
Application Design and Profiling of Stream Processing

Veronica Gil-Costa, Jair Lobos
Universidad Nacional de San Luis, CONICET

San Luis, Argentina
Email: {jlobos,gvcosta}@unsl.edu.ar

Mauricio Marin
DIINF, University of Santiago, Chile

Center for Biotechnology and Bioengineering, Chile
Email: mauricio.marin@usach.cl

Abstract—Stream processing has recently caught the
attention of many researchers and engineers, mainly because of
the continuous growth of information generated by users. Stream
processing platforms allow processing and analyzing real time
data, which helps to make decisions faster. In this work, we
determine the most relevant tasks performed by the distributed
stream processing platform named S4. To this end, we develop a
pool of benchmark applications and we make a profiling of their
execution using the S4 platform. Results show that the most
relevant operations are related to the control and manipulation
of threads.

Keywords—stream processing; S4; profiling.

I. INTRODUCTION

The world has become fully connected. There is a large
number and variety of data resources available from hardware
and/or software systems. There are numerous industries where
everyday processes and interactions with customers generate
millions of events that produce traces, with information
regarding user’s activity. These traces contain valuable
information for understanding and optimizing processes. In
addition, those traces can be used to detect anomalies, to
predict the behavior and trends of customers, among other
activities that can improve the productivity of a company or
institution.

The events are collected from users actions form a
continuous amount of data stream. Some examples can be
found in: market analysis; telecom call detail records; video
surveillance systems; vital signs of a patient in a medical
system; intrusion records system networks; the behavior in a
system of Web 2.0, among others. In all these applications it is
necessary to collect, process and analyze the data stream, and
then generate results or produce some specific actions. An
important feature of these applications is that the analysis must
be done in real time.

There are many stream processing platforms such as SPC
(Stream Processing Core) [2], Storm [3], Esc [4] and D-Stream
[5]. Some research works like TimeStream [13], StreamCloud
[14][15] and CEC [16], have endeavored to present solutions to
the problems of load balancing and fault tolerance of the
stream processing process.

Recently, a general-purpose distributed platform designed
to analyze massive data processing called S4 (Simple Scalable
Streaming System) was proposed by L. Neumeyer, et. al. [1].
The S4 world-view is that streams are passed through a graph
(DAG) formed by processing elements (PEs), which are
connected each other in a downstream manner. Each PE

performs a given primitive operation on the received stream
and generates output streams. Data is routed through the PEs
by means of keys, which are specified by users.

In this work, we develop and test a set of applications
covering different computation/communication aspects using
the S4 platform. We aim to understand the flow of events
processed in those applications with different data streams, to
determine which are the most repetitive and costly tasks
executed by the S4. We obtain relevant metrics by developing
prototypes for each application, which are used as benchmark
to detect bottlenecks in both communication and computation
operations. The performance information obtained in this work
can be used to propose improvements to the stream processing
platform itself. By determining the relevant operations
executed by the S4 platform and their costs, it is possible then
to introduce these costs into a simulation model as the ones
presented in [6] to design and test new algorithms without
affecting the actual platform running in production. To this
end, we developed a pool of benchmark applications built with
different characteristics including processing and
communication complexities in order to determine the most
relevant operations.

Additionally, the results obtained though the benchmark
applications can be used in elastic stream processing
programming environments [4], where developers can detect
possible bottlenecks of PEs, make decisions and take action in
advance. In this case, the knowledge obtained by executing the
pool of benchmark applications, can aid to determine which
PEs should be replicated.

This paper is structured as follows. Section 2 describes
stream processing and the S4 platform. Section 3 briefly
describes profiling and the tool used in this work. Section 4
describes the pool of benchmark applications used to detect the
most relevant operations. Section 6 shows the results. Finally,
Section 7 presents the conclusions and future work.

II. STREAM PROCESSING

In this section we discuss the main properties of stream
processing, when stream processing makes sense, and how it
fits into big data architectures. We also describe the S4 stream
processing platform, used to test the benchmark applications
presented in this paper.

A. Streaming Processing and Big Data

Big data is commonly defined as the three Vs: Volume,
Velocity and Variety [17]. It is used to describe the exponential
growth and availability of structured and unstructured data. A
more recent, definition states that "Big Data represents the

86Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

Information assets characterized by such a High Volume,
Velocity and Variety to require specific Technology and
Analytical Methods for its transformation into Value" [18].

 On the other hand, stream processing is used for fast data
requirements, which includes tacking the velocity of processing
a huge variety of data in real time. Therefore, both big data and
stream processing can complement each other.

Stream processing was first used for finance problems.
Today, it is used in almost all industries where stream data is
generated by human activities or automatically by sensors.
Events are generated on-line in unpredictable time instants. The
union of events forms a continuous stream of information that
may have dynamic variations in intensity of traffic. In this
context, the process used to store and organize/index events in
a conveniently way to then process them in batch can be very
costly given the huge volume of data and the amount of
computational resources required for processing them. But
even if this is feasible, it is often desirable or even imperative
to process the events as soon as they are detected to deliver
results in real time.

In particular, stream processing corresponds to a distributed
computing paradigm that supports the process of gathering and
analyzing large volumes of heterogeneous data streams to
assist decision making in real time.

Stream processing appears as result of the rigorous data
management, which is increasingly demanding because of the
information generated by business and scientific applications,
which are fully linked to the technological progress. It is also
related to the advance in hardware and software databases; the
management of large amount of data in distributed systems; the
use of techniques such as signal processing, statistics, data
mining and optimization theory.

Stream processing aims to process data in real time and in a
fully integrated way, to provide information and outcomes for
consumers and/or end users. Also, it aims to integrate new
information to support decision making in the medium and
long term.

The high volume of event flows coming from different data
sources makes it impossible to store this information, such as
model-based on data warehouse where all the data is stored and
then to make the appropriate processing and analysis.

Stream processing applications requires fulfilling certain
performance requirements in terms of latency and throughput.
Specifically, processing must keep up with the rate of incoming
data, while it provides a high level of quality of analysis of
results as fast as possible. Additionally, the application
components and infrastructure must be fault-tolerant.

B. S4 - Simple Scalable Streaming System

S4 acronym for "Simple Scalable Streaming System" is a
system of general purpose, distributed, scalable, which allows
applications to process data flows continuously without
restrictions [1]. S4 is inspired by MapReduce [7], designed in
the context of data mining and machine learning algorithms of
Yahoo! Labs for on-line advertising systems.

In S4, each event is described as a pair (key, attribute). PEs
are the basic units and messages are exchanged between them.
The PEs can send messages or post results. PEs are allocated in
the so-called processing nodes (PNs) servers. The PNs are
responsible for: a) receiving incoming events, b) routing the
events to the corresponding PEs and c) dispatching events

through the communication layer. The events are distributed
using a hash function over the key of the events. Furthermore,
the communication layer uses Zookeeper [8], which provides
management and automatic replacement clusters if a node fails.

Figure 1. S4 application design (lang-count example).

To run an application with S4, we need to deploy an
Adapter application. Adapters are S4 applications that can
convert external stream into stream of S4 events. Figure 1
shows a simple Tweet language count for Twitter. In this
example, input events contain a language descriptor for a tweet
from Twitter. The Adapter gathers tweets from twitter and
filters only the language descriptor. Then, the Adapter sends an
event to PE1. PE1 listens for Tweet events with all possible
keys. For each possible key, PE1 emits a new event of type
TweetLang. PE2-n listen for TweetLang events emitted with
the key lang. For example, PE1 emits an event with key
lang=”es”. PE2 receives all events of type TweetLang keyed
lang=”es”. If the PE corresponding to the emitted key exists,
the PE is called and the counter of language is incremented.
Otherwise, a new PE is instantiated and linked to the new key.
Whenever a PE increments its counter, it sends the update
count to the PE called PEm and this show the results.

III. PROFILING AND TOOLS

A profiler generates the division of the logical structure of
the applications so that user can understand how a particular
run of the application is performed using relevant information
regarding execution time and memory usage.

Using a system profiler we can obtain a model to predict
scaling factors as characteristic functions of the applications
and hardware parameters [9]. Currently, there are several tools
available to perform system profiles. S4 requires a JAVA
profiler, among which we can highlight: Profiler4j [10]
jvisualvm [11] and Java Profiler Tool [12]. By using these
tools and the applications described in the next section, we
intend to obtain a S4 profile to determine which are the most
costly and the most relevant operations executed by the S4
stream processing platform.

87Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

Figure 2. Snapshop of the jvisualvm tool.

Figure 2 shows the environment of the jvisualvm tool when
measuring the CPU utilization. The CPU Profiling is used to
test the performance of the application and it gives detailed
information about the total execution time and the number of
calls for each method. In the same way, the Memory Profiling
is used to analyze the memory usage, by showing the total
number of executed methods or objects and the amount of
bytes assigned to each one.

IV. BENCHMARKS APLICATIONS

This section describes a pool of applications developed to
run on the S4 platform to perform tests in order to obtain a
system behavior profile. These benchmark applications will
help us to determine the most costly and most relevant
operations. Each application has different levels of complexity
on the tasks performed and different levels of communications.
The applications described below can be classified into the
following categories: 1) High communication, 2) dynamic
creation of processing elements, 3) high, medium and low
computation. Though this classification, we obtain the S4
operation costs for each type of benchmark application.

A. Ping-Pong

Figure 2 shows a basic communication structure between
two processing elements. PE A, named “sender”, generates a
new message and sent it to PE B, named “receiver”. Finally B
replies this message to A. This benchmark program uses
different messages sizes. Each event uses messages between 8
and 256 characters size. This application is classified as low
computation but with high communication between the
processing elements.

Figure 3. Ping-Pong application.

B. Router

The next application is called “Router”. This application
generates random values in the Adapter module. The Adapter
sends messages to the PE R, which determines if this value is
an even or an odd number. If the received number is even, R
sends a message (an event) to the Processing Element named
Even. Otherwise, if the number is odd, R sends the event to the

Processing Element named Odd. Both Odd and Even PEs make
a count of the received elements. When all messages are
dispatched, each PE sends its results to the Processing Element
named Res, and this PE shows the final results. Figure 3 shows
the flow of events and the PEs of this application. This
application is classified as low computation but with high
communication between the Adapter and the PEs.

Figure 4. Router application.

C. Counter of Tweets and Re-Tweets

This application works with the Twitter API to get tweets
from “Twitter’s global stream of Tweet data”. This application
is connected to the data repository to extract tweets, which are
processed by the Adapter. The Adapter receives the tweets,
creates an event and sends them to the PE named T. This last
PE classifies the tweet as “No-Re-Tweet” when it corresponds
to message that has been posted for the first time, or “Re-
Tweet” when it corresponds to a message that has been re-
posted by other users.

Figure 5. Counter of Tweets and Re-Tweets application.

Figure 6. Language word counter application.

Once the classification process is finished, the message is
sent to the corresponding PE (RT or NRT), which extracts the
list of hashtag (represents an idea, it is considered as metadata),
and stores the five most frequent hashtags. This information is
sent to the Processing Element named Res. The Res PE
summarizes the results received. Figure 4 shows the
corresponding diagram for this benchmark application. This
application is classified as high communication and as medium
computation.

88Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

D. Language word counter

This application works with Twitter tweets. The differences
with the previous application are that the event classification
process is done by tweet language instead of No-Re-Tweet or
Re-Tweet classification; and this application counts the number
of words that has a tweet. With this process we stress the
system because an additional PE is generated for each new
word entered into the system. Namely, dynamic PEs are
created every time a new word is found inside a tweet. Figure 5
shows the diagram for this benchmark application. The
Processing Element named T, classifies the events into two
groups L1 and L2, corresponding to languages Spanish and
English. Each Processing Element used for language
classification gets tweet and splits them into words. Each word
is sent to its corresponding Processing Element W. If there is
no PE for the received word a new PE is created. The words
are counted in each PE and the results are sent to the Res PE.
This application has a high communication cost and has
dynamic creation of processing elements.

E. Clasifficator for people’s needs in a post-disaster scenario

The classification process is composed of 4 steps:
Recollecting, Filter, Relevance and Ranking. The recollecting
step focuses on collecting data from the source to retrieve data
from the Twitter API. The filter operator exploits a Naive
Bayesian model to identify if tweets are objective or subjective.
To create these models an automatic classification is performed
through bags of positive and negative words. The bag of words
were manually created by developers and validated by
undergraduate students based on the information of other
disaster tweets datasets. Objective tweets have a higher value,
because they are more reliable than the subjective ones. If the
tweet is subjective it is checked whether it is positive or
negative in order to benefit the tweets based on the identified
characteristics by applying weights constants in the ranking
process.

The topic step is used to identify whether the information is
coming from a trustworthy source or not. Trustworthiness is
calculated in two dimensions: author information and tweet
information. From the author side, information such as the
number of tweets generated, the number of followers/followees
and an account verification state are considered to calculate the
reputation of the author. From the tweet side, the number of re-
tweets, favorite marks, and the associated timestamp are
exploited to calculate its reputation.

During the ranking step a normalization process of the
obtained values is performed. This was computed every certain
number of tweets, to get statistics such as the maximum
number of followers, the number of favorites, etc. This data is
used to normalize each tweet.

F. DownStream Web Search Engine

Typically, web search engines are composed by three
services devised to quickly process user queries in an on-line
manner: Front-Service (FS), Caching-Service (CS) and Index-
Server (IS). In such systems a query submitted by a user goes
through different stages. Initially, it is received by the FS,
which redirects the query to the CS. The CS checks whether
the same request has already been performed and verifies if the
result (document IDs) are stored in the cache memory of the

server. The CS can answer to the FS with a cache hit. In this
case, the CS sends the query results to the FS, which builds the
Web page with the query results and sends it to the user.
Otherwise, if the CS sends a cache-miss to the FS, the FS re-
routes the query to the IS, which will compute the top-k
document results.

Figure 7. Components of a web search engine.

These services are deployed on a large set of processors
forming a cluster of computers. They are implemented as
arrays of P × R processors, where P indicates the level of data
partitioning and R the level of replication of data. Hence, this
architecture makes a high usage of partitioning and redundancy
to enhance the query response time and throughput. For
instance, each query is assigned a unique partition of the CS
using a hash function, and different CS nodes can be associated
with a partition to answer a query (see Figure 6).

Figure 7 shows a web search engine application designed
for the S4 platform. The diagram represents the query flow
through the web search engine components. Each component is
composed by a set of different PEs. This application has the
following structure: the FS is divided into three sub-services
FS1, FS2 and FS3. Each group executes the tasks performed by
the FS in different moments of the query processing process. In
other words, the group named FS1, executes the tasks required
to route an incoming query to the CS. The group named FS2,
executes the tasks required to route the query to the IS, if no
cache hit was reported, or the tasks required to build the query
answer and send it back to the user, otherwise. The CS is
divided into two groups CS1 and CS2. The first group detects
cache hits and the second group updates the cache with query
results. There is only one group of IS, because this service is
used only once during the query process, to compute the top-k
document results for queries. This application is classified as
high in communication and high in computation.

V. RESULTS

In the following, we show results obtained by executing all
benchmark applications described in the previous section.
During each execution, we detect the most costly and relevant
operations. The profiling execution was captured by the
jvisualvm tool [11]. Results were obtained in a cluster of 16

89Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

64-bits CPUs Intel Q9550 Quad Core 2.83 GHZ and 4GB
DDR3 RAM 1333 Mhz. Additionally, to verify the results,
tests were also performed on an Intel I5-4200U 1.6 GHZ and
8GB DDR3 RAM 1600 Mhz.

Figure 8. Web search engine diagram for the S4 platform.

TABLE I. COMMUNICATION OPERATIONS

Package
Operations

Class Method Cost(ms)

comm.sta
ging

BlockingThread
PoolExecutor
Service

RunneableWithPermit
Release.run

0.0019

execute

0.0072625

comm.tcp TCPEmitter
Init --

getPartitionCount 0.0005988

comm.tcp TCPListener
EventDecoderHanler.m

essageReceived
0.0036462

comm.top
ology

ZKRemote
Stream

createStreamPaths 38.6
getPath --

getCollectionName --
addInputStream 93.3

update --
refreshStreams --

comm.top
ology

ZkClient
readData --

getChildren --
comm.top
ology

ZNRecord
getSimpleField --
putSimpleField --

comm.top
ology

PhysicalCluster getNodes --

comm.top
ology

Stream
Consumer

Equals --
hashCode --

s4.comm DefaultHasher hash 0.0002567

For the sake of simplicity, we present the average results

obtained for each S4 operation using all benchmark application
described in section IV. We cover all the S4 tasks.

A. Communication Operations

In this section, we detect and evaluate the most commonly
and/or costly operations used for communication. Note that
although S4 communication classes use objects and methods
from other libraries or packages, we focus only on those
belonging to the S4 platform.

Table I shows the S4 communication operations used to
create nodes and to obtain information about clusters. TCP
communications are started, creating path for the streams,
adding streams and using a hash function to determine the
route of events. Communication operations not relevant
because of their low costs, do not have time costs in the fourth
column of Table I. The results presented are average times
obtained with all benchmark applications.

Results show that the most expensive communication
operations are addInputStream, which publishes interest in a
stream, by a given cluster and createStreamPaths which
creates a zookeeper node to produce and consume streams.

TABLE II. COMPUTATION OPERATIONS

Package
Operations

Class Method Cost(ms)

Core S4Boostrap run 1762

Core App
init 412
start 32.4

createInputStream 94.6

Core
ProcessingElemen
t

handleInputEvent 0.0866573
isCheckpointable 0.0008995

recover 0.026
getInstanceForKey 0.0647487

setApp --
setName --

core Stream
StreamEventProcessi

ngTask.run
0.1644673

put 0.0200624

core
DefaultCoreModu
le

loadProperties --
configure 17.5

provideTmpDir --

core ReceiverImpl
checkAndSendIf

NotLocal
0.0034892

receive --

base Key
addStream --

get 0.0076047

B. Computation Operations

The most important S4 computation operations are related
to the initialization of objects, creation of communication
objects for the communication layer, and related to control and
manipulation of PEs and events arriving to the PEs. Table II
shows the most relevant transactions.

Table II, shows that the Bootstrap is the most expensive
process in terms of time consuming. This operation loads the
application into main memory and starts it execution. Hence, it
takes a larger time compared to others operations. The
application Initialization takes a couple of milliseconds. The
methods related with the processing elements creation do not
take a significant execution time.

Table II, shows that the Bootstrap is the most expensive
process in terms of time consuming. This operation loads the
application into main memory and starts it execution. Hence, it
takes a larger time compared to others operations. The
application Initialization takes a couple of milliseconds. The

90Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

methods related with the processing elements creation do not
take a significant execution time.

TABLE III. S4 MOST USES METHODS (STATIC VS DYNAMIC)

Operation Static Dynamic Diff

Receive
message

0,00029299 0,00087835 -199,78%

Create PE 0,02425 0,0182 24,94%

Set Key 1,518 0,021 98,61%

TABLE IV. EXTERNAL TASKS

Package
Operations

Class Method Cost(ms)

java.net SocketInputStream read 83.901729

java.net SocketOutputStream socketWrite
0.2441891

28
java.util.c
oncurrent

ThreadPoolExecutor getTask 2213.0740
740

java.io ObjectStreamClass lookup 0.0001040

java.io BufferedOutputStream write 0.0000272

sun.nio.ch EPollArrayWrapper poll
160.58764

65

java.util.c
oncurrent.
locks

LockSupport
parkNanos

665.06355
14

park
47.150005

7

The operations concerning stream process have no big
impact on the S4 platform. Although, these operations do not
take much time, they must take into consideration the method
that allows connection to Zookeeper for communications, as
well as the method that checks whether the cluster, which will
be used for communication, is local or not.

Table III shows results for the operations concerning to the
most used methods between static and dynamic PEs creation.
The operation of receiving a message is most expensive for
dynamic PE creations applications than statics applications.
However creating a PE and setting a key for each processing
elements is most expensive for statics applications.

C. External Tasks

Table IV shows the external tasks used by the S4 platform.
These methods are basically used for the manipulation, use of
threads and invocations to methods of additional packages.
Table IV shows the most relevant transactions obtained by
running the benchmark applications. These methods are
basically Java core packages (java.net, java.util and java.io) for
manipulating stream. An external method to highlight is
EpollArrayWrapper, which manipulates a native array of epoll
event. Another important method is LockSupport, used for
thread blocking with locks and synchronizations. The most
costly operations is the getTask from ThreadPoolExecutor,
which controls the blocking of tasks of the threads.

VI. CONCLUDING REMARKS AND FUTURE WORK

We presented a profiling study for the S4 Stream
processing platform to determine the most costly and relevant

operations. To the best of our knowledge, this is the first work
concerning benchmark for streaming processing. We
developed a pool of applications with different complexity. We
used jvisualvm to make the profiling of the executions. Results
show that the most relevant operations executed by the S4
platform are related to the creation of applications and the
manipulation of events. The most costly operations are Thread
control and Thread manipulation.

Future work includes the design and implementation of a
simulator for the S4 platform, whose parameters will be set by
the results obtained in this work.

ACKNOWLEDGMENT

This work was funded in part by Conicyt-Mincyt grant
CH1204, Partially supported by CeBiB basal funds FB0001,
Conicyt, Chile, and STIC-AMSUD RESPOND.

REFERENCES
[1] B. Robbins, A. Nair, and A. Kesari, “S4: Distributed Stream Computing

Platform. Leonardo Neumeyer”, in ICDM 2010 pp. 170-177.

[2] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King, P. Selo, Y.
Park, and C. Venkatramani, “Spc: a distributed, scalable platform for
data mining”, in DMSS&P, 2006, pp. 27–37.

[3] Storm. [Online]. Available: https://github.com/nathanmarz/storm/wiki,
retrieved: March, 2015

[4] B. Satzger, W. Hummer, P. Leitner, and S. Dustdar, “ESC: Towards an
Elastic Stream Computing Platform for the Cloud”, in CC, 2011, pp.
348–355.

[5] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: fault-tolerant streaming computation at scale”, in
SOSP, 2013, pp. 423–438.

[6] V. Gil-Costa, J. Lobos, R. Solar, and M. Marin, “AMEDS-Tool: An
Automatic Tool to Model and Simulate Large Scale Systems”, in
Summer Simulation Multi-Conference, 2014, pp 20:1--20:8.

[7] H. Andrade, B. Gedik, and D. Turaga, “Fundamentals of Stream
Processing Aplications Design, System and Analytics”, Cambridge
University Press, 2014.

[8] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: wait-free
coordination for internet-scale systems”, in USENIXATC, 2010, pp 11–
11.

[9] S. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph
execution profiler”, in CC, 1982, pp.120-126.

[10] Profiler4j: http://profiler4j.sourceforge.net, retrieved: March, 2015

[11] Java Virtual Machine Monitoring, Troubleshooting, and Profiling Tool.
http://docs.oracle.com/javase/7/docs/technotes/guides/visualvm/,
retrieved: March, 2015

[12] Java Profiler Tool.
http://www.semanticdesigns.com/Products/Profilers/JavaProfiler.html,
retrieved: March, 2015

[13] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and Z.
Zhang, “Timestream: reliable stream computation in the cloud”, in
EuroSys, 2013, pp. 1–14.

[14] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and P.
Valduriez, “Streamcloud: An elastic and scalable data streaming
system”, in Trans. on PDS, vol. 23, no. 12, 2012, pp. 2351–2365.

[15] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch,
“Integrating scale out and fault tolerance in stream processing using
operator state management”, in SIGMOD, 2013, pp. 725–736.

[16] Z. Sebepou and K. Magoutis, “Cec: Continuous eventual checkpointing
for data stream processing operators”, in DSN, 2011, pp. 145-156.

[17] D. Laney, “3D Data Management: Controlling Data Volume, Velocity
and Variety”, Gartner, 2001, pp. 1-4.

[18] A. De Mauro, M. Greco, and M. Grimaldi. “What is big data? A
consensual definition and a review of key research topics”, in AIP, 2015
pp. 97–104.

91Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

