
CObAPAS: Combinatorial Optimization based Approach for Autonomic Systems

Pedro F. do Prado, Luis Nakamura, Marcos Santana, Regina Santana

Institute of Mathematics and Computer Science - University of São Paulo
São Carlos, SP, Brazil

Email: {pfprado,nakamura,mjs,rcs}@icmc.usp.br

Omar A. C. Cortes

Federal Institute of Maranhão
São Luis, MA, Brazil

Email: omar@ifma.edu.br

Abstract—This paper proposes a new approach to develop auto-
nomic systems or transform traditional systems into autonomic
ones. This approach is based on defining the autonomic module of
the system as a combinatorial optimization problem. After that, a
wide range of different techniques can be used to implement the
autonomic module of the system. This study addresses two major
problems: autonomic system specification and autonomic system
evaluation. The former helps the developer to understand the
system goals, constraints and scope, the latter, helps the developer
quantitatively evaluate the efficiency of different techniques of
implementing the autonomic module of the system. A case study
demonstrates the viability and effectiveness of the proposed
approach.

Keywords–Autonomic systems; combinatorial optimization based
approach for autonomic systems; QoS-aware service selection;
combinatorial optimization problems; performance evaluation.

I. INTRODUCTION

The concept of self-adaptation is presented in many re-
search areas like: biology, chemistry, logistics, etc.. Self-
adaptivity in computer-based systems is relatively newer. Some
of the first references to self-adaptive computer systems are
from the late 1990s. The term self-adaptation covers multiple
aspects of how a system reacts: Self-Awareness, Context-
Awareness, Self-Configuring, Self-Optimizing, Self-Healing
and Self-Protecting. There are two approaches for creating
self-adaptive systems: centralized and decentralized. In the
centralized one, the analysis and planning are concentrated
in one single entity. Furthermore, this form of self-adaptation
has the advantage of cohesiveness and low communication
overhead if compared with a decentralized mechanism [1].
An Autonomic System (AS) is an example of centralized
self-adaptive system. On the other hand, decentralized self-
adaptation, distributes the analysis, planning, or the feedback
mechanism among different parts of the self-adaptive system.
Autonomic computing (AC) is the computing paradigm be-
hind an AS. The general idea is to mimic the autonomous
nervous system of humans, which concentrate itself on higher-
level objectives, instead of more specific and detailed aspects.
For example, a person can concentrate on writing a letter
instead of actively controlling the heartbeat, blood pressure,
level of insulin on the blood and so on.

AC constitutes an important computing paradigm to au-
tomate complex systems management and reduce the need
of human intervention. It can be applied to modern and
widely used commercial solutions. One of the most used Cloud
Computing services provider, the Amazon Elastic Computing
Cloud (EC2), provides some tools for self-managing the users
systems, by means of increasing or decreasing the number of
Virtual Machines (VMs), according to the users demand and

previous defined policies. Companies like: Netflix and the Jet
Propulsion Laboratory/NASA uses EC2 solution [2].

In [3] Affonso et al. proposed a reference architecture
for self-adaptive software. They present an adapted control
loop based on Monitor, Analyze, Plan and Execute, based
on Knowledge (MAPE-K) and define the modules that must
be implemented in order to achieve this reference model.
However, they are focusing on how to solve a problem (how
to implement an autonomic control loop) and not on how to
define the problem that must be solved by this autonomic
control loop. The authors in [4] proposed a benchmarking
framework for distributed autonomic systems. They also do not
focus on how to define the problem that the autonomic control
loop must solve. In other cases, frameworks were proposed
to help the development of autonomic systems. Although,
these frameworks are useful, they usually focus on some
specific paradigm or architecture, i.e., Service-Oriented Ar-
chitecture (SOA), sensor networks or cloud computing [5][6].
Other related works focused on creating detailed and domain-
specific performance models of systems, using queuing net-
work models or Petri nets that can be used by an AM to
implement aspects like self-configuring and self-optimization.
These models are mostly domain-specific, complex to create
and validate, and cannot be easily adapted in cases of changes
in the system [7][8]. Further, it is important to point out that
some related works give qualitative and general information
about the performance of different techniques to implement an
AM, like Artificial Neural Networks (ANN), linear feedback
control, performance model based adaptive control, decision
tree and so on [9][10]. Finally, most of the related works
deal with one or two aspects of AC, like self-healing and/or
self-configuring [5][7]. In this paper, we focus on developing
an approach to define the problem that must be solved by
an autonomic system. Firstly, we present the steps required
to define the problem that an autonomic system must solve.
Secondly, we present a simple case study to demonstrate the
viability of the proposed approach. Finally, we provide some
ideas to future works that can improve the proposed approach
and other possible applications.

We chose the domain of QoS-aware Service Selection
(QSS) to develop our case study. This domain is suitable for
AC because its environment is highly dynamic and must be
able to deal with changes in workload, QoS preferences, fault
tolerance and so on. We transformed a traditional QSS system
into a self-configuring and self-optimizing one to demonstrate
the viability of CObAPAS.

This paper is organized as follows: in Section II the
concepts related to AC and QoS-aware service selection are

51Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

presented. Section III contains the approach to develop AS.
Section IV presents a case study to validate the proposed
approach. Finally, in Section V are presented the conclusions
and future work.

II. AUTONOMIC COMPUTING AND QOS-AWARE SERVICE
SELECTION

A. Autonomic computing
The automation of computational resources management

is not a new problem for computer scientists. For decades,
software components have evolved to deal with the growing
complexity of performing the control of systems, sharing
resources and execution of operational management [11]. Au-
tonomic computing is a computational paradigm based on
biological systems that aim to deal with the management of
complex systems, offering the possibility of self-management
minimizing the need for human intervention [12]. Autonomic
computing is based on four principal attributes, namely [11]:

• Self-configuring: dynamically configure itself, a sys-
tem can adapt (with minimal intervention) to the
deployment of new components or changes in the
system.

• Self-healing: detect problematic operations and then
initiate corrective actions without disrupting system
applications.

• Self-optimizing: efficiently maximize resource alloca-
tion and usage to meet end users’ needs with minimal
intervention. It addresses the complexity of managing
system performance.

• Self-protection: detect hostile or intrusive behavior
as it occurs and take autonomous actions to make
itself less vulnerable to unauthorized access and use,
viruses, denial-of-services attack, and general failures.

Autonomic systems are composed of two parts: Autonomic
Element(s) (AE) and Autonomic Manager (AM). An AE
can be divided into: hardware (computers, printers, routers,
etc.) and software (web service, application container, virtual
machine, etc.). The communication between AM and AEs
occurs using Sensors and Effectors. Sensors collect data about
the AEs. On the other hand, Effectors have the function of
performing the operations sent by the AM to the AEs. The AM
implements a control loop based on four activities: Monitor,
Analyze, Plan and Execute, based on Knowledge (MAPE-K).

Monitor: monitors and collects the relevant details of
interest from the managed element. Analyze: analyzes infor-
mation provided by the monitor activity to determine if it is
necessary to take some action. If some action is required,
it is passed to the plan activity. Plan: creates a plan (or a
sequence of actions) by structuring actions to achieve system
goals. Execute: performs the actual actions, hence changing
the behavior of the managed element. The Knowledge Base
contains information about the system, that must be monitored,
the different available plans and so on [13].

B. QoS-aware service selection
Quality of Service (QoS) is a set of non-functional prop-

erties of Web services. Some of well known QoS attributes
are: cost, response time, availability, security, and so on. QoS-
aware web services composition (QWSC) is defined as an

integration of different services aiming to attend complex
business needs. For example, instead of manually accessing
a service for buying an airplane ticket, and after that another
service to reserve a hotel room, the user can access a composed
service that performs both tasks. QWSC is divided into two
parts: creation of the composition flow and QoS-aware service
selection. In the former, the developer of the composed web
service can use some business process modeling language, like
Web Services Business Process and Execution Language (WS-
BPEL). Using WS-BPEL the developer will define the order of
execution of the services, the exchange of data between them
and if some services will execute in sequential or parallel order
[14]. Figure 1 shows the division between these activities.

Figure 1. Different aspects of QoS-aware Web Services Composition.

QoS-aware service selection is based on QoS attributes
of services. It means that based on the QoS attributes the
algorithm or other technique of service selection will decide
which service will be included on the composite service. There
are a wide range of different techniques to store and retrieve
information about QoS attributes of services. They can be
stored and retrieved in a relational database application [15] or
using some semantic parallel approach [16]. QoS-aware ser-
vice selection is a combinatorial optimization problem and is
NP-Hard, thereby, many related works spent efforts developing
and testing algorithms to solve it.

III. DEVELOPMENT OF AUTONOMIC SYSTEMS BASED ON
COMBINATORIAL OPTIMIZATION PROBLEMS

A. Motivation
This section will show our proposed approach to develop

new autonomic systems or transform traditional systems into
autonomic ones. The main idea of this approach is to provide
a clear and easy form that can be used in a wide range
of systems. The proposed approach is named CObAPAS:
Combinatorial Optimization based Approach for Autonomic
Systems. We define the problem that the AM must solve
as a combinatorial optimization problem. CObAPAS has the
following advantages:

• It is independent of architecture and/or technologies:
it can be used from a simple web server to complex
cloud environments.

• It can be used to create new autonomic systems or
transform traditional systems into autonomic ones.

• It provides a formal and clear definition of the problem
that must be solved.

• It allows to evaluate different solutions proposed for
the stated problem quantitavely.

• It can address one or more aspects of AC, it can
be constrained or unconstrained and it allows even

52Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

multiple constraints and/or multiple objectives to be
minimized or maximized.

The required steps of CObAPAS are: system definition,
search-space definition, objective function definition and
developing solutions, test scenarios and evaluation. They
will be shown in the next subsections. In Section IV, we present
a case study to help illustrate our approach.

B. System definition
First, we must decide which system we aim to create

or modify. For example, we can develop a web server from
scratch or transform a traditional web server into an autonomic
web server. The system could be composed of one single
entity, i.e., a web server or can be composed of two or more
entities, i.e., a system composed of a web server and a database
application. In fact, a system could be very simple or composed
of many entities that interacts with each other in different
manners. Once we have defined the system, we can continue
with the next steps.

C. Search-space definition
After choosing the system, it is necessary to define the

search-space of our problem. The search-space is the set of
attributes that should be modified to optimize the objective
function that will be created on the next step. The search-
space size is the number of all possible combinations of all
defined attributes. For example, if we have ten attributes and
each one can assume two values, the search-space size will be
210. It varies according to the system, and the only restriction
is that they all must be discrete. Since we are dealing with
combinatorial (or discrete) optimization problems, all attributes
must be discrete. We have to define which attributes we want
to consider in our system; in a system composed of a web
server and a database application for example, there are some
parameters that can be dynamically modified in execution time.
Therefore, we can define that some of these parameters are
our search-space and include them into our problem definition.
Examples of such parameters are shows in Table I.

TABLE I. LIST OF PARAMETERS.

Web Server (IIS 5.0) Database Server (SQL Server 7.0)
HTTP Keep Alive Cursor Threshold

Connection Timeout Locks
MemCacheSize Priority Boost

MaxPoolThreads Max Server Memory

D. Objective function definition
Now, we must decide which aspect(s) of AC we want to

focus on, and other characteristics, such as if the problem
will be single-objective or multi-objective, if it will be con-
strainted or unconstrainted and if the objective function must
be minimized or maximized. Once we are dealing with the
problem definition, there are no technological or architectural
restrictions.

In [17], the authors present a wide range of combina-
torial optimization problems, how to define them and some
algorithms to solve them. In fact, this study did not focus
on solutions for AS, but in the aspect of the problem for-
malization. In our point of view, any aspect of AC can be
defined as an optimization problem. For example, suppose that

it is required to develop a QoS-aware service selector (QSS)
with Self-Healing capabilities. If some service is unavailable
at execution time, the QSS should select an equal or similar
service and execute it, instead of that one which is unavailable.
We want that in all occurrences of unavailability, the QSS
select other service as fast as possible. So, it can be defined
as the minimization of average recovery time (time to select a
new service and execute it) of the QSS.

Doing so, we can develop two or more solutions for the
problem and quantitatively compare them. Therefore, after we
have defined some test cases, instead of qualitative and generic
affirmations, we can quantitatively compare the proposed solu-
tions. In fact, this approach can be used to define the problem
according to the AS developer’s needs.

E. Developing the solution(s), creating test scenarios and
evaluating the solutions

After we have defined the problem, we need to develop
solutions for it. It is possible to use from simple static policies
to heuristic algorithms or even complex and detailed queuing
network models. Since the problem is formally defined, if
we have two or more solutions, they can be quantitatively
compared.

In order to achive an effective and a properly evaluation
of the proposed solutions, it is mandatory to define some
experiments which reflect possible real scenarios that the AS
will face with. The authors in [18] explains in many details
how to define a set of experiments, workloads, how to use
statistical tools and so on.

After all these steps, the AS system is formally defined,
with its solutions quantitatively compared. If more solutions
arise, they can also be compared with the old ones. If some-
thing change after some period (for example, a new constraint
must be added to the objective function), the objective function
must be updated and the solutions must be re-evaluated.

IV. SELF-CONFIGURING AND SELF-OPTIMIZING
QOS-AWARE SERVICE SELECTOR: A CASE STUDY

A. Motivation
Developing large-scale distributed systems presents the

challenge of providing a way for software to adapt to changes
in a computational environment. In response, the system must
be able to handle all changes in the workload, failures, changes
in QoS preferences, and so forth [19]. Furthermore, the need
of developing systems that are capable of self-adapting is
becoming greater [20].

The context of QoS-aware service selection is highly
dynamic and susceptive to changes. For that reason, it is
recommend that the system responsible for the service se-
lection should be autonomic, instead of manually controlled
by humans [21][22]. For example, if a service provider is
overloaded, the average response time of its services can be
unsatisfactory, so it should not be selected until its average
response time returns to an acceptable level.

B. Problem definition
This case study will be as simple as possible, with the

objective of showing how following the steps mentioned in
Section III can lead to a well-defined combinatorial optimiza-
tion problem, which helps to change a traditional system into

53Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

an autonomic one. The selected system is a QoS-aware web
service selector, proposed by the authors in [15]. Five different
algorithms were implemented and a performance evaluation
was made. The QoS attributes considered were: availability,
cost, response time, reputation and confidentiality.

Considering that each Web Service has its own QoS
attributes, it is necessary to use aggregate functions for com-
puting the QoS of the composition plan as a whole [15]. For
example, Table II, described in [15], shows an example of
aggregation of these attributes:

TABLE II. QUALITY OF SERVICE ATTRIBUTES.

Availability
∏i=n

i=1
availability(WSi)

Cost
∑i=n

i=1
cost(WSi)

Response Time
∑i=n

i=1
responseTime(WSi)

Reputation
∑i=n

i=1
reputation(WSi) ∗ 1/n

Confidentiality
∑i=n

i=1
confidentiality(WSi) ∗ 1/n

The Web Services composition plan could be described as
a sequence of tasks (abstract Web Services) with an initial
and a final task. For any abstract WS, it could have some
candidate services (concrete Web Services) with same or
similar functionality but different QoS attributes. Thus, there
are various composition plans for each execution path of
composite service. For example, if there is one execution path,
with 10 abstract WS and 15 (concrete Web Services) per
abstract Web Service, then the number of composition plans
should be about 1510 [15]. Table II presents the aggregate
functions of QoS attributes considered in this paper. However,
it is also necessary a form to assess the QoS of the composition
as a whole, taking into account the QoS attributes defined. The
function to be maximized in the experiments is shown in (1),
considering A (Availability), C (Cost), RT (Response Time),
R (Reputation) and Con (Confidentiality).

F (x) = A+ C +RT +R+ Con (1)

Given that the QoS attributes were normalized in a form
that 0 is the worst result and 1 is the best result possible, simply
add up all the attributes of QoS, regardless if they have to be
either minimized or maximized. The Equation 2 and Equation
3, presented in [23], represents respectively, the equation used
for attributes that must be minimized and the equation used
for the attributes that must be maximized. Then, for each QoS
attribute, the aggregated QoS is calculated using the formulas
presented in Table II. Thereafter, the composition aggregated
QoS is computed using the formula shown in (2). Finally, this
number is normalized between 0 and 1 and called Normalized
Composition Aggregated QoS (NCAQ).

By doing that, we already accomplished step one and
defined the system. The step two is to define the search-space.
In this case study, only one attribute will be considered: static
policy of the system. Static policies can be any fixed rule or
algorithm that is used to implement the AM of the system.
For example, a static policy can define that an autonomic web
server must decline any request if its capacity is above 90%.
The static policies are two algorithms developed in [15] and
they will be explained in the subsection named Implemented
algorithms.

In step three, we must define the objective function. In
order to define that function,we must consider which aspect(s)
of the AC in the system we want to focus on. In our case study,
we chose self-configuring and self-optimizing. After that, we
must define if the objective function will be single-objective or
multi-objective. If we choose multi-objective, it is necessary to
guarantee that two or more objectives are in conflict, otherwise
the global solution would be a single point in the search
space. For instance, those functions can be something such
as minimize the average response time and maximize the
average QoS obtained. In our case study, we defined that the
function would be single-objective and we must minimize
the average response time of the attended requests. Finally,
we must define if the objective function would be constrained
or unconstrained, we chose unconstrained. So, the defined
objective function is shown in (2):

Minimize

∑i=n
i=1 ResponseT ime(Ri)

n
(2)

where n is the number of requests and ResponseT ime(Ri)
is the response time of request Ri.

A wide range of different techniques can be used: ANN,
heuristic algorithms, static policies, adaptive performance
models and so on. Since in this paper we do not focus on
the solutions, we chose static policies.

Step four is divided into three phases: developing the
solution(s), creating test scenarios and evaluating the solutions.
The solutions used in this experiments are described in sub-
section Implemented algorithms. The test scenario is described
in the subsection Experiment design and the evaluation of the
solutions is described in subsection Result analysis.

C. Implemented algorithms
Exhaustive Search (ES): This algorithm, also known as

“brute force”, analyses all points in the search space. In the
case of the QWSC problem, it compares the QoS obtained by
all possible combinations of composite plans and returns the
best one (with higher QoS). So, the obviously advantage of
this algorithm is that the global optima are always guaranteed.
The disadvantage is related to their computational complexity,
because it is exponential. For instance, suppose a composite
flow has ten abstract WS and one hundred concrete Web
Services per abstract Web Service, the number of points in the
search space will be 10010, which will probably take hundreds
of years to be calculated. Because of that, this algorithm could
be used only in small search-space sizes, because of the soft
real-time characteristic of the QWSC problem.

Greedy Heuristic (GH): This algorithm was an original
idea proposed by the authors in [14]. For each abstract WS in
the composite flow, the algorithm evaluates all concrete Web
Services available for that abstract WS and selects the one with
higher aggregate QoS. Due to all QoS attributes are normalized
between 0 and 1 (and the highest is always the best one), it
is necessary to calculate the sum of all QoS attributes of all
concrete Web Services. The one with higher aggregate QoS is
selected to its respective abstract WS. Suppose j is the current
WS to be evaluated, k is the number of QoS attributes and q
is the current QoS attribute, (3) represents the algorithm:

54Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

GH(WSj) =

i=k∑
i=1

qi (3)

The advantage of this algorithm is that it is very fast
because it is directly related to the number of total concrete
Web Services, i.e., suppose a composite flow with four abstract
Web Services and one hundred concrete Web Services per
abstract Web Service, the number of total concrete Web Ser-
vices will be four hundred. So, the algorithm should calculate
the aggregate QoS function of four hundred concrete Web
Services; instead of calculating 1004 composite plans like the
ES algorithm does. The disadvantage of this algorithm is that
it could not benefit from a larger deadline, because it is a
deterministic algorithm.

D. Experiment design
The main goal of this study is to evaluate different policies

to solve (2). Thus, the test environment is composed of three
machines: one representing a client, another a service provider
and a third one executes a MySQL server with the data about
the QoS attributes of the Web services. In the considered
environment, the three machines are in the same network and
are linked by a gigabit network switch. The machines used are
heterogeneous and their configuration is presented in Table III.

The experiments were conducted varying three factors in
order to verify the performance of the policies and different
number of abstract Web Services and concrete Web Services
per abstract Web Service. The parameterization of these factors
can be observed in Table IV. All experiments were executed
ten times and the average response time was colected and
presented in Figure 2.

TABLE III. ENVIRONMENT CONFIGURATION.

Machine CPU Clock Cache RAM
Service provider Intel R© CoreTM2 Quad 2.66 GHz 3 MB 8 GB
MySQL server Intel R© CoreTMi3 3.10 GHz 3 MB 4 GB

Client Intel R© CoreTM2 Quad 2.4 GHz 4 MB 4 GB

TABLE IV. LIST OF EXPERIMENTS.

Exp. number abstract WS concrete WS Algorithm
1 2 100 ES
2 2 200 ES
3 3 100 ES
4 3 200 ES
5 2 100 GH
6 2 200 GH
7 3 100 GH
8 3 200 GH

E. Result analysis
The objective of these experiments was to discover which

policy is most effective in optimizing the defined objective
function. For this purpose, eight experiments were conducted,
varying the number of abstract Web services and the number
of concrete Web services for each abstract Web service.

In all experiments, the GH policy was more effective, since
the average response time was considerably lower. In some
cases, the average response time of the ES policy was more
than two times the GH average response time. The lines inside

the columns represents the calculated confidence interval (CI)
(it was defined a 95% degree of confidence) and it is related
to the variability of the results. In all experiments, the CI was
lower in the GH policy. Considering that, GH is not just faster
but also more stable than ES.

Figure 2. Average response times of ES (blue) and GH (red) in milliseconds.

V. CONCLUSIONS AND FUTURE WORK

This paper presented CObAPAS, a new approach to de-
velop new autonomic systems or transform traditional systems
into autonomic ones. It was discussed the importance of
autonomic computing and the motivation for developing an
approach that helps the problem formalization of an AS and
has not architectural and/or technological limitations.

Compared to related works, our paper focuses on the
problem formalization instead of proposing solutions for spe-
cific autonomic systems. Our approach can fit into the AS
developer’s needs since all attributes in the defined search-
space are discrete.

A simple study case was presented, to validate our ap-
proach. In fact, we believe that many different AS can be
created using CObAPAS. The experiments showed that it
is possible to quantitatively compare different solutions for
the AM, after the objective function was defined. CObAPAS
provides two major benefits: guidelines for developing an AS
and a way to quantitatively measure the quality of different
solutions for the defined problem.

In future works, we plan to develop more sophisticated
case studies to validate our approach, with multiple aspects
of AC and/or multiple constraints. One example of case study
is an autonomic Virtual Machines (VMs) manager. We will
use the Famav tool, presented in [24]. Famav is a command
line tool for managing VMs. Compared to Virsh (another
command line tool) Famav presents a lower performance, but
its ease and practicality minimizes this difference. We also
plan to create another two approaches to develop new AS or
transforming traditional systems into autonomic ones: one for
AS systems based on continuous optimization problems and
one for systems based on both continuous and combinatorial
optimization problems. These new approaches also need some
case studies to be validated and to show some applications in
real-world problems.

55Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

ACKNOWLEDGMENT

The authors would like to thank the financial support of
CNPq (Conselho Nacional de Desenvolvimento Cientı́fico e
Tecnológico) and CAPES (Coordenação de Pessoal de Nı́vel
Superior).

REFERENCES
[1] V. Nallur and R. Bahsoon, “A decentralized self-adaptation mechanism

for service-based applications in the cloud,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, 2013, pp. 591 – 612.

[2] Amazon elastic compute cloud (amazon ec2). website. [Online].
Available: http://aws.amazon.com/ec2/ [retrieved: April, 2015]

[3] F. J. Affonso and E. Y. Nakagawa, “A reference architecture based on
reflection for self-adaptive software,” in VII Brazilian Symposium on
Software Components, Architectures and Reuse, 2013, pp. 129 – 138.

[4] A. Vilenica and W. Lamersdorf, “Benchmarking and evaluation support
for self-adaptive distributed systems,” in Sixth International Conference
on Complex, Intelligent, and Software Intensive Systems, 2012, pp. 20
– 27.

[5] W. Li, P. Zhang, and Z. Yang, “A framework for self-healing service
compositions in cloud computing environments,” in IEEE 19th Interna-
tional Conference on Web Services (ICWS), 2012, pp. 690 – 691.

[6] K. Zielinski, T. Szydlo, R. Szymacha, J. Kosinski, J. Kosinska, and
M. Jarzab, “Adaptive soa solution stack,” IEEE Transactions on Services
Computing, vol. 5, no. 2, 2012, pp. 149 – 163.

[7] D. Menascé, D. Barbará, and R. Dodge, “Preserving qos of e-commerce
sites through self-tuning: A performance model approach,” in ACM
Conference on e-commerce, 2001, pp. 1 – 11.

[8] J. M. Ewing and D. A. Menascé, “Business-oriented autonomic load
balancing for multitiered web sites,” in IEEE International Symposium
on Modeling, Analysis & Simulation of Computer and Telecommuni-
cation Systems, 2009, pp. 1 – 10.

[9] L. Shen, J. Wang, K. Wang, and H. Zhang, “The design of intelligent
security defensive software based on autonomic computing,” in Second
International Conference on Intelligent Computation Technology and
Automation, 2009, pp. 489 – 491.

[10] L. Checiu, B. Solomon, D. Ionescu, M. Litoui, and G. Iszlai, “Ob-
servability and controllability of autonomic computing systems for
composed web services,” in IEEE International Symposium on Applied
Computational Intelligence and Informatics, 2011, pp. 269 – 274.

[11] S. O. Schimidt, P. F. do Prado, and A. Silva, Fundamentals of Infor-
mations Systems - Fundamentos de Sistemas de Informação. Campus
Elsevier, 2014, ch. IT infrastructure and emerging technologies - In-
fraestrutura de TI e tecnologias emergentes, pp. 77 – 91.

[12] A. Khalid, M. Haye, M. Khan, and S. Shamail, “Survey of frameworks,
architectures and techniques in autonomic computing,” in Fifth Inter-
national Conference on Autonomous and Autonomic Systems (ICAS),
2009, pp. 220 – 225.

[13] P. T. Endo, M. S. Batista, G. E. Gonalves, M. Rodrigues, D. Sadok,
J. Kelner, A. Sefidcon, and F. Wuhib, “Self-organizing strategies for
resource management in cloud computing: state-of-the-art and chal-
lenges,” in verificar, 2013, pp. 13 – 18.

[14] P. F. do Prado, L. H. V. Nakamura, J. Estrella, M. Santana, and R. San-
tana, “Different approaches for qos-aware web services composition
focused on e-commerce systems,” in 13th Symposium on Computing
Systems, 2012, pp. 179 – 186.

[15] P. F. do Prado, L. Nakamura, J. Estrella, M. Santana, and R. Santana, “A
performance evaluation study for qos-aware web services composition
using heuristic algorithms,” in The Seventh International Conference on
Digital Society (ICDS), 2013, pp. 53 – 58.

[16] L. H. V. Nakamura, P. F. do Prado, R. Libardi, L. Nunes, J. Estrella,
R. Santana, M. Santana, and S. Reiff-Marganiec, “Fast selection ofweb
services with qos using a distributed parallel semantic approach,” in
IEEE International Conference on Web Services, 2014, pp. 680 – 681.

[17] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems, Springer,
Ed. Springer, 2004.

[18] R. Jain, The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and Mod-
eling, Wiley-Interscience, Ed. Wiley-Interscience, 1991.

[19] D. A. Menascé, H. Gomma, S. Malek, and J. P. Sousa, “Sassy: A
framework for self-architecting service-oriented systems,” The Journal
of IEEE Software, 2011, pp. 78 – 85.

[20] A. J. Ramirez, D. B. Knoester, B. H. C. Cheng, and P. K. Mckinley, “Ap-
plying genetic algorithms to decision making in autonomic computing
systems,” in ACM International Conference on Autonomic Computing,
2009, pp. 97 – 106.

[21] A. Charfi, T. Dinkelaker, and M. Mezini, “A plug-in architecture
for self-adaptative web service compositions,” in IEEE International
Conference on Web Services (ICWS), 2009, pp. 35 – 42.

[22] G. H. Alferez, V. Pelechano, R. Mazo, C. Salinesi, and D. Diaz,
“Dynamic adaptation of service compositions with variability models,”
The Journal of Systems and Software, vol. 91, 2013, pp. 1 – 24.

[23] P. F. do Prado, “Desenvolvimento e avaliação de algoritmos para
composição dinamica de web services baseada em qos,” Master’s thesis,
Universidade de São Paulo (USP), 2012.

[24] Y. Neves, L. H. V. Nakamura, P. F. do Prado, and M. Santana, “Famav:
Analise comparativa entre ferramentas de gerenciamento de maquinas
virtuais,” in Proceedings of XV Simposio em Sistemas Computacionais
(WSCAD-WIC)., 2014, pp. 1 – 6.

56Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

