
Autonomic Metaheuristic Optimization

with Application to Run-Time Software Adaptation

John M. Ewing and Daniel A. Menascé

Department of Computer Science, MS 4A5

The Volgenau School of Engineering, George Mason University

Fairfax, Virginia, United States of America

Email: jewing2@gmu.edu,menasce@cs.gmu.edu

Abstract—This paper presents a general meta-optimization ap-
proach for improving self-optimization in autonomic systems.
This approach can improve optimization performance and lower
costs by reducing human effort needed to tune optimization
algorithms. We apply our meta-optimization approach to Self-
Architecting Software Systems (SASSY). A genetic algorithm is
used to meta-optimize both the architecture search module and
the service selection search module in SASSY. Four different
heuristic search algorithms (hill-climbing, beam search, evolution-
ary programming, and simulated annealing) are made available
to be meta-optimized in both the architecture search module
and the service selection search module. This meta-optimization
process generated twelve new heuristic search algorithm pairs for
solving SASSY optimization problems. In a large set of simulation
experiments, two of the generated heuristic search algorithm pairs
provided superior performance to the control (which was the
previously best heuristic search algorithm pair known in SASSY).

Keywords–Intelligent systems; Autonomous agents; Evolution-
ary computation; Genetic algorithms

I. INTRODUCTION

Autonomic computing is a discipline that studies the design
of methods and techniques that enable information systems
to manage themselves. The self-management capabilities can
be broken down into four self-* properties: self-configuration,
self-optimization, self-healing, and self-protection [1]. A driv-
ing force in the adaptation of autonomic computing is the de-
sire to reduce the Total Cost of Ownership (TCO); autonomic
computing achieves this goal by reducing maintenance costs, in
particular the level of effort required by system administrators.

Achieving each of the self-* properties presents special
challenges. In this work, we focus on the challenges pre-
sented by run-time self-optimization in the face of changes
in the environment. Autonomic systems that perform self-
optimization require some computational method to discover
a configuration or a sequence of actions that will optimize the
system. A number of techniques including linear programming,
heuristic search, and machine learning have been employed
to conduct self-optimization in autonomic systems [2][3][4].
Most self-optimizing autonomic systems share the following
three considerations:

1) multiple optimization problems will be encountered
over the life of the autonomic system,

2) encountered optimization problems must be solved in
near real-time, and

3) the performance of the optimization algorithm is

impacted by parameters that control the behavior of
the algorithm.

For many autonomic systems, it is reasonable to expect
that hundreds to thousands of optimization problems will be
encountered over the system’s lifetime. Self-optimization is
often invoked in support of self-healing; restoring functionality
to a system requires expeditious decision-making on the part
of the optimizing algorithm.

Optimization conducted through heuristic search algo-
rithms can have widely varying performance. The performance
of a heuristic search algorithm largely depends upon the type of
algorithm and its attendant parameter settings. The topology of
the system’s objective function over the system’s configuration
space interacts heavily with the selection of the heuristic search
algorithm and attendant parameters. These interactions can be
difficult to predict, and require human system administrators
with significant knowledge, experience, and time to set them
correctly. This additional effort can substantially reduce the
original cost savings provided by the autonomic system.

To reduce costs and improve the performance of self-
optimizing systems, we propose a meta-optimization technique
for autonomic systems. Meta-optimization is particularly well-
suited to self-optimizing autonomic systems for two reasons:

• A meta-optimized optimization algorithm is likely to
yield improved results each time the algorithm is
invoked. The cumulative positive impact of making
better decisions over the system’s lifetime can be
substantial.

• Optimizations can be solved in a matter of seconds,
therefore it is computationally feasible to execute
the optimization algorithm thousands of times either
offline or between self-optimization events.

Huebscher and McCann [5] propose classifying systems
based on their degree of autonomicity. The authors suggest
five levels of autonomicity:

1) Support–At this lowest level of autonomicity, a sys-
tem focuses on only a subset self-* properties and/or
focuses only on a subset of components.

2) Core–A system with core autonomicity enables self-*
properties on all components but provides no method
for modifying system goals online.

3) Autonomous–An autonomous system enables self-*
properties on all components but does not possess
awareness of the autonomic manager’s performance.

63Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

4) Autonomic–An autonomic system enables self-*
properties on all components, is aware of the au-
tonomic manager’s performance, and can adapt the
behavior of the autonomic manager to improve per-
formance.

5) Closed-Loop–A system with closed-loop autonomic-
ity enables self-* properties on all components, is
aware of the autonomic manager’s performance, and
grows the capabilities of the autonomic manager
through intelligent reasoning.

Applying meta-optimization can contribute to the transforma-
tion of autonomous systems into autonomic systems.

This paper makes the following three contributions:

1) a framework for conducting meta-optimization on
self-optimizing systems,

2) a demonstration of the framework on an application
using SASSY, and

3) an experimental evaluation of the resulting meta-
optimized heuristic search algorithms.

The organization of this paper is as follows. Section II
provides a brief overview of the SASSY project that motivated
the need for the development of the ideas presented in this
paper. Section III formalizes the meta-optimization problem.
The following section presents the meta-optimization frame-
work. Section V presents and discusses the results of our ex-
perimental evaluation. The following section discusses related
work and Section VII presents some concluding remarks.

II. OVERVIEW OF SASSY

In previous work, we presented an autonomic framework
for managing Service Oriented Architecture (SOA) applica-
tions called SASSY [6][7]. SASSY optimizes the performance
of systems by modifying architectural patterns and changing
service provider (SP) selections.

In SASSY, a user defines data flows among activities for
a new SOA application via a graphical interface [6]. The user
can specify multiple Quality of Service (QoS) requirements
associated with the framework. These QoS requirements are
termed service sequence scenarios (SSS) and they couple a
desired QoS goal with a path through the data flows. The
degree of satisfaction of the QoS goals is reflected in a global
utility function, Ug , which serves as the objective function in
SASSY’s self-optimization processes. A detailed description of
how data flows and SSSs are defined in the SASSY framework
can be found in [3] and [6]. It is worth noting that the global
utility functions are typically concave with multiple optima.

SASSY generates a base software architecture from the
user’s requirements that consists of a coordinator and a basic
software component for each activity defined in the data flow.
The coordinator is linked to each basic software component
and SSS performance models are automatically produced using
expression trees and the set of rules described in [6].

This base architecture can be modified through the substi-
tution of a basic component with a composite component. A
composite component uses multiple SPs and is created from
an architectural pattern template. For example, a composite
component might be constructed from a load balancing archi-
tectural pattern template; the composite component might use
two different SPs and distribute the offered load according to
the SPs’ advertised capacities [8].

To make the architecture executable, the coordinator must
bind a set of SPs to the basic components in the architecture.
Different SPs may offer the same service with varying levels
of performance and cost. For a given architecture, SASSY
searches for a combination of SPs that maximizes Ug .

The coordinator is able to substitute patterns and com-
ponents to the architecture at run-time [9]. This enables the
system to re-architect at run-time when new services become
available or a service currently bound to the architecture fails.

TABLE I. SSSes USED IN EXPERIMENTAL EVALUATION.

QoS Metric Weight Number of Activities

Security Option 1 0.08 16

Security Option 1 0.03 9

Security Option 2 0.11 11

Security Option 2 0.07 9

Throughput 0.11 11

Throughput 0.06 16

Throughput 0.02 11

Availability 0.12 16

Availability 0.08 11

Availability 0.04 16

Availability 0.04 11

Execution Time 0.18 11

Execution Time 0.03 16

Execution Time 0.03 11

Our previous work considers small- to medium-sized data
flows in SASSY with up to 30 activities [3][6]. Here, we
consider the much larger SOA application shown in Figure 1
that has 65 activities. A summary of the SSSes defined for this
application can be found in Table I. For each SSS, the table
shows its QoS metric, the weight of that metric in the compu-
tation of the global utility Ug , and the number of software
components of that SSS. The heuristic search optimization
algorithms considered in our previous work were tuned on an
application with 30 activities. In this paper we apply a meta-
optimization process to determine if more suitable heuristic
search algorithms can be found for this larger application.

III. EXAMINING META-OPTIMIZATION

All self-optimizing systems have methods for judging the
efficacy of a given configuration or sequence of actions. For
the purposes of expediency in discussion, we assume that all
self-optimizing systems can be gauged with a global utility
function.

Formally, self-optimization can be specified as:

Find a system state S∗ such that

S∗ = argmaxS Ug(S,K). (1)

where Ug() is a global utility function representing the useful-
ness of being at system state S when the operating environment
is at state K.

To achieve optimization, self-optimizing autonomic sys-
tems either employ approximate optimization algorithms or
make restrictions in the number of system states that may
be considered. Equation (2) shows the optimization process,
B, producing an approximately optimized state, S∗

a with
optimization algorithm, H.

S∗
a = B(H,K). (2)

64Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

�����

�������	
������� ������

Figure 1. SOA application with 65 activities.

Often, these approximate optimization algorithms are non-
deterministic due to stochastic operations (e.g., mutations in
evolutionary algorithms). Thus, to measure the performance
of an optimization algorithm H, its expected global utility UH

over multiple executions of B should be considered:

UH = E [Ug(S
∗
a)] = E [Ug(B(H,K))]. (3)

The meta-optimization problem can be formally specified
as follows:

Find an approximate optimization algorithm H∗ such that

H∗ = argmaxH E [Ug(B(H,K))] (4)

tH ≤ tL (5)

where tH is the execution time for H and tL is a time limit.

A. Meta-Optimization in SASSY

There are two NP-hard optimization problems that need to
be solved in near real-time for SASSY [6]:

1) an architecture optimization problem and
2) a service selection optimization problem.

The two optimization problems are in fact nested: before
an individual architecture can be evaluated, an approximately
optimal service selection must first be found.

Formally, the SASSY optimization problem can be ex-
pressed as:

Find an architecture A∗ and a corresponding SP allocation
Z∗ such that

(A∗, Z∗) = argmax(A,Z) Ug(A, Z,K). (6)

where Ug(A, Z) is the global utility of architecture A and
service selection Z, with the state of all SPs in the environment
denoted by K. This optimization problem may be modified by
adding a cost constraint. In the cost-constrained case, there is

a cost associated with each SP for providing a certain QoS
level [6].

The optimization process, B, used by SASSY’s centralized
autonomic controller requires two algorithms: HA for the
architecture search and HZ for the service selection search.
Equation (7) shows that the optimization process requires one
more input, Ac, the current architecture. This provides a useful
starting position for the algorithm HA, since the Ac is often
close to an architecture A∗

a.

(A∗
a, Z

∗
a) = B(HA,HZ ,Ac,K) (7)

The performance of the algorithm pair, UHA,HZ
, is ex-

pressed below:

UHA,HZ
= E [Ug(A

∗
a, Z

∗
a)]

= E [Ug(B(HA,HZ ,Ac,K))].
(8)

Equation (9) describes the meta-optimization problem in
SASSY:

Find a pair of approximate optimization algorithms (H∗
A
,H∗

Z)
such that

(H∗
A,H

∗
Z) = argmax(HA,HZ) E [Ug(B(HA,HZ ,

Ac,K))]
(9)

t(HA,HZ) ≤ tL (10)

SASSY can employ a number of heuristic search methods
as approximate optimization algorithms in solving the archi-
tectural pattern problem and the SP selection problem. Hill-
climbing, beam search, simulated annealing, and evolutionary
programming have been implemented and tested in the SASSY
autonomic controller with varying degrees of effectiveness [3].
Each of these heuristic search algorithms requires multiple
parameter settings that can have potentially large impacts on
the optimization process performance.

65Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

IV. META-OPTIMIZATION FRAMEWORK

Meta-Optimization in SASSY is currently an offline ac-
tivity that requires some minimal supervision from a human
administrator.

As demonstrated in (4) and (9), certain inputs are required
in the meta-optimization process. In the general case, we
require the operating environment state, K, to conduct a meta-
optimization. For SASSY meta-optimizations, we additionally
require the system’s current architecture, Ac.

To ensure acquisition of appropriate meta-optimization
inputs, we propose the following three-step meta-optimization
process:

1) capture candidate sample problem set,
2) select finalist problems from candidate problem set,

and
3) apply meta-optimization procedure to finalist prob-

lems.

A candidate sample problem set is a pool of observed or
generated optimization problems. A candidate sample problem
set may be large, and it may not be computationally feasible
to conduct effective meta-optimization on each problem in
this set. When the candidate problem set is large, a method
is required for selecting a promising subset (i.e., the finalists)
of the candidate problems. A meta-optimization procedure can
then be pursued on the small set of finalist problems.

A. Generating Candidate Problems in SASSY

To capture a candidate sample problem set in SASSY, we
execute the SASSY system in a simulated service environment.
The simulation generates SP failures, SP degradations, and
SP repairs. If an SP failure or SP degradation reduces Ug

below some threshold, the autonomic controller will initiate
an optimization process to find a new architecture, A, and
SP selection, Z. When the performance monitor detects SP
repair events, the autonomic controller will also initiate an
optimization process to determine if a better A and Z can be
achieved. The candidate problem set is produced by collecting
randomly sampled problems encountered in the simulation—
the purpose is to avoid oversampling small portions of the
problem space.

In the SASSY application depicted in Figure 1, we ran-
domly generated between three and ten SPs for each of
the 65 activities, yielding an overall total of 404 SPs. We
conducted a relatively long initial optimization search to find
a near-optimal starting architecture, Ai, and a near-optimal
SP selection, Zi. We instantiated a SASSY system using
the beam search/evolutionary programming BS-EP heuristic
search algorithm pair from [3]. Starting the SASSY system
with Ai and Zi, we simulated SP failures, SP degradation, and
SP repair events over time. We conducted 26 such simulations
and captured 1% of the encountered optimization problems by
the SASSY autonomic controller. This process generated 1,041
candidate sample problems.

B. Selecting Finalist Problems in SASSY

Our previous work [3] demonstrated that sometimes a small
fraction of SASSY optimization problems are particularly
challenging. The choice of heuristic search algorithms on these
challenge problems can have an outsized impact on the SASSY
system’s overall performance. Identifying challenge problems
with machine learning techniques has proven difficult [3]. To

improve the odds of including one or more challenge problems
in the finalist subset, we prioritize diversity when choosing
finalists from candidates.

To develop a diverse finalist subset, we examine two
summary statistics:

1) ∆ Ug is the difference in Ug from the last opti-
mization search. This measures the severity of the
optimization problem.

2) f∆(K) is the fraction of SPs that have changed state
due to failure, degradation, or repair since the last
optimization search. This measures the degree of
change in the environment.

Figure 2 shows a scatter plot of the 1,041 candidate problems
using these summary statistics.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

f ∆
(K

)

∆ Ug

C

A

L

D

H

B

K

F

EJ

I

G

Figure 2. The candidate problem set plotted using summary statistics. The
twelve finalist problems are labeled A-L and marked with red x’s.

To pick a diverse group of finalist problems, we select
problems distributed across the full range, including some
outliers. Challenge problems may be uncommon, so it is not
necessary that each finalist problem represent a cluster of
candidate problems. The twelve finalist problems were selected
by assessing Figure 2 and are labeled A through L.

C. Applying Meta-Optimization Procedure

Figure 3 describes the meta-optimization procedure we
applied to the SASSY autonomic controller. Exactly one
finalist sample problem is assigned to an instance of the
meta-optimizer. The arrows departing from Box 1 show how
the information captured in the finalist sample problem is
distributed.

• The current architecture, Ac, is sent to the Meta-
Optimizer.

• The performance of the SPs in the environment is sent
to the SSS Performance Modeler.

• A list of the available SPs in the environment is
provided to the Service Selection Search Module.

The Meta-Optimizer (Box 2) generates a pair of heuristic
search algorithms that are then provided to the Architecture
Search Module (Box 3) and the Service Selection Search
Module (Box 4). Additionally, the Meta-Optimizer directs the
Architecture Search Module to commence an optimization

66Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

�� ������	��
�	�

�	����

���
�	

�� �	����	��

�	�	������

�	����

���
�	

�� �	���������	�

���������	����
���

��������������

��������

���������A

�����������

�������

A�

�
�
����

��

A� ����

�
�
����

A
�
���

�

H
A H�

��H
A
,H

Z
�

�������

�	�������	

���	�	�

���������� ��

����	�

���!�	�

"��#��
�����

�
�������
���	���������������

����������������������

�������

A ���
�

����������

������������

���A� ����

Figure 3. The meta-optimization procedure applied to SASSY.

search. The optimization search will be repeated n times before
the Meta-Optimizer changes the heuristic search algorithms in
the search modules (Boxes 3 and 4). The score for the heuristic
search pair is the average predicted Ug of the returned A and
Z.

The heart of the architecture/SP selection optimization is
the interaction among boxes 3, 4, 5, and 6. When the ar-
chitecture optimization search begins, the Architecture Search
Module (Box 3) requests the Service Selection Search Module
(Box 4) to find an optimal Zi for a given Ai. As it conducts
the SP selection search, the Service Selection Search Module
requests performance predictions for a given Ai and Zj .

1) Genetic Algorithm for the Meta-Optimizer: We used a
genetic algorithm as our meta-optimization algorithm for the
following four reasons.

1) The genotype representation provides an elegant
mechanism for representing complex objects.

2) The crossover and mutation operators can be applied
to the genotype representation in a simple and uni-
form way.

3) Genetic algorithms are robust in the face of noisy
evaluations.

4) The crossover operator can blend two different heur-
istic pair algorithms to explore the heuristic parameter
space between them.

The heuristic search algorithms and their attendant parame-
ters are encoded into binary strings. The format of these binary
strings are defined in Table II and Table III. The genotype of
the heuristic search algorithm pair is formed by concatenating
these two binary strings. For a more detailed discussion of the
heuristic search algorithm parameters, see [3].

The service selection search budget parameter, NZ , in
Table III refers to the number of SP selections to be evaluated
for each architecture evaluation. Thus, the total number of
model evaluations, NM can be computed as follows:

NM = NA ×NZ (11)

where NA is the architecture search budget parameter.

In this work, the window for completing an architecture
optimization search was set to be 7.5 seconds. On systems with
two 2.4 GHz quad-core hyper-threading Intel Xeon processors
this translated to NM = 47, 600. Using this information, NA

was then derived from NZ .

In most genetic algorithms, the size of the parent popula-
tion and offspring population are equal (in this work we use
a population size of 15). With each generation, the parent
solutions are discarded, and the offspring become the next
generation of parents.

Each new offspring is generated by probabilistically se-
lecting two parents. We use the linear ranking method for
parent selection [10][11]. In linear ranking, the population is
first sorted in descending order according to fitness, UHA,HZ

.
The probability of selecting member i is:

P (i) =
1 + S

M
−

2S(i− 1)

M(M − 1)
(12)

where S is a pressure selection variable that may take on
values in the range of [0, 1]. When S is zero, all members
of the population have an equal chance of being selected; as
S increases, the probability increases of selecting the fittest
members of the population. Here, we use S = 1, which should
speed the final convergence on concave maxima—this is a
desirable feature given limitations on time and resources for
our meta-optimization.

The offspring is produced from the two parents through the
uniform crossover operator with the crossover probability set to
0.08. The genetic algorithm transcribes the binary string from
the first parent selected to the offspring. With each transcribed
bit, there is an 8% chance that the genetic algorithm will swap
the parents for the source of the transcription [10].

Once the crossover operation is complete for a new off-
spring, the bit-flip mutation operator is invoked. To avoid
entrapment in hamming cliffs, the binary strings are converted
into Gray code [12] before the bit-flip mutation operator is
applied. The bit-flip mutation operator examines each bit of the
genotype binary string and flips a given bit with a probability
of 0.02.

67Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

TABLE II. COMPOSITION OF ARCHITECTURE SEARCH BINARY STRING.

Parameter Algorithm Type Min Max Step # bits

search algorithm all enum N/A N/A N/A 2

hill-climbing mode hill-climbing enum N/A N/A N/A 1

beam search mode beam search enum N/A N/A N/A 2

neighborhood filtering hill-climbing & beam search boolean N/A N/A N/A 1

of SSSes in filter hill-climbing & beam search integer 1 13 1 4

of components in filter hill-climbing & beam search integer 1 64 1 6

beam width beam search integer 2 5 1 2

parent population size evolutionary programming integer 1 20 1 5

brood size evolutionary programming floating point 1.0 8.5 0.5 4

overlapping population evolutionary programming boolean N/A N/A N/A 1

initial step size evolutionary programming floating point 1.0 4.5 0.5 3

adaptive step factor evolutionary programming floating point 1.0 4.5 0.5 3

initial probability simulated annealing floating point 0.1 0.7 0.04 4

final probability simulated annealing floating point 0.00001 0.00016 0.00001 4

TABLE III. COMPOSITION OF SERVICE SELECTION SEARCH BINARY STRING.

Parameter Algorithm Type Min Max Step # bits

search budget, NZ all integer 100 2500 25 7

search algorithm all enum N/A N/A N/A 2

hill-climbing mode hill-climbing enum N/A N/A N/A 1

beam search mode beam search enum N/A N/A N/A 2

neighborhood filtering hill-climbing & beam search boolean N/A N/A N/A 1

of SSSes in filter hill-climbing & beam search integer 1 13 1 4

of components in filter hill-climbing & beam search integer 1 64 1 6

beam width beam search integer 2 5 1 2

parent population size evolutionary programming integer 1 20 1 5

brood size evolutionary programming floating point 1.0 8.5 0.5 4

overlapping population evolutionary programming boolean N/A N/A N/A 1

initial step size evolutionary programming floating point 1.0 4.5 0.5 3

adaptive step factor evolutionary programming floating point 1.0 4.5 0.5 3

initial probability simulated annealing floating point 0.1 0.7 0.04 4

final probability simulated annealing floating point 0.00001 0.00016 0.00001 4

After the bit-flip mutation is complete, the genetic algo-
rithm checks to make sure that the parameters of produced
heuristic search algorithms are within acceptable boundaries.
The crossover operation and bit-flip mutation are repeated as
necessary to produce a valid offspring.

Each produced offspring is a pair of heuristic search
algorithms for solving nested SASSY optimization problems.
Each offspring is then asked to search the assigned finalist
sample problem. This search is repeated n times, and the score
of the heuristic pair, UHA,HZ

, is computed as follows:

UHA,HZ
=

1

n

n∑

i=1

Ug(Ai, Zi) (13)

where Ai and Zi are respectively the best architecture and
service selection found in optimization search instance i. In
the work presented here, n has been set to 50.

The results for a given offspring are stored in a hash table.
If another individual is encountered matching that offspring
later in the meta-optimization search, the evaluation of the
heuristic pair can be skipped, and UHA,HZ

can be recovered
from the hash table.

The genetic algorithm continues producing new generations
until the heuristic pair evaluation limit is reached (set to
1,000 evaluations in this work). This meta-optimization genetic
algorithm was applied to each of the twelve finalist sample
problems. The resulting heuristic pairs are shown in Table IV
and Table V.

From the results in Tables IV and V, evolutionary pro-
gramming is clearly the dominant heuristic search algorithm

for the service selection search. At the architecture search level,
a variety of local search algorithms were found to be optimal
on their respective problems. A common feature across all
12 meta-optimization runs are the large values for NZ . Only
problem L generated a heuristic pair with NZ set to less than
2,000.

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 200 400 600 800 1000

U
H

A
,H

Z

Number of Heuristic Pairs Generated

Best Heuristic Pair Found
GA Population Average

Figure 4. Heuristic pair performance on problem D with 95% CI error bars.

Figures 4 and 5 plot the progress of the meta-optimization
search on the finalist sample problems D and F respectively.
Due to differences in the environment, the scale of the plots’
y-axis differ substantially.

68Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

TABLE IV. RESULTING HEURISTIC PAIRS FOR FINALIST PROBLEMS A THROUGH F.

Parameter problem A problem B problem C problem D problem E problem F

arch. search budget, NA 19 19 19 19 19 20

arch. search alg. beam search hill-climbing hill-climbing beam search hill-climbing beam search

arch. search mode exceeds LL greedy opportunistic no LL req. greedy no LL req.

arch. # of filter SSSes 2 6 12 4 3 4

arch. # of filter comp. 2 24 4 5 1 1

arch. beam width 4 N/A N/A 4 N/A 5

arch. ini. prob. N/A N/A N/A N/A N/A N/A

arch. final prob. N/A N/A N/A N/A N/A N/A

serv. sel. search budget, NZ 2,475 2,475 2,475 2,475 2,475 2,275

serv. sel. search alg. evol. prog. evol. prog. evo. prog. evol. prog. evol. prog. evol. prog.

serv. sel. par. pop. size 2 1 1 4 1 4

serv. sel. off. pop. size 5 7 2 8 6 4

serv. sel. overlap pop. true true true true false true

serv. sel. ini. step size 4.5 2.5 3.0 4.5 2.5 4.5

serv. sel. adapt. step fact. 1.0 1.5 1.5 3.5 1.5 1.5

TABLE V. RESULTING HEURISTIC PAIRS FOR FINALIST PROBLEMS G THROUGH L.

Parameter problem G problem H problem I problem J problem K problem L

arch. search budget, NA 22 20 19 21 23 32

arch. search alg. hill-climbing sim. annealing hill-climbing hill-climbing hill-climbing hill-climbing

arch. search mode opportunistic N/A opportunistic greedy opportunistic opportunistic

arch. # of filter SSSes 11 N/A unused 3 12 11

arch. # of filter comp. 3 N/A unused 1 2 2

arch. beam width N/A N/A N/A N/A N/A N/A

arch. ini. prob. N/A 0.26 N/A N/A N/A N/A

arch. final prob. N/A 0.0008 N/A N/A N/A N/A

serv. sel. search budget, NZ 2,100 2,375 2,500 2,250 2,050 1,475

serv. sel. search alg. evol. prog. evol. prog. evo. prog. evol. prog. evol. prog. evol. prog.

serv. sel. par. pop. size 1 3 3 2 3 3

serv. sel. off. pop. size 4 18 22 6 12 15

serv. sel. overlap pop. true true true true true true

serv. sel. ini. step size 4.5 2.5 3.5 1.0 4.0 3.0

serv. sel. adapt. step fact. 1.0 1.0 2.0 1.0 1.5 1.0

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0 200 400 600 800 1000

U
H

A
,H

Z

Number of Heuristic Pairs Generated

Best Heuristic Pair Found
GA Population Average

Figure 5. Heuristic pair performance on problem F with 95% CI error bars.

Each of the finalist sample problems has a different y-
scale. To gauge the overall convergence of the meta-optimiza-
tion genetic algorithm, we normalize the search performance
against the best Ug found during the entire meta-optimization
search. A plot of the normalized convergence can be found in
Figure 6.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000

A
v
e
ra

g
e
 N

o
rm

a
liz

e
d
 U

H
A
,H

Z

Number of Heuristic Pairs Generated

Best Heuristic Pair Found
GA Population Average

Figure 6. Normalized heuristic pair performance across all problems with
95% CI error bars.

V. EXPERIMENTAL EVALUATION

After the meta-optimization genetic algorithm produced
optimized heuristic algorithm pairs for each of the twelve
finalist problems, we tested these twelve heuristic pairs in
simulation (see Tables IV and V). This simulation software
was originally developed for the experimental evaluation in [3].
As a control, we also tested the beam search/evolutionary
programming BS-EP heuristic search algorithm pair from [3]
(see Table VI).

69Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

TABLE VI. CONTROL HEURISTIC PAIR PARAMETER SETTINGS.

Parameter control

arch. search budget, NA 63

arch. search alg. beam search

arch. search mode no LL req.

arch. # of filter SSSes 5

arch. # of filter comp. 2

arch. beam width 2

arch. ini. prob. N/A

arch. final prob. N/A

serv. sel. search budget, NZ 756

serv. sel. search alg. evol. prog.

serv. sel. par. pop. size 3

serv. sel. off. pop. size 19

serv. sel. overlap pop. true

serv. sel. ini. step size 3.5

serv. sel. adapt. step fact. 4.5

A. Simulation Parameters

Each simulation commences with the SOA application in
a near-optimal architecture that was found in a lengthy, offline
heuristic search. The simulation time is divided into discrete
intervals called controller intervals of duration ǫ time units.

The following actions take place at the end of each con-
troller interval:

• SPs that are active and up will be scheduled to go
down tfail time units after they become operational.
The time tfail is drawn from an exponential distribu-
tion with an average equal to the SP’s Mean Time
To Failure (MTTF). This exponentially distributed
number is rounded up to the closest multiple of ǫ.
Thus, at the end of each controller interval, if any SP
is scheduled to go down at that time, the SP is flagged
as down, and the software system’s Ug is computed
and recorded.

• For each SP that failed at the end of a controller
interval, an exponentially distributed number trecover
with average equal to the SP’s Mean Time To Repair
(MTTR) is selected. The value of trecover is rounded
up to the closest multiple of ǫ. Thus, at the end of a
controller interval, if any SP is scheduled to recover,
the SP is flagged as operational again. The autonomic
controller conducts a re-architecting search to see if
the new SP can be used to attain a higher Ug .

• Compute the Ug . If it falls below a certain set thresh-
old, initiate rearchitecting.

Separate Mersenne Twister random number streams were
used for the generation of simulation events and for heuristic
search calculations. The duration of each simulation was 500
ǫ. We conducted 100 simulations for the control heuristic pair
and for each of the twelve heuristic algorithm pairs generated
by the meta-optimization process.

B. Experimental Results

Each autonomic controller encountered approximately 400
re-architecting events over the course of a single simulation
run. Figure 7 shows the distribution of average global utilities
in each set of 100 experiments produced by the twelve heuristic
pairs and the control. The boxes in this figure show the three
population quartiles, while the whiskers show the maximum
and minimum.

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

problem
 A

problem
 B

problem
 C

problem
 D

problem
 E

problem
 F

problem
 G

problem
 H

problem
 I

problem
 J

problem
 K

problem
 L

control

A
v
e
ra

g
e
 U

g

Figure 7. Box plot showing the quartiles of the simulation runs.

The average Ug maintained over the 100 simulations with
95% confidence intervals is presented in Table VII. A visual
test of the confidence intervals shows that the heuristic pair
generated for problem L performed better than each of the
other heuristic pairs except for that generated for problem K.
Next, we assess the statistical significance of the results.

TABLE VII. 95% CONFIDENCE INTERVALS FOR AVERAGE GLOBAL
UTILITY.

Heuristic Pair lower bound mean upper bound

control 0.8520 0.8527 0.8535

problem A 0.8501 0.8511 0.8522

problem B 0.8403 0.8413 0.8423

problem C 0.8459 0.8473 0.8488

problem D 0.8509 0.8519 0.8529

problem E 0.8436 0.8461 0.8485

problem F 0.8487 0.8499 0.8511

problem G 0.8496 0.8507 0.8518

problem H 0.8376 0.8390 0.8404

problem I 0.8376 0.8389 0.8402

problem J 0.8403 0.8431 0.8459

problem K 0.8533 0.8541 0.8550

problem L 0.8537 0.8544 0.8552

We applied the Tukey-Kramer procedure to the twelve
heuristic pairs and to the control heuristic pair with α = 0.05
and determined the following:

• The heuristic pair generated by the meta-opti-
mization for problem L (opportunistic hill-climb-
ing/evolutionary programming) was superior to nine
of the twelve heuristic pairs generated for the other
problems. Results comparing its performance to those
generated for problems A, D, K, and the control were
inconclusive.

• The heuristic pair generated for problem K was supe-
rior to eight of the twelve heuristic pairs generated for
the other problems. Results comparing to A, D, G, L,
and the control were inconclusive.

• The control pair was superior to half of the generated
heuristic pairs; the results comparing to A, D, F, G,
K, and L were inconclusive.

To obtain more conclusive results, we reduced the variance
caused by the inferior performance of certain heuristic pairs

70Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

by repeating the test with the top performing heuristic pairs,
thereby increasing the granularity of the Tukey-Kramer proce-
dure. When considering just the heuristic pairs generated for
problems A, D, K, L, and the control, we found the following:

• The heuristic pair generated for problem L was supe-
rior to those generated for problems A and D.

• The heuristic pair generated for problem K was supe-
rior to that generated for problem D.

We further reduced the variance to permit comparisons
among the top three heuristic pairs: for problem K, for problem
L, and the control. We found the following:

• The heuristic pair generated by the meta-optimization
for problem L was superior to the control.

• The heuristic pair generated by the meta-optimization
for problem K was also superior to the control.

VI. RELATED WORK

Early work in meta-optimization of heuristic search al-
gorithms was performed by Grefenstette [13]. In this work,
genetic algorithms (GAs) were used to optimize other GAs.
The motivation for this work was similar to ours: a reduction
in the human effort required to select appropriate parame-
ters controlling the GA’s behavior. Similar to Grefenstette,
Keane [14] focuses on meta-optimization of GAs used in
multi-peak engineering problems. The GAs are meta-optimized
by both GAs and simulated annealing. A more sophisticated
approach that focuses on improving GA performance on mixed
integer optimization is presented by Bäck in [15]. In this
work, the meta-optimization algorithm is a hybrid of evolution
strategies and a GA.

In [16], Meissner et al. develop a particle swarm optimiza-
tion (PSO) meta-optimization technique using a super-particle
swarm that manages the parameters of sub-particle swarms
with a focus on optimizing neural networks. In his dissertation
thesis [17], Pedersen presented a meta-optimization that he
applied to PSO and Differential Evolution. His meta-optimizer
found simpler algorithms were often more effective.

In [18], Stephenson et al. employ an evolutionary algorithm
for meta-optimizing compiler heuristics. Similar to our work
here, reducing human effort in tuning heuristics was a primary
motivation for this work.

A literature review of software architecture optimization
that provides a useful roadmap for comparing features and
categorizing work in this field can be found in [19].

In [20], Calinescu et al. present QoSMOS, a system for on-
line performance management of SOA systems. Like SASSY,
this system employs utility functions to combine multiple QoS
objectives and optimizes the selection of SPs. Unlike SASSY
QoSMOS considers the SPs to be white boxes, and it can adjust
the configuration parameters and ersource allocations for those
white box SPs. Also, QosMOS does not employ architectural
patterns for improving QoS. Finally, QoSMOS uses exhaustive
search, a technique that cannot be used in near real-time at the
scale presented in our paper.

Cardellini et al. devise a framework, MOSES, for op-
timizing SOA systems in [4]. Similar to SASSY, MOSES
uses SP selection and architectural patterns for improving
the QoS of a SOA service or application. MOSES adapts
the optimization problem such that it can be solved through
linear programming (LP) techniques. LP techniques operate

well on convex objective functions but are substantially less
effective on concave objective functions with multiple optima.
The optimization techniques presented in our paper are more
effective on concave global utility functions with multiple
optima.

Other researchers have investigated using multi-objective
optimization techniques to reduce effort and increase the
quality of software architecture designs. When the optimiza-
tion search completes, these systems present human decision
makers with a set of Pareto optimal architecture candidates.
PerOpteryx, introduced by Koziolek et al. in [21], employs
architectural tactics in a multi-objective evolutionary algorithm
to expedite the multi-objective search process; later work
extends this approach in [22]. Martens et al. present a similar
system in [23] that starts quickly by using LP on a simplified
version of the problem to prepare a starting population for a
multi-objective evolutionary algorithm.

VII. CONCLUSION

The meta-optimization was successful. Some of the re-
sulting heuristic pairs exceeded even the performance of the
control, which had previously been shown to be optimal on a
different SASSY application [3], and which performed well in
comparison to many of the meta-optimized heuristic pairs in
these experiments.

Of the twelve heuristic pairs generated by the meta-
optimization, the heuristic pairs produced for problems K
and L possessed the largest architecture search budgets (23
and 32 respectively), while the control heuristic pair had an
architecture search budget of 63. These settings are likely
due to the more challenging nature of problems K and L as
compared to A through J. Both the K and L heuristic pairs
use opportunistic hill-climbing for the architecture search algo-
rithm; this leverages the architecture search budget by ensuring
the search can visit a number of architecture neighborhoods.

For this SASSY application, having an effective archi-
tecture search is key to succeeding on the more challenging
optimization problems. Those heuristic pairs produced for less
challenging problems de-emphasized the architecture search in
favor of the service selection search. This provides marginal
benefits when solving the easiest problems, but is a significant
liability on more challenging problems and can lead to lower
global utility values over time.

The relatively wide range in the performance of meta-
optimized heuristic pairs highlights the importance of running
the meta-optimization on a diverse set of problems, including
outliers (both problems K and L were outliers). When per-
forming future meta-optimizations in SASSY, we will consider
using a larger set of finalist sample problems to ensure the
presence of challenging problems.

Using meta-optimized heuristic pairs on SASSY provides
cumulative global utility benefits over time. Furthermore, the
generation of the meta-optimized heuristic pairs was auto-
mated and required minimal human administration. The meta-
optimization process lowered costs by reducing the human
effort required to find effective heuristic pairs. Thus, we have
achieved better performance at reduced cost.

In future work, the meta-optimization process could be
fully automated. This would allow online SASSY meta-
controllers in [3] to use the meta-optimization framework

71Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

presented here. A logical question when considering meta-
optimization is: ”What or who will manage the meta-optimi-
zation process?” Like the autonomic controller it manages, the
meta-controller contains a number of tunable parameters. Has
the introduction of the meta-optimization process moved the
management overhead to a new component?

Although setting up a meta-optimization process requires
some initial effort from human administrators, there is an argu-
ment that this effort will be minimal compared to managing the
autonomic controller itself. The autonomic controller is closer
to the dynamic environment of the managed system than the
meta-optimization process. This dynamism can cause problems
for an autonomic controller.

However, the immediate environment of the meta-optimi-
zation process is more static. The meta-optimization’s envi-
ronment changes only when large changes are made to the
autonomic controller (e.g., the introduction of new heuristic
search algorithms or a significant evolution of the managed
SOA application). Even when such large changes occur, a
properly constructed and tested meta-optimization process
should be able to weather the change with minimal human
intervention. Thus, the meta-optimization process represents a
significant step towards developing fully autonomic systems.

Finally, we believe the overall meta-optimization approach
presented here could be adopted in other self-adaptive, self-
optimizing autonomic systems.

REFERENCES

[1] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
IEEE Computer, vol. 36, no. 1, Jan. 2003, pp. 41–50.

[2] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A hybrid
reinforcement learning approach to autonomic resource allocation,” in
Proc. 3rd IEEE International Conference on Autonomic Computing
(ICAC ’06), Dublin, Ireland, Jun. 2006, pp. 65–73.

[3] J. M. Ewing and D. A. Menascé, “A meta-controller method for im-
proving run-time self-architecting in soa systems,” in Proceedings of the
5th ACM/SPEC international conference on Performance engineering.
ACM, 2014, pp. 173–184.

[4] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. Lo Presti, and
R. Mirandola, “Moses: A framework for QoS driven runtime adaptation
of service-oriented systems,” Software Engineering, IEEE Transactions
on, vol. 38, no. 5, 2012, pp. 1138–1159.

[5] M. C. Huebscher and J. A. McCann, “A survey of autonomic
computing–degrees, models, and applications,” ACM Computing Sur-
veys, vol. 40, no. 3, Aug. 2008, pp. 1–28.

[6] D. A. Menascé, J. M. Ewing, H. Gomaa, S. Malek, and J. P. Sousa,
“A framework for utility-based service oriented design in SASSY,” in
Workshop on Software and Performance, San Jose, CA, Jan. 2010, pp.
27–36.

[7] D. A. Menascé, H. Gomaa, S. Malek, and J. Sousa, “Sassy: A frame-
work for self-architecting service-oriented systems,” IEEE Software,
vol. 28, no. 6, Nov. 2011, pp. 78–85.

[8] D. A. Menascé, J. P. Sousa, S. Malek, and H. Gomaa, “QoS architectural
patterns for self-architecting software systems,” in Proc. 7th Interna-
tional Conference on Autonomic Computing (ICAC ’10), Washington,
DC, Jun. 2010, pp. 195–204.

[9] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, and D. A. Menascé, “Soft-
ware adaptation patterns for service-oriented architectures,” in Proc.
2010 ACM Symposium on Applied Computing, Sierre, Switzerland,
Mar. 2010, pp. 462–469.

[10] K. DeJong, Evolutionary Computation. Cambridge, MA: MIT, 2002.

[11] V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, and G. D. Smith,
Eds., Modern Heuristic Search Methods. Hoboken, NJ: Wiley, 1996.

[12] J. Rowe, D. Whitley, L. Barbulescu, and J.-P. Watson, “Properties of
gray and binary representations,” Evolutionary Computation, vol. 12,
no. 1, 2004, pp. 47–76.

[13] J. J. Grefenstette, “Optimization of control parameters for genetic
algorithms,” Systems, Man and Cybernetics, IEEE Transactions on,
vol. 16, no. 1, 1986, pp. 122–128.

[14] A. J. Keane, “Genetic algorithm optimization of multi-peak problems:
studies in convergence and robustness,” Artificial Intelligence in Engi-
neering, vol. 9, no. 2, 1995, pp. 75–83.

[15] T. Bäck, “Parallel optimization of evolutionary algorithms,” in Parallel
Problem Solving from NaturePPSN III. Springer, 1994, pp. 418–427.

[16] M. Meissner, M. Schmuker, and G. Schneider, “Optimized particle
swarm optimization (opso) and its application to artificial neural net-
work training,” BMC bioinformatics, vol. 7, no. 1, 2006, p. 125.

[17] M. E. H. Pedersen, “Tuning & simplifying heuristical optimization,”
Ph.D. dissertation, University of Southampton, 2010.

[18] M. Stephenson, S. Amarasinghe, M. Martin, and U. O’Reilly, “Meta
optimization: Improving compiler heuristics with machine learning,”
SIGPLAN Not., vol. 38, no. 5, 2003, pp. 77–90.

[19] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya,
“Software architecture optimization methods: A systematic literature
review,” Software Engineering, IEEE Transactions on, vol. 39, no. 5,
2013, pp. 658–683.

[20] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli, “Dynamic QoS management and optimization in service-based
systems,” Software Engineering, IEEE Transactions on, vol. 37, no. 3,
2011, pp. 387–409.

[21] A. Koziolek, H. Koziolek, and R. Reussner, “Peropteryx: automated
application of tactics in multi-objective software architecture optimiza-
tion,” in QoSA-ISARCS ’11. New York, NY, USA: ACM, 2011, pp.
33–42.

[22] A. Koziolek, D. Ardagna, and R. Mirandola, “Hybrid multi-attribute qos
optimization in component based software systems,” Journal of Systems
and Software, vol. 86, no. 10, 2013, pp. 2542–2558.

[23] A. Martens, D. Ardagna, H. Koziolek, R. Mirandola, and R. Reussner,
“A hybrid approach for multi-attribute QoS optimisation in component
based software systems,” in Research into Practice–Reality and Gaps,
ser. LNCS, G. Heineman, J. Kofron, and F. Plasil, Eds. Springer Berlin
Heidelberg, 2010, vol. 6093, pp. 84–101.

72Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

