by gers. Stream
processing platforms allow processing and analyzingeal time
data, which helps to make decisions faster. In thisvork, we
determine the most relevant tasks performed by thelistributed
stream processing platform named S4. To this end, waevelop a
pool of benchmark applications and we make a profihg of their
execution using the S4 platform. Results show thathe most
relevant operations are related to the control andnanipulation
of threads.

Keywords—stream processing; S4; profiling.

. INTRODUCTION

The world has become fully connected. There isrgela
number and variety of data resources available fandware
and/or software systems. There are numerous inesisthere
everyday processes and interactions with customenerate
millions of events that produce traces, with infation
regarding user's activity. These traces containualake
information for understanding and optimizing preesEs In
addition, those traces can be used to detect aremnab
predict the behavior and trends of customers, anmthgr
activities that can improve the productivity of ampany or
institution.

The events are collected from users actions form
continuous amount of data stream. Some examplesbean
found in: market analysis; telecom call detail relsp video
surveillance systems; vital signs of a patient irmedical
system; intrusion records system networks; the \aehan a
system of Web 2.0, among others. In all these egipdins it is
necessary to collect, process and analyze thesttaam, and
then generate results or produce some specifiorsctiAn
important feature of these applications is thatahalysis must
be done in real time.

There are many stream processing platforms suP&s
(Stream Processing Core) [2], Storm [3], Esc [4] BaStream
[5]. Some research works like TimeStream [13], 8tr€loud
[14][15] and CEC [16], have endeavored to presehitions to
the problems of load balancing and fault toleran€ethe
stream processing process.

Recently, a general-purpose distributed platforrmsigied
to analyze massive data processing called S4 (Si®phlable
Streaming System) was proposed by L. Neumeyegl.efl].
The S4 world-view is that streams are passed thr@ugraph

Mauricio Marin

DIINF, University of Santiago, Chile
Center for Biotechnology and Bioengineering, Chile
Email: mauricio.marin@usach.cl

performs a given primitive operation on the recdiwtream
and generates output streams. Data is routed thrthey PEs
by means of keys, which are specified by users.

In this work, we develop and test a set of apptcat
covering different computation/communication aspeasing
the S4 platform. We aim to understand the flow wéres
processed in those applications with different dditaams, to
determine which are the most repetitive and coslgks
executed by the S4. We obtain relevant metricsduelbping
prototypes for each application, which are usetdeaghmark
to detect bottlenecks in both communication and puttation
operations. The performance information obtainethis work
can be used to propose improvements to the streacegsing
platform itself. By determining the relevant opé@mas
executed by the S4 platform and their costs, [itoissible then
to introduce these costs into a simulation modethasones
presented in [6] to design and test new algorithmithiout
affecting the actual platform running in productiofo this
end, we developed a pool of benchmark applicatils with
different characteristics including processing and
communication complexities in order to determine thost
relevant operations.

Additionally, the results obtained though the bematk
applications can be used in elastic stream prougssi
programming environments [4], where developers datect
possible bottlenecks of PEs, make decisions arel dakon in
advance. In this case, the knowledge obtained bguging the
pool of benchmark applications, can aid to deteemihich
PEs should be replicated.

This paper is structured as follows. Section 2 dess
stream processing and the S4 platform. Section i&flyor
describes profiling and the tool used in this wdoBection 4
describes the pool of benchmark applications usetitect the
most relevant operations. Section 6 shows the teegtihally,
Section 7 presents the conclusions and future work.

Il. STREAM PROCESSING

In this section we discuss the main properties tadas
processing, when stream processing makes senseyoand
fits into big data architectures. We also desctiteeS4 stream
processing platform, used to test the benchmarkicapipns
presented in this paper.

A. Streaming Processing and Big Data

Big data is commonly defined as the three Vs: Vaum
Velocity and Variety [17]. It is used to descriliee £xponential

(DAG) formed by processing elements (PEs), whick argrowth and availability of structured and unstruetldata. A
connected each other in a downstream manner. E&h RFnore recent, definition states that "Big Data repnts the

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

86

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

Information assets characterized by such a Highuiel
Velocity and Variety to require specific Technologynd
Analytical Methods for its transformation into Valu[18].

On the other hand, stream processing is usecaftrdata
requirements, which includes tacking the velocftpmcessing
a huge variety of data in real time. Thereforehdmy data and
stream processing can complement each other.

Stream processing was first used for finance proble
Today, it is used in almost all industries wheream data is
generated by human activities or automatically kyssrs.
Events are generated on-line in unpredictable iisiants. The
union of events forms a continuous stream of infdfom that
may have dynamic variations in intensity of traffio this
context, the process used to store and organisx/iadents in
a conveniently way to then process them in batchbeavery
costly given the huge volume of data and the amamint
computational resources required for processingnthBut
even if this is feasible, it is often desirableemen imperative
to process the events as soon as they are detectésliver
results in real time.

In particular, stream processing corresponds tstalulited
computing paradigm that supports the process tiegaig and
analyzing large volumes of heterogeneous data mtret
assist decision making in real time.

Stream processing appears as result of the rigodates
management, which is increasingly demanding becafifae
information generated by business and scientifjaliegtions,
which are fully linked to the technological progett is also
related to the advance in hardware and softwarbéaes; the
management of large amount of data in distribuystesis; the
use of techniques such as signal processing, testislata
mining and optimization theory.

Stream processing aims to process data in realaidén a
fully integrated way, to provide information andtcames for
consumers and/or end users. Also, it aims to iategnew
information to support decision making in the mediand
long term.

The high volume of event flows coming from differelata
sources makes it impossible to store this inforomtsuch as
model-based on data warehouse where all the dstaeréesd and
then to make the appropriate processing and asalysi

Stream processing applications requires fulfilliogrtain
performance requirements in terms of latency andutihput.
Specifically, processing must keep up with the cdtiecoming
data, while it provides a high level of quality afalysis of
results as fast as possible. Additionally, the iapfibn
components and infrastructure must be fault-tokeran

B. S4 - Simple Scalable Streaming System

S4 acronym for "Simple Scalable Streaming Systesrdl i
system of general purpose, distributed, scalabtectwallows
applications to process data flows continuously heuit
restrictions [1]. S4 is inspired by MapReduce [#@signed in
the context of data mining and machine learningritlgms of
Yahoo! Labs for on-line advertising systems.

In S4, each event is described as a pair (keyhuaiiy). PEs
are the basic units and messages are exchangeeepethem.
The PEs can send messages or post results. PEfaeted in
the so-called processing nodes (PNs) servers. TN dfe
responsible for: a) receiving incoming events, djting the
events to the corresponding PEs and c) dispatchirepnts

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

through the communication layer. The events artiloiged
using a hash function over the key of the eventsthErmore,
the communication layer uses Zookeeper [8], whintvides
management and automatic replacement clustensala fails.

EV Tweet

—
\ Adapter
KEY lang

VAL | tweet-lang

EV TweetLang
| KEY [lang="en”
WAL tweet-lang

EV | TweetLang
KEY lang="es"
VAL | tweet-lang

EV ‘MetricsE\rem
KEY | count
VAL ‘ count for ‘en’

EV |Melri:sEvent
KEY | count

VAL |cuun(ful ‘es’
SHOWRESULTS {PEm)
~

Figure 1. S4 application design (lang-count exainple

To run an application with S4, we need to deploy an

Adapter application. Adapters are S4 applicationat tcan
convert external stream into stream of S4 eveniguré 1

shows a simple Tweet language count for Twitter.tHis

example, input events contain a language desciipta tweet
from Twitter. The Adapter gathers tweets from tevittand

filters only the language descriptor. Then, the gtdasends an
event to PE1l. PE1 listens for Tweet events withpalisible
keys. For each possible key, PE1 emits a new esetype

TweetLang. PE2-n listen for TweetLang events euhittéth

the key lang. For example, PE1 emits an event ki

lang="es". PE2 receives all events of type Tweet &ryed
lang="es". If the PE corresponding to the emittexy lexists,
the PE is called and the counter of language ireiented.
Otherwise, a new PE is instantiated and linkedhéortew key.
Whenever a PE increments its counter, it sendsufidate
count to the PE called PEm and this show the isult

I1l. PROFILING AND TOOLS

A profiler generates the division of the logicalusture of
the applications so that user can understand hqartcular
run of the application is performed using releviaftrmation
regarding execution time and memory usage.

Using a system profiler we can obtain a model tedjut
scaling factors as characteristic functions of dpplications
and hardware parameters [9]. Currently, there @versal tools
available to perform system profiles. S4 required/A/A
profiler, among which we can highlight: Profiler4jL0]
jvisualvm [11] and Java Profiler Tool [12]. By ugirthese
tools and the applications described in the nektiae we
intend to obtain a S4 profile to determine which #re most
costly and the most relevant operations executedhbyS4
stream processing platform.

87

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

File Applications View Tools Window Help

FEOEYEEE

Applications x| 53| [BEaREPEGET] & org apache s¢.rools Tools (pid 10585) ¥ JII AT

liLocal = =

i Overview (9 | Monicor i) | Threads = [[Sampler & Profier ©

& org.apache.s4.tools.Tools (pid10488) | T org.apache.s4.tools.Tools (pid 10585)

281 profiler O Settings

& org.apache.s4.tools. Tools (pid 10617)

& org.gradie launcher.daemon.bootstra | oo ie: Bl @ verony| Bt

Fromrs I ovenr| @5 |

& VM Coredumps Status: ~profiling running (158 methods instrumented)

§ Snapshots
Profiing results
[E© @ & Esnapshot ' B B
Hot Spots - Method | self time (%] ~ |selFtime Invocations ||
com.google.common.cache.LocalCachesHas Il 315 648 ||
org.apache.s4.core.ProcessingElementsOnTi [l 2
JavautiLconcurrent. ScheduledThreadPoolEx il 4
corm.google.common.cache.LocalCache$Has | 799
com.google.common.cache.LocalCachesSeg | 798
com.google.common.cache.LocalCache.gett | 798
org.apache.s4.core.ft.CheckpointingTask.rur | 2
com.yammer.metrics.stats. EWMA.tick I 17
com.google.common.cache.LocalCache$Has | 801

rm.gooale common.cache.LocalCachesHas | 0285ms (2 801 T
i — D11 3

Figure 2. Snapshop of the jvisualvm tool.

Figure 2 shows the environment of the jvisualvni teloen
measuring the CPU utilization. The CPU Profilingused to
test the performance of the application and it gidetailed
information about the total execution time and mioenber of
calls for each method. In the same way, the MerRwofiling
is used to analyze the memory usage, by showingatad
number of executed methods or objects and the amafun
bytes assigned to each one.

IV. BENCHMARKS APLICATIONS

This section describes a pool of applications dged to
run on the S4 platform to perform tests in ordeobdain a
system behavior profile. These benchmark applinatiwill
help us to determine the most costly and most aslev
operations. Each application has different levélsamplexity
on the tasks performed and different levels of camications.
The applications described below can be classified the
following categories: 1) High communication, 2) dymic
creation of processing elements, 3) high, mediud kv
computation. Though this classification, we obtdie S4
operation costs for each type of benchmark apjicat

A. Ping-Pong

Figure 2 shows a basic communication structure detw
two processing elements. PE A, named “sender”, rgéee a
new message and sent it to PE B, named “receikerally B
replies this message to A. This benchmark prograesu
different messages sizes. Each event uses medsatyeen 8
and 256 characters size. This application is dladsas low

computation but with high communication between the

processing elements.

Figure 3. Ping-Pong application.

B. Router

The next application is called “Router”. This applion
generates random values in the Adapter module.Al@pter
sends messages to the PE R, which determinesif/éihie is
an even or an odd number. If the received numbewrés, R
sends a message (an event) to the Processing Eleamed
Even. Otherwise, if the number is odd, R sendsteat to the

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

Processing Element named Odd. Both Odd and Evemiaks
a count of the received elements. When all messages
dispatched, each PE sends its results to the Ringdslement
named Res, and this PE shows the final resultsr&ig shows
the flow of events and the PEs of this applicatidinis
application is classified as low computation buthwhigh
communication between the Adapter and the PEs.

N
®) ()

Figure 4. Router application.

C. Counter of Tweets and Re-Tweets

This application works with the Twitter API to gsteets
from “Twitter’s global stream of Tweet data”. Ttapplication
is connected to the data repository to extract tsyaehich are
processed by the Adapter. The Adapter receivesttkets,
creates an event and sends them to the PE naniEuisTlast
PE classifies the tweet as “No-Re-Tweet” when iresponds
to message that has been posted for the first tonéRe-
Tweet” when it corresponds to a message that has be
posted by other users.

RT

N
~ /TN
(T) (Res)
/ S
N
{NRT
N

Figure 5. Counter of Tweets and Re-Tweets apptinati

Figure 6. Language word counter application.

9

P I

Once the classification process is finished, thesage is
sent to the corresponding PE (RT or NRT), whichasts the
list of hashtag (represents an idea, it is consitlas metadata),
and stores the five most frequent hashtags. TFasnration is
sent to the Processing Element named Res. The Ees P
summarizes the results received. Figure 4 shows the
corresponding diagram for this benchmark applicatidhis
application is classified dggh communicatiomnd asnedium
computation

88

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

D. Language word counter

This application works with Twitter tweets. Thefdiences
with the previous application are that the eveassification
process is done by tweet language instead of NovRset or
Re-Tweet classification; and this application csuhe number
of words that has a tweet. With this process wesstrthe

server. The CS can answer to the FS with a cadhénhthis
case, the CS sends the query results to the F8hwhilds the
Web page with the query results and sends it touther.
Otherwise, if the CS sends a cache-miss to theaHeSES re-
routes the query to the IS, which will compute tiogp-k
document results.

system because an additional PE is generated fr eew HTML page

word entered into the system. Namely, dynamic PEs a Update P
created every time a new word is found inside a&tweigure 5 New query [T 000
shows the diagram for this benchmark applicatiome T Query search

Processing Element named T, classifies the eventstwo K} —~ 00 0O|r
groups L1 and L2, corresponding to languages Spaaisl Fs Response O O O
English. Each Processing Element used for language =

classification gets tweet and splits them into woigach word cs

is sent to its corresponding Processing Elementf\Were is Index search

no PE for the received word a new PE is createe. Words p

are counted in each PE and the results are sehétRes PE.

This application has a high communication cost dwad top-K .. .

dynamic creation of processing elements. IDs @ . . R

E. Clasifficator for people’s needs in a post-disagteenario

The classification process is composed of 4 steps:

Recollecting, Filter, Relevance and Ranking. Thepltecting
step focuses on collecting data from the sourgettieve data
from the Twitter API. The filter operator exploits Naive
Bayesian model to identify if tweets are objectivesubjective.
To create these models an automatic classificagiperformed
through bags of positive and negative words. Thpdiavords
were manually created by developers and validatgd
undergraduate students based on the informatiorotioér
disaster tweets datasets. Objective tweets havgharhvalue,
because they are more reliable than the subjecties. If the
tweet is subjective it is checked whether it is ifpas or
negative in order to benefit the tweets based enidantified
characteristics by applying weights constants i tanking
process.

The topic step is used to identify whether therimfation is
coming from a trustworthy source or not. Trustwonglss is
calculated in two dimensions: author informatiord aweet
information. From the author side, information sueh the
number of tweets generated, the number of follofigswees
and an account verification state are consideredlittulate the
reputation of the author. From the tweet side nin@ber of re-
tweets, favorite marks, and the associated timgstame
exploited to calculate its reputation.

During the ranking step a normalization processthaf
obtained values is performed. This was computedyesartain
number of tweets, to get statistics such as theimar
number of followers, the number of favorites, dthis data is
used to normalize each tweet.

F. DownStream Web Search Engine

Typically, web search engines are composed by thr

services devised to quickly process user queriemion-line
manner: Front-Service (FS), Caching-Service (C$%) ladex-
Server (IS). In such systems a query submitted bges goes
through different stages. Initially, it is receivdyy the FS,
which redirects the query to the CS. The CS chedhsther
the same request has already been performed aifids/érthe
result (document IDs) are stored in the cache mgrabthe

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

IS

Figure 7. Components of a web search engine.

These services are deployed on a large set of gsore
bforming a cluster of computers. They are implemgnées
arrays of PX R processors, where P indicates the level of data
partitioning and R the level of replication of daktéence, this
architecture makes a high usage of partitioningraddndancy
to enhance the query response time and throughput.
instance, each query is assigned a unique pariitiche CS
using a hash function, and different CS nodes eaasBociated
with a partition to answer a query (see Figure 6).

Figure 7 shows a web search engine applicatiorgdedgi
for the S4 platform. The diagram represents therygtiew
through the web search engine components. Eacharampis
composed by a set of different PEs. This applicatias the
following structure: the FS is divided into thregbsservices
FS1, FS2 and FS3. Each group executes the tadksmed by
the FS in different moments of the query procespiingess. In
other words, the group named FS1, executes the tagkired
to route an incoming query to the CS. The groupawFS2,
executes the tasks required to route the querhi@d$, if no
cache hit was reported, or the tasks required ild the query
answer and send it back to the user, otherwise. 8&eis
divided into two groups CS1 and CS2. The first graetects
cache hits and the second group updates the catheuwery
results. There is only one group of IS, because ghrvice is
used only once during the query process, to compeatéop-k

edocument results for queries. This applicationléssified as
high in communication and high in computation.

V. RESULTS

In the following, we show results obtained by exaquall
benchmark applications described in the previoustise
During each execution, we detect the most costty ratevant
operations. The profiling execution was captured thg
jvisualvm tool [11]. Results were obtained in astér of 16

89

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

64-bits CPUs Intel Q9550 Quad Core 2.83 GHZ and 4GB\. Communication Operations

DDR3 RAM 1333 Mhz. Additionally, to verify the relss
tests were also performed on an Intel 15-4200UQ@HZ and
8GB DDR3 RAM 1600 Mhz.

set of FS PEs

Figure 8. Web search engine diagram for the S4optat

TABLE 1. COMMUNICATION OPERATIONS
Operations
Package
Class Method Cost(ms)
. RunneableWithPermit
comm.sta Ef;g;gg&frad Release.run 0.0019
9ing Service execute
0.0072625
. Init -
comm.tcp | TCPEmitter getPartitionCount 0.0005988
. EventDecoderHanler.m
comm.tcp | TCPListener essageReceived 0.0036462
createStreamPaths 38.6
getPath --
comm.top | ZKRemote getCollectionName --
ology Stream addInputStream 93.3
update --
refreshStreams --
comm.top) readData -
ology ZkClient getChildren -
comm.top ZNRecord getSimpleField --
ology putSimpleField -
comm.top - _
ology PhysicalCluster getNodes
comm.top | Stream Equals --
ology Consumer hashCode -
s4.comm DefaultHasher hash 0.0002567

For the sake of simplicity, we present the avenageilts
obtained for each S4 operation using all benchrapdtication
described in section IV. We cover all the S4 tasks.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

In this section, we detect and evaluate the mastnoanly
and/or costly operations used for communicationteNiat
although S4 communication classes use objects attioals
from other libraries or packages, we focus only thnse
belonging to the S4 platform.

Table | shows the S4 communication operations used
create nodes and to obtain information about alsistECP
communications are started, creating path for tneams,
adding streams and using a hash function to daterrttie
route of events. Communication operations not seiev
because of their low costs, do not have time daostise fourth
column of Table I. The results presented are aeetages
obtained with all benchmark applications.

Results show that the most expensive communication
operations araddInputStream, which publishes interest in a
stream, by a given cluster armeateStreamPathswhich
creates a zookeeper node to produce and consuraenstr

TABLE Il COMPUTATION OPERATIONS
Operations
Package
Class Method Cost(ms)
Core S4Boostrap run 1762
init 412
Core App start 32.4
createlnputStream 94.6
handlelnputEvent 0.0866573
isCheckpointable 0.0008995
Core ProcessingElemen recover 0.026
t getinstanceForKey 0.0647487
setApp --
setName --
StreamEventProcessi 0.1644673
core Stream ngTask.run
put 0.0200624
DefaultCoreModu loadProperties —
core le cgnflgure ‘ 17.5
provideTmpDir -
checkAndSendIf 0.0034892
core Receiverimpl NotLocal
receive -
base Key addStream --
get 0.0076047

B. Computation Operations

The most important S4 computation operations dede
to the initialization of objects, creation of commmation
objects for the communication layer, and relatedatotrol and
manipulation of PEs and events arriving to the Pidle I
shows the most relevant transactions.

Table II, shows that the Bootstrap is the most ezpe
process in terms of time consuming. This operaliaas the
application into main memory and starts it exeaqutidence, it
takes a larger time compared to others operatidrse
application Initialization takes a couple of midonds. The
methods related with the processing elements oread not
take a significant execution time.

Table II, shows that the Bootstrap is the most egpe
process in terms of time consuming. This operaliaus the
application into main memory and starts it exeautidence, it
takes a larger time compared to others operatidrse
application Initialization takes a couple of midonds. The

90

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

methods related with the processing elements oread not
take a significant execution time.

operations. To the best of our knowledge, thihésfirst work
concerning benchmark for streaming processing.
developed a pool of applications with different gdexity. We

We

TABLE IIl. S4MOST USESMETHODS(STATIC VS DYNAMIC) used jvisualvm to make the profiling of the exeons. Results
- - - - show that the most relevant operations executedhbyS4
Operation Static Dynamic Dif platform are related to the creation of applicaticand the
Receive 0,00029299 0,00087833 -199,78% manipulation of events. The most costly operatiamsThread
message ; ;
Croate PE 0.02475 0.0182 54.55% control and Thread manipulation. _ _
Future work includes the design and implementatiba
Set Key 1,518 0,021 98,61% simulator for the S4 platform, whose parameters lvélset by
the results obtained in this work.
TABLE IV. EXTERNAL TASKS ACKNOWLEDGMENT
Package Operations This work was funded in part by Conicyt-Mincyt gran
Class Method Cost(ms) CH1204, Partially supported by CeBiB basal fundOG®L,
java.net SocketlnputStream read 83.901729 Conicyt, Chile, and STIC-AMSUD RESPOND.
java.net SocketOutputStream socketWriteO'242£:31891 REFERENCES
java.util.c 2213.0740 [1] B. Robbins, A. Nair, and A. Kesari, “S4: Distribdt8tream Computing
oncurrent | 1nreadPoolExecutor getTask 740 Platform. Leonardo Neumeyer”, in ICDM 2010 pp. 17TZ.
; ; ; [2] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, RngiP. Selo, Y.
java.lo ObjectStreamClass lookup 0.0001040 Park, and C. Venkatramani, “Spc: a distributed)adta platform for
java.io BufferedOutputStream write 0.0000272 data mining”, in DMSS&P, 2006, pp. 27-37.
160.58764 [3] Storm. [Online]. Available:https://github.com/nathanmarz/storm/wiki
sun.nio.ch | EPollArrayWrapper poll 65 retrieved: March, 2015
665.06355 [4] B. Satzger, W. Hummer, P. Leitner, and S. Dustt&&8C: Towards an
java.util.c parkNanos '14 Elastic Stream Computing Platform for the Cloudf,CC, 2011, pp.
oncurrent. | LockSupport 348-355.
locks park 47'130005 [5] M. Zzaharia, T. Das, H. Li, T. Hunter, S. Shenkendal. Stoica,

The operations concerning stream process have go bff!

impact on the S4 platform. Although, these operatido not
take much time, they must take into consideratienrhethod
that allows connection to Zookeeper for communicej as
well as the method that checks whether the clusteich will
be used for communication, is local or not.

Table 11l shows results for the operations conaggrid the
most used methods between static and dynamic Rfasiar.
The operation of receiving a message is most exgerisr
dynamic PE creations applications than statics ieguns.
However creating a PE and setting a key for eackgssing
elements is most expensive for statics applications

C. External Tasks

Table IV shows the external tasks used by the S#opin.
These methods are basically used for the manipulatise of
threads and invocations to methods of additionakages.
Table IV shows the most relevant transactions obthiby

running the benchmark applications. These methods a

basically Java core packages (java.net, javadiljava.io) for
manipulating stream. An external method to highligh
EpollArrayWrapper, which manipulates a native amméagpoll
event. Another important method is LockSupport,duser
thread blocking with locks and synchronizations.e Timost
costly operations is the getTask from ThreadPoatkie,
which controls the blocking of tasks of the threads

VI. CONCLUDING REMARKS AND FUTURE WORK

“Discretized streams: fault-tolerant streaming catagion at scale”, in
SOSP, 2013, pp. 423-438.

V. Gil-Costa, J. Lobos, R. Solar, and M. Marin, “ADS-Tool: An
Automatic Tool to Model and Simulate Large Scalest&ms”, in
Summer Simulation Multi-Conference, 2014, pp 220Q:8.

[71 H. Andrade, B. Gedik, and D. Turaga, “FundamentafsStream
Processing Aplications Design, System and AnaljticSambridge
University Press, 2014.

[8] P.Hunt, M. Konar, F. P. Junqueira, and B. R&2dokeeper: wait-free
coordination for internet-scale systems”, in USENDC, 2010, pp 11—
11.

[9] S. Graham, P. B. Kessler, and M. K. Mckusick, “Gp call graph
execution profiler”, in CC, 1982, pp.120-126.

Profilerdj: http://profiler4j.sourceforge.netetrieved: March, 2015

Java Virtual Machine Monitoring, TroubleshootingidaProfiling Tool.
http://docs.oracle.com/javase/7/docs/technoteségiitsualvm/,
retrieved: March, 2015

Java Profiler Tool.
http://iwww.semanticdesigns.com/Products/ProfilensProfiler.html,
retrieved: March, 2015

Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. ZhangZhou, Y. Yu, and Z.
Zhang, “Timestream: reliable stream computationthe cloud”, in
EuroSys, 2013, pp. 1-14.

V. Gulisano, R. Jimenez-Peris, M. Patino-Martin@z,Soriente, and P.
Valduriez, “Streamcloud: An elastic and scalabletadatreaming
system”, in Trans. on PDS, vol. 23, no. 12, 2@iR,2351-2365.

R. C. Fernandez, M. Migliavacca, E. KalyvianakidaR. Pietzuch,
“Integrating scale out and fault tolerance in gtreprocessing using
operator state management”, in SIGMOD, 2013, pp-736.

Z. Sebepou and K. Magoutis, “Cec: Continuous ewantheckpointing
for data stream processing operators”, in DSN, 2pfh1145-156.

D. Laney, “3D Data Management: Controlling Data Wuk, Velocity
and Variety”, Gartner, 2001, pp. 1-4.

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

We presented a profiling study for the S4 Streani18] A. De Mauro, M. Greco, and M. Grimaldi. “What isgbdata? A

processing platform to determine the most costly matevant

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

consensual definition and a review of key rese&mpits”, in AlP, 2015
pp. 97-104.

91

