
Resource Aware Workload Management for Autonomic Database Management

Systems

Wendy Powley, Patrick Martin, Natalie Gruska

School of Computing

Queen’s University

Kingston, Ontario, Canada

{wendy, martin, gruska}@cs.queensu.ca

 Paul Bird, David Kalmuk

IBM

Markham Lab

Markham, Ontario, Canada

{pbird, dckalmuk}@ca.ibm.com

Abstract -- Workloads running in a multi-purpose database

environment often compete for system resources causing

resource contention, which leads to poor performance.

Autonomic database systems will be required to recognize that

the system resources are not being utilized optimally and take

action to correct the situation. Workload management

techniques can be used to choose an appropriate mix of

concurrent work to reduce resource contention. We describe

a resource aware scheduling approach that predicts the

amount of CPU, I/O and sort heap memory that will be

required by a query and schedules each query to run only

when doing so is unlikely to overwhelm the resources. We

present experimental evidence that indicates that overall

system performance can be improved using this technique.

Keywords- workload management; database management

systems; autonomic computing; scheduling

I. INTRODUCTION

Database management systems (DBMSs) are an integral
part of virtually every computing system and with modern
day demands on such systems to handle diverse data types,
mixed workloads, and ever-changing demand, it is more
important than ever to ensure that these complex systems are
self-managing and self-optimizing. It is no longer feasible to
manually reconfigure a system to handle a new workload
type or a change in workload intensity. The system itself
must recognize changing conditions and adapt accordingly.
Maintaining a balance of work in the system is crucial to
ensure that all the demands and goals are met.

 The characteristics of a database workload determine
how the resources are used. Online Analytical Processing
(OLAP) workloads, for instance, may access a large quantity
of data, perform complex calculations and sort large
quantities of data thus taxing the CPU, the I/O subsystem
and the sort memory. Transactional workloads, on the other
hand, may simply scan a table for a particular result and use
very little CPU or sort memory. Two or more workloads
with similar characteristics running concurrently on the
DBMS can result in workload interference, often due to
resource contention.

Workload interference may lead to performance
degradation in the DBMS system. Consider a workload that
is currently executing 300 transactions per second and is
using 98% of the CPU. If another workload begins

executing on the system that is also CPU-heavy, the CPU
will become overloaded. The work will continue to be
processed, but at a slower speed as the CPU must be shared.
The performance of the initial workload will degrade,
perhaps violating goals that have been defined for this
workload. If the competing workload was sort intensive and
CPU-light, the two workloads may have executed in
harmony without detrimental effects to the initial workload.

Workload control is the process whereby the DBMS
exerts control over which work is allowed to run in the
system. This may be done by admission control (deciding
whether or not a query will be admitted to the system based
on some criteria), scheduling (deciding the order that the
admitted queued queries will be allowed to run) or execution
control (termination, suspension, or throttling of currently
executing queries) [9]. An autonomic database system
incorporates workload control to ensure that the system runs
in an optimal state where resources are used effectively and
efficiently while allowing all work to meet its service level
objectives.

Over the past several years, we have developed a number
of workload management techniques [5] [6] [7] [8] and
defined a framework that combines the various techniques
into a unified system for autonomic workload management
[10]. The work described in this paper is a subset of our
framework and involves a scheduling approach to workload
management. In previous work [4], we proposed a method
of scheduling queries based on estimates of the amount of
sort heap memory required by each query. The present work
extends this work to add additional resources, namely CPU
and I/O, and bases the scheduling decisions on the predicted
usage of all three resources. The goal of our work is to
schedule database queries such that the order of execution
ensures that system resources are utilized as fully as possible
while not overloading any one resource.

The remainder of the paper is structured as follows.
Section II outlines related work. Section III describes the
architecture for our prototype scheduling system and outlines
the approach. Section IV presents experimental validation of
the work. In Section V, we present the conclusions and
future directions.

II. RELATED WORK

The current work focuses on scheduling as a form of
workload control for database systems. Many algorithms

31Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

such as first-come-first-served, shortest job first and priority
scheduling are used in operating system job scheduling [16].
We make use of the first fit algorithm in our scheduling of
database queries in the current research.

 Modeling approaches to predict performance metrics for
database queries are gaining in popularity [15]. These
performance metrics are necessary for making scheduling
decisions. Ahmad et al [14] take this one step further to
model the interactions between queries and, using these
models, select a mix queries to run concurrently that
minimizes contention in the system. This work takes
advantages of the unique characteristics of report generation
workloads and enforces a fixed multi-programming level
(MPL). In contrast, our approach allows the MPL to vary
during workload execution and allows for a general
workload mix.

Like the work of Ahmad et al, scheduling approaches to
control DBMS workloads often control the multi-
programming levels; that is, workload control is achieved by
controlling the number of queries running concurrently in the
system. The work by Schroeder et al. [12] uses queuing
theoretic models and a feedback control loop to predict the
relationship between throughput, response time and multi-
programming levels to optimize the MPL. Although
Schroeder et al. evaluate this approach using query priorities
in which high priority queries should be chosen to run first, it
is also relevant in terms of scheduling for resource control. If
the queue is larger, then a query with resource requirements
suitable to the currently available resources is more likely to
be found. Mehta et al. [13] focus on scheduling business
intelligence (BI) batch workloads and attempt to optimize
overall response time for the workload. Queries are
admitted based on their priority and memory requirements.

Our approach uses models based on information from the
optimizer to predict the CPU, I/O and Sort Heap memory
required by individual queries. These resources are
considered “high impact” resources in a DBMS. We use
these predicted measures along with scheduling algorithms
to choose which queries will be allowed to run concurrently
in the system so as to make efficient use of the system
resources and avoid resource overload. Our work is
distinctive in that we are considering multiple resources in
scheduling decisions.

III. ARCHITECTURE AND APPROACH

Our system can be considered a “load control system”,
that is, one which controls the current workload executing on
the DBMS. The architecture of the load control system is
shown in Figure 1. Clients submit queries to the DBMS
which are intercepted by the scheduler which consults the
DBMS to collect pertinent information regarding potential
resource usage. Using this information, a prediction is made
by the Resource Requirements Estimator for CPU and I/O
usage and the memory requirements for the sort heap. The
query is then queued for admission. The Requirements
Model contains the policies that rule how the scheduling
decisions are made. The Scheduler constantly checks the
queue and, if a query can be admitted into the system based
on its requirements and the current state of the system, then

the query is allowed to proceed. We outline the various
components in more detail in the following sections.

Figure 1. Prototype Architecture

A. Requirements Estimator

The requirements estimator predicts the amount of CPU,
I/O and sort memory that will be used by a query. The
system uses these estimates along with an estimate of the
current resource usage to determine whether or not the query
can be admitted to the system at a specific point in time.

Estimates are derived from statistics provided by the
DB2 Explain tool [1] which generates an access plan for a
given query complete with statistics pertaining to the cost of
execution of the plan. Relevant statistics for our work
include the cumulative CPU cost (measured in the number of
instructions required to execute the query), the cumulative
I/O cost (the total number of seeks and page transfers
executed by the query), the total cost (a weighted sum of I/O
and CPU costs for the query expressed in a measurement that
IBM calls “timerons”) and sort-related costs such as the
number of rows to be sorted and the approximate length of
each row. Details of how the estimates for each resource are
derived are described below.

CPU
The CPU is at maximum capacity when it is nearing

100% utilization. DB2 Explain provides an estimate of the
cumulative CPU cost (in number of instructions) of
executing a particular query plan. The cumulative estimate is
the total amount of CPU that will be used during query
execution. For our estimates, it is more useful to know the
average amount of CPU that will be used over the lifetime of
the query. To estimate the average CPU cost during the
query execution, we divide the cumulative CPU cost by the
overall cost of the query provided by DB2 Explain. To
estimate the average CPU cost for each individual query, we
ran each of our experimental queries (of which there were
17) alone (without competing workload) 100 times while
noting both the estimated and the actual CPU cost (average
percentage CPU used during query execution). We have
found that there is a relatively high correlation (r =0.7, n =
1700, p=0.05) between the estimated value and the actual

32Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

measured average CPU. We used linear regression to find a
formula to predict the percent utilization of CPU for a query
given the estimates from DB2 Explain tool. The equation
used was:

%CPU = (0.0001 * cumulative_cpu/overall_cost) + 8.39 (1)

I/O

To determine when the I/O subsystem was nearing
capacity, we measured the maximum throughput for our I/O
channel using a large database table scan with a small buffer
pool. The maximum observed throughput was
approximately 190MB/s. A reasonable (r = 0.65, n=1700, p
= 0.05) correlation exists between the cumulative number of
I/Os predicted by the DB2 Explain facility and the average
measured throughput of each query run alone. To calculate
this correlation, each of the 17 queries was run alone
(without competing workload) 100 times while measuring
the average measured throughput. Linear regression was
used to derive a formula to estimate the average throughput
for a query as follows:

Throughput(MB/s) = (0.00004 * cumulative_io) + 19.2 (2)

Sort Heap

The amount of sort heap memory allocated in a DBMS is
important to performance because extending the sort heap
leads to spills to disk requiring additional I/O and increased
response times.

The estimation of the sort heap required by a query, like
for CPU and I/O estimation, uses the information contained
in the query execution plan. The plan consists of nodes in a
tree structure with each non-leaf node representing an
operator. Two DB2 operators require sort heap space; sort
and hash join. The amount of sort heap required by each of
these operators is determined by the query execution plan
which provides the number of rows to be sorted as well as
the approximate width of each row in bytes. We
experimentally determined that there is approximately 75
bytes per row of overhead. Therefore, the estimate for a
single sort operator is

RequiredSortMemory = #Rows * (RowWidth + 75) (3)

The DB2 sortheap parameter limits the amount of sort

heap space that can be assigned to a single sort or hash join.
Therefore, the minimum of the value of the sortheap
parameter or RequiredSortMemory is used as the estimate
for the sort requirements.

Given that not all nodes in a plan are active at the same
time, we cannot simply sum the sort requirements for all the
nodes in a query [4]. We determine which nodes can be
active at the same time by the types of nodes (blocking, not
blocking) and the relationships between them (ancestor,
descendant). The sort heap estimation process for a complete
query plan can be separated into two steps: calculating sort
heap sets and using the sort heap sets to calculate sort heap

requirements. Both sorts and hash joins are blocking
operations. Hence, any node that requires sort heap is a
blocking node. This means that when node N becomes
active, the sort heap demand is constant for a period of time,
until N starts to produce output. Specifically, the amount of
sort heap required while N is blocking is the amount that N
requires plus that which its active descendants require. This
total amount of sort heap is referred to as the sort heap set of
N. Conceptually, a sort heap set for node N is calculated by
starting at N and traversing towards the leaves of the query
execution tree, summing the sort heap requirements of the
traversed nodes, until blocking nodes are encountered.

The amount of sort heap required varies throughout its
execution. In other work, we evaluate different estimations
including the average usage, the dominant usage and the
maximum usage [2]. In the current work, we use the average
estimate, that is, the average amount of sort heap that a query
will use during its execution time.

B. Requirements Model

The Requirements Model represents the current resource
status of the system, that is, how much of a particular
resource is available in total as well as the amount that is in
use by currently running work. A model is used for each of
the CPU, the I/O subsystem and the sort memory.

For the CPU, we assume that the maximum amount of
CPU utilization is 100 percent. Our goal is to keep the
resource busy, but not overload it. Our model states that a
query “fits” in terms of CPU if the CPU estimate of the
current query plus the total sum of the CPU estimates for all
currently executing queries is less than or equal to 90 percent
and the actual measured CPU usage is less than 100 percent.

The I/O model is based on our measured maximum
throughput which was 190MB/s. To avoid overloading the
I/O system, we use 185MB/s as our maximum desired
throughput.

Our resource estimator provides us with the worst case
I/O estimate; that is, all data that is requested will need to be
read from disk. In a DBMS, however, recently requested
data will often be found in the bufferpool, a main memory
cache managed by the DBMS. The data in the bufferpool
may be reused by other queries requesting the same data,
thus reducing the amount of necessary I/O. To account for
data sharing, we measure and incorporate the buffer pool hit
rate (expressed as a value between 0 and 100), which is the
measure of how often a page access is satisfied without a
physical I/O. A hit rate of 50 (percent) means that a
requested page is found in the buffer pool 50% of the time.
We then calculate the maximum throughput that will be
allowed into the system as:

Total_Throughput = 185 + current_hit_rate * 185/100 (4)

The theory is that if the buffer pool hit rate is high, we can
allow more work into the system without overloading the
disk. If it is low, it means that more physical I/O is
occurring, therefore, less work should be allowed into the
system.

33Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

Our Requirements Model admits a query based on I/O if
its estimated I/O plus the sum of the I/O usage of currently
running queries is less than Total_Throughput (as calculated
above).

A query is admitted into the system in terms of sort heap
requirements if the sort heap requirements estimate for the
current query plus the sum of the sort heap requirement
estimates for currently running queries does not exceed the
value specified by the DB2 parameter, sheapthres_shr,
which limits the total amount of sort heap used by all
running queries.

C. Scheduler

The scheduler makes decisions as to which query to run
next based on the rules defined by the Requirements Model.
We have considered several different scheduling algorithms
in previous work [4]. In the current work, we use the First
Fit Scheduling algorithm. Queries are queued in the order in
which they arrive for execution. The scheduler traverses the
queue (from earliest arrival to most recent arrival) and
considers the requirements of each query. In order to fit into
the system, all conditions must be met for each of the three
resources. That is, the query must fit in terms of predicted
CP, I/O and sort heap usage in order to be admitted to the
system. The first query found that meets all the requirements
is admitted to the system for execution.

IV. EXPERIMENTAL EVALUATION

A. Experimental Environment

Our database workload consisted of 17 OLAP queries
based on the TPC-H benchmark [3]. The ordering of the
queries was randomly assigned (on a per client basis) prior to
the run, but was kept constant throughout all subsequent
runs. Our OLAP workload was sort-intensive and the
queries varied in their use of CPU and I/O.

In order to ensure that the CPU and the I/O subsystems
were heavily utilized at some points, we simulated a CPU-
intensive workload by running a simple program that
consumed approximately 30 percent of the CPU when run
alone. We simulated an I/O intensive workload by
performing multiple repeat scans on a table not used by our
OLAP workload. We used a very small (and separate)
bufferpool for the I/O intensive workload to ensure that the
I/O subsystem was being used extensively.

Twelve clients each sent the 17 OLAP queries to the
system for processing. The workload was varied every two
minutes in the following pattern:

1. OLAP workload alone
2. CPU intensive workload + OLAP workload
3. I/O intensive workload + OLAP workload
4. CPU intensive workload + I/O intensive

workload + OLAP workload

Each run was repeated 8 times and average values

reported. Between each run, the database system was
restarted to clear all monitor elements and a sample

workload was run to warm up the bufferpool and to bring the
database system to a steady state.

DB2 V9.7 was used to house the 3GB database for the
OLAP workload. The bufferpool was configured to 1GB.
The parameters sortheap (the maximum sort heap allocated
to any single query) and sheapthres_shr (the limit on the total
amount of sort heap used by all running queries) were set to
500 and 2500 4K pages respectively. The DBMS was run on
a dedicated Windows 8 Server machine configured with 8
GB of RAM and a quad core CPU. The clients and the
scheduling system were run on a remote machine.

We compared our proposed scheduling approach to a) a
system running with no control where queries were run on a
first come, first serve basis and, b) to a system where we
fixed the maximum multi-programming level (MPL) to four,
that is, the maximum number of queries that were allowed to
run concurrently was four. This number was determined
experimentally to be an optimal setting for steady
performance in our configuration [2]. We expected that the
scheduling approach would yield better performance than the
system running with no control and that it would perform at
least as well as when the optimal multiprogramming level
was used. We compare our approach with a limited MPL as
setting the MPL is a common approach to reducing the
amount of resource contention in a database system.

B. Results

The results are summarized in Tables 1, 2 and 3. Table 1
shows general metrics including the total run time for the
204 queries (12 clients each running 17 queries) in minutes
(including wait time), the average wait time per query
(minutes), the maximum wait time (minutes), the average
execution time (minutes) and the maximum multi-
programming level (MPL). Table 2 shows CPU Usage and
I/O metrics such as the average disk queue length, the
maximum disk queue length, the average throughput in MBs
per second, and the buffer pool hit rate (percentage). Table 3
presents the sort metrics including the number of post
threshold sort operations, the sort overflows, and the number
of hash join overflows and small hash join overflows. Sort
and hash join overflow operations are an indication of sort
heap contention. Overflows occur when not enough memory
can be granted to perform a sort in memory. In this case,
temporary results are often written to (and re-read from) disk
resulting in increased I/O.

TABLE I. GENERAL METRICS

Total

RunTime

(mins)

Average

Wait

Time

(mins)

Max

Wait

Time

(mins)

Average

Execution

Time

(mins)

Max

MPL

No

Control

135 0.07 1.1
7.1 12

MPL 4 133 4.7 12.9 7.8 4

First Fit

Schedule
127 4.9 15.7

6.8 8

34Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

TABLE II. I/O AND CPU METRICS

Average

Disk

Queue

Length

Max

Disk

Queue

Length

Buffer

Pool

Hit

Rate

(%)

Average

Through-

put (MB)

Average

CPU

Usage

(%)

No
Control

10.4 43 83 86 94

MPL 4 9.8 42 84 78 94

First Fit

Schedule
5.2 30 86 79 91

TABLE III. SORT METRICS

 Post

Threshold

Sort

Operations

Sort

Overflows

Hash

Join

Overflows

Small

Hash Join

Overflows

No

Control

81 116 62
24

MPL 4 77 112 58 21

First Fit

Schedule
21 22 20

7

The results show that the overall execution time was

reduced by approximately 6% using the scheduling approach
over the baseline (no control) or MPL 4 approaches.
Although the average wait time per query was higher for the
scheduling approach, the average execution time per query
was lower, indicating a more efficient use of resources. The
load on the I/O subsystem was reduced as indicated by a
reduction in the average (and maximum) disk queue length
and a lower average throughput. The average CPU usage
decreased slightly. Sort operations were improved with
significantly fewer post threshold sort operations, sort
overflows, hash join overflows and small hash join
overflows performed in the scheduling approach than either
the baseline or the MPL 4 cases.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented and validated a scheduling approach
to DBMS workload control that we plan to incorporate into
our framework for autonomic DBMS workload control. The
described approach schedules queries based on their
predicted resource usage. Based on our experimentation, the
approach yields reasonable results and appears to be
promising approach for adapting to workload changes.

The current work will be integrated as the scheduling
component of a proposed framework for DBMS workload
management [10]. This framework provides coordinated
control of different workload management techniques such
as admission control, execution control, and scheduling.
Each component is controlled by a feedback controller which
monitors system performance and adjusts the amount of
control exerted by the mechanism accordingly. For
example, the execution control component consists of a

controller that a) determines the type of execution control to
use (throttling or query canceling) and b) sets the degree of
control (for example, in the case of throttling, the controller
would set the amount of throttling based on feedback
regarding the system performance). The controller for the
scheduler will measure actual system resource usage and will
feed this information back to the system to update the
requirements estimators, and to set the threshold policies in
the requirements models accordingly. Building the
autonomic controller for the scheduler and integrating it into
our overall workload control framework will be the next step
in our work.

 We have presented the results of only the “first fit”
scheduling algorithm in this paper. Experiments have been
conducted with the smallest job first and the blocking query
scheduling algorithms that were used in our previous work
[4]. Results using these algorithms are similar to those
reported here with the main difference being that the average
and maximum wait times are vastly increased for longer
queries using a smallest job first algorithm.

Currently a query is only allowed to run if it fits in terms
of CPU, I/O and sort memory. There are many other
variations of this approach which may prove to be useful.
The most promising approach currently under investigation
is scheduling by “critical resource”. That is, the resources
are monitored and if the usage of one or more resources
enters a pre-determined “critical state”, the scheduling
algorithm considers only the critical resource(s) when
making scheduling decisions. We plan to base this work on
work done by Zeldes and Feitelson [11], who present an
algorithm for system resource management that focuses on
bottleneck resources and allocates them to the most
deserving clients.

REFERENCES

[1] IBM DB2 Universal Database. DB2 V9.5 Information Center.

Available:
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
[retrieved: Feb 2014].

[2] N. Gruska, Resource-aware Query Scheduling in Database
Management Systems. MSC thesis, Queen’s University,
Kingston, Ontario, July 2011.

[3] Transaction Processing Performance Council, TPC-H
Benchmark Specification. Available: http://www.tpc.org/tpch/
[retrieved: Feb 2014].

[4] N. Gruska, W. Powley, P. Martin, P. Bird, and K. McDonald,
“Sort-Aware Query Scheduling in Database Management
Systems,” Proc of 2012 Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON
2012), November 2012, pp. 2-10.

[5] P. Martin et al., “The Use of Economic Models to Capture
Importance Policy for Autonomic Database Management
Systems,” Proc. of the 8th Intl. Conf. on Autonomic
Computing (ICAC’11) workshops (Autonomic Computing in
Economics), June, 2011, pp. 3-10, doi:
10.1145/1998561.1998564

[6] M. Zhang et al., “Utility Function-based Workload
Management for DBMSs,” Proc of the 7th International
Conference on Autonomic and Autonomous Systems (ICAS
2011), May, 2011, pp. 116-121.

35Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://www.tpc.org/tpch/
http://research.cs.queensu.ca/home/cords2/icas2011.pdf
http://research.cs.queensu.ca/home/cords2/icas2011.pdf

[7] W. Powley, P. Martin, M. Zhang, P. Bird, and K.
McDonald, Autonomic Workload Execution Control Using
Throttling,” Proc of the 4th International Workshop on Self-
Managing Database Systems (SMDB 2010) in Conjunction
with the 26th International Conference on Data Engineering
(ICDE 2010), March, 2010, pp. 75-80.

[8] B. Niu, P. Martin, and W. Powley, “Towards Autonomic
Workload Management in DBMSs, “ Journal of Database
Management, 20(3), July - Sept 2009, pp. 1-17.

[9] S. Krompass et al., “Managing Long-Running Queries” In
Proc.of EDBT’09, March 2009, pp. 132-143, doi:
10.1145/1516360.1516377.

[10] M. Zhang, P. Martin, W. Powley, P. Bird, and D. Kalmuk, “A
Framework for Autonomic Workload Management in
DBMSs,” Information Technology (special issue on
Engineering Adaptive Information Systems), in press.

[11] Y. Zeldes, and D. Feitelson, “On-line Fair Allocations Based
on Bottlenecks and Global Priorities,” Proc of the 4th
ACM/SPEC International Conference on Performance
Engineering (ICPE ’13), April 2013, pp. 229-240, doi:
10.1145/2479871.2479904.

[12] B. Schroeder, M. Harchol-Balter, A. Iyengar, E. Nahum, and
A. Wierman. “How to Determine a Good Multi-
Programming Level for External Scheduling,” Proc of the
22nd International Conference on Data Engineering, April
2006, pp. 60-66, doi: 10.1109/ICDE.2006.78

[13] A. Mehta, C. Gupta, and U. Dayal, “BI Batch Manager: A
System for Managing Batch Workloads on Enterprise Data-
warehouses,” Proc of the 11th International Conference on
Extending Database Technology, March 2008, pp. 640-651,
doi: 10.1145/1353343.1353420

[14] M. Ahmad, A. Aboulnaga, S. Babu, and K. Munagala,
“Interaction-aware Scheduling of Report-Generation
Workloads,” The VLDB Journal, 20:589-615, 2011, pp 589-
615.

[15] A. Ganapathi, et al, “Predicting Multiple Metrics for Queries:
Better Decisions Enabled by Machine Learning,” Proc
International Conference on Data Engineering (ICDE), March
2009, pp. 592-603, doi: 10.1109/ICDE.2009.130.

[16] A. Silberschatz, P.B. Galvin, G. Gagne, Operating System
Concepts, Wiley, 9th Edition, 2012.

36Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

http://research.cs.queensu.ca/home/cords2/smdb10.pdf
http://research.cs.queensu.ca/home/cords2/smdb10.pdf

