
HiSPADA: Self-Organising Hierarchies for Large-Scale Multi-Agent Systems

Jan-Philipp Steghöfer, Pascal Behrmann, Gerrit Anders, Florian Siefert, and Wolfgang Reif
Institute for Software & Systems Engineering, University of Augsburg, Germany

{steghoefer, anders, siefert, reif}@informatik.uni-augsburg.de, PascalBehrmann@gmx.de

Abstract—The formation of hierarchies within large-scale
systems can solve problems of scalability and distributed
control. In this paper, we suggest a self-organising partition-
ing control scheme that uses a distributed set partitioning
algorithm to dynamically introduce and resolve hierarchy
layers in a decentralised fashion according to the needs of
the application at runtime. The partitioning control can work
within a predefined organisational framework and is highly
adaptable to application-specific needs. We demonstrate the
approach with an application from the domain of distributed
power management and provide evaluations that show that a
self-organising hierarchy formation can increase scalability by
simplifying control decisions with negligible overhead.

Keywords-Autonomous agents; Hierarchical Systems; Adaptive
Systems

I. INTRODUCTION

Complex systems, consisting of thousands of individual,
heterogeneous agents, are a scalability nightmare. Cen-
tralised approaches to their control and monitoring can
almost never be realised. This is due to two facts: first
of all, propagating the necessary data from the agents to
a central instance can take a very long time; second, the
decision making process has to consider all this data and
therefore can have prohibiting runtime. While waiting for
the data to be aggregated and for the decision to be made,
the environment of the agents can change tremendously. It
can change so much that the decision that is ultimately made
becomes obsolete immediately.

For this reason, many systems (as outlined in Section II)
have levels of indirection and abstraction, often represented
by hierarchies [1]. Using hierarchies allows to compart-
mentalise computation to certain areas of the system and
thus to provide scalability beyond a couple of dozen agents.
Information aggregation does not take as long and decision
making processes do not have to deal with such a high
number of variables. Additionally, hierarchies can be used
to represent existing organisational structures, a feature
often desired when modelling existing systems with agents.
Systems of systems (SoS) and holarchies are concepts that
directly integrate this hierarchical nature. More often than
not, however, hierarchies are defined once by the designers
of the system and do not adapt to changing circumstances
during the runtime of the system.

In this paper, we present HiSPADA, an extension of the Set
Partitioning Algorithm for Distributed Agents (SPADA, [2]).
HiSPADA forms hierarchical partitions that represent levels

in the system structure. These partitions and the hierarchy
in which they are arranged are highly flexible and can adapt
to changes in the environment, to new and leaving agents,
to changing system goals, etc. We show that HiSPADA
indeed reduces the complexity of control decisions while the
system’s other quality attributes remain almost the same.

However, to make use of a hierarchical partitioning con-
trol, some caveats have to be heeded. On the one hand,
for HiSPADA to work efficiently, it must be possible to
introduce new layers by creating intermediary agents that en-
capsulate the essence of the agents they control. On the other
hand, hierarchical task decomposition must be possible. Our
illustrative example exhibits these properties. The case study
is a power management system in which distributed energy
resources (DERs) are partitioned into Autonomous Virtual
Power Plants (AVPPs) [3]. These AVPPs coordinate the
power plants to meet power demands and to stabilise the
network frequency. The system consisting of hierarchical
AVPPs and DERs can be considered a system of systems.

To meet the overall power demand, schedules are created
that assign a fraction of the demand to each individual power
plant by solving a constraint optimisation problem. The more
power plants there are in the system, the more complex the
calculation of their schedules and the longer the runtime
of the scheduling algorithms. AVPPs compartmentalise this
complexity by reducing the number of power plants being
part of the scheduling process within each individual AVPP.
To find a good partitioning of power plants into AVPPs,
the time required for scheduling has to be part of the deci-
sions in the AVPP formation process. Additionally, existing
utilities and transmission grid infrastructure impose given
organisational structure within which it is possible to form
AVPPs. The structure changes when AVPPs can not fulfil
their power demand or other obligations.

This paper is structured as follows: in Section II, we
introduce SoS and holarchies, illustrate systems in which
predefined hierarchies are used for the same purpose as
in this paper, introduce hierarchical clustering, and outline
the ideas behind dynamical hierarchies. Section III then
describes the non-hierarchical self-organisation algorithm
that forms the basis of HiSPADA, which itself is explained in
detail in Section IV along with its prerequisites. We present
an evaluation of the algorithm in Section V and conclude
the paper with a discussion and outlook on future work in
Section VI.

71Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

II. HOLARCHIES, HIERARCHICAL SELF-ORGANISATION,
AND SYSTEMS OF SYSTEMS

In [1], Horling and Lesser discuss a number of organ-
isational paradigms for multi-agent systems. Most impor-
tantly, they identify hierarchies and holarchies as the main
approaches to deal with complexity and scalability issues.

Holarchies are a special kind of hierarchical organisation.
The concept of a “holon”, originally described by Koestler
in [4], refers to a recursive, self-similar structure, while a
holarchy is a hierarchy of self-organised holons. In modern
uses of this concept, e.g., for holonic manufacturing systems,
a holarchy is defined as a system of such holons cooperating
to achieve a common goal [5]. A holarchy used in this
context is usually not changed at runtime but predefined by
the designer to meet the specific system requirements.

Similarly, many self-organising systems use predefined,
static hierarchies to reflect existing hierarchical structures.
In the Organic Traffic Control [6] project, e.g., hierarchies
consist of individual traffic lights, intersections, and entire
roads. On each level, the system is able to learn traffic
patterns and therefore adapts to the traffic flow. The different
levels allow recognition of patterns on different scales and
optimise, e.g., to create green waves during rush hour.

Hierarchical clustering algorithms are, e.g., regarded in
sensor networks. There, groups of sensors represented by a
cluster head are formed. The head serves as a communica-
tion hub for the entire group. The number of hops (nodes
a message has to go through to reach its destination) and
the communication range are vital decision variables. As [7]
shows, hierarchies can significantly reduce the complexity of
cluster formation. This result shows that hierarchies increase
scalability. However, results and algorithms from sensor
networks can not be readily applied to other domains as
they work under specific assumptions. Conversely, it will be
difficult to adapt HiSPADA to sensor networks as it does
not account for energy efficiency or limited communication.

Holarchies and hierarchies are directly related to systems
of systems (SoS). SoS are composed of systems that are
themselves complex systems. They are usually distributed in
nature and very large [8]. A lot of work on SoS originates in
a military context (see, e.g., [9]) where the interconnection
of different, complex systems is a must to provide battlefield
information and control of a wide array of weapon systems
and sensors. Although these systems are heavily connected,
they remain independent in many ways. Key characteristics
of SoS thus include functional and administrative inde-
pendence of sub-systems and geographic distribution [10].
Furthermore, the behaviour of SoS is often emergent and its
development evolutionary. This definition also applies to the
case study used here and other open, heterogeneous systems.

Hierarchies also play a crucial role in the emergence of
new functionality. The artificial life community has been
looking into the synthesis of dynamical hierarchies [11] that

show different emergent behaviour at various scales. Another
research direction are hierarchies that self-assemble without
an explicit algorithm [12] such as the one presented here.
While these approaches are very interesting, their usefulness
for large-scale technical systems has not yet been proven.

III. SET PARTITIONING WITH SPADA

SPADA [2], the Set Partitioning Algorithm for Distributed
Agents, solves the so-called set partitioning problem (SPP)
in a general, decentralised manner. In the SPP, the goal is
to partition a set A = {a1, . . . , an} into k ≤ n pairwise
disjoint subsets, i.e., partitions, that exhibit application-
specific properties. For example, if the objective is to group
similar or dissimilar elements together, the SPP is equivalent
to clustering or anticlustering [13]. This can be achieved by
complementing the SPP with an appropriate metric. In case
such a metric defines how well agents can work together on
a common task, the SPP is equivalent to coalition structure
generation [14]. Since SPADA has been designed to solve
the SPP in general, it can be applied to these specific
problems as well. This distinguishes SPADA from other
centralised and decentralised approaches, which are often
specialised to a specific problem in a specific domain. In
the following, we give a short summary of SPADA’s basic
functionality and characteristics. A more detailed description
can be found in [2]. We use the term “reorganisation” to
denote the process performed by SPADA.

All operations SPADA performs to come to a solution
can be mapped onto graph operations that operate on an
overlay network, which is called acquaintances graph. The
acquaintances graph is defined by the agents participating
in the SPP and acquaintances relationships between them,
symbolised by directed links. To simplify graph operations
that modify partitions, it is stipulated that each partition is
a directed tree of marked links, which results in a directed
forest for the partitioning as a whole.

The root of each such tree is the corresponding partition’s
leader. Each partition thus has always exactly one leader.
It is responsible for optimising its partition according to
application-specific criteria. Each leader therefore periodi-
cally evaluates if it is beneficial to integrate new agents into
its partition or to exclude members from it. The latter can
be beneficial if the partition’s or an agent’s properties have
changed so that the partition’s formation criteria no longer
favour including the agent. Integrating and excluding agents
is performed by modifying the acquaintances graph.

To decide termination, leaders periodically evaluate appli-
cation-specific termination criteria formulated as predicates
based on local knowledge. These predicates are constraints
that can also be monitored at runtime and be used to trigger
reorganisation. If these are met, the leader marks its partition
as terminated. As long as a partition is terminated, its
structure is not changed until a member is integrated into
another partition. SPADA can thus make selective changes

72Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

…

(a) Flat, single layer system structure.

…

(b) Hierarchical system structure.

Figure 1. Different system structures. The flat, single layer system structure
can be created with coalition formation, clustering, or a set partitioning
algorithm such as SPADA while hierarchies can be introduced when using
the HiSPADA control loop in combination with one of these mechanisms.

to an existing partitioning, which is very useful in dynamic
environments. It has been shown in [2] that SPADA’s local
decisions lead to a partitioning whose quality is within 10%
of the solutions found by a centralised metaheuristic.

In many cases, it is useful that the partitions created are
represented by an intermediary. In our case study, this inter-
mediary is the AVPP. The leader of a partition instantiates a
new AVPP agent after partitioning has finished. The AVPP
then assumes control of all power plants in the partition.

IV. SELF-ORGANISING HIERARCHIES WITH HISPADA

The original SPADA algorithm partitions the set of agents
representing the entire system. It creates a flat hierarchy as
shown in Fig. 1 (a). To achieve hierarchical self-organisation
as depicted in Fig. 1 (b), HiSPADA uses the original
SPADA algorithm to partition only a subset of agents – the
neighbourhood. The introduction and resolution of layers is
handled by the HiSPADA control loop, depicted in Fig. 2.
This control loop constitutes a partitioning control. The
HiSPADA control loop (cf. Section IV-B) runs on those
intermediaries that can be reorganised, i.e., that represent
partitions that can be reorganised.

A. Prerequisites and Interaction with SPADA

In principle, the partitioning control is independent of
the concrete set partitioning algorithm used. Therefore, it
would be possible to use, e.g., a particle swarm optimiser
to find appropriate partitions and introduce hierarchies by
using the partitioning control described here. HiSPADA’s
only requirements are (a) that it must be possible to limit
the underlying algorithm to a certain neighbourhood and (b)
that it must be possible to use application-specific formation
and termination criteria to, e.g., define a minimal number of
partitions to be formed. For reasons of conciseness, we will,
however, focus our explanations on the control of SPADA.

The hierarchy is represented by a tree-structure formed
by father-child relationships between agents. To achieve this
structure, an agent is introduced that serves as the root of
the tree. When the hierarchy is updated, these relationships
change. SPADA has a similar but distinct notion that ex-
presses membership in a partition. As described above, each
partition formed by SPADA has a leader that is at the root
of a tree of marked links. HiSPADA makes no use of these
structures used by the underlying set partitioning algorithm
but only of intermediaries that represent the partitions.

[Layer resolved] Resolve layer

[Application-specific
 constraint violated]

[Application-specific
 constraint violated]

[Application-specific
 constraint fulfilled]

[isDissolvable(x) == true]

[isDissolvable(x) == false]

[Runtime falls below threshold]

[Runtime exceeds threshold]

[canReorganise(x) == true]

[canReorganise(x) == false]

Partition stable

Introduce new
layer

Wait for
reorganisation

Calculate
neighbourhood

Partition
neighbourhood

with SPADA

Figure 2. The HiSPADA control loop. The partitioning control running
on intermediary x reacts to the violation of specific constraints, depicted
here as guards, and reacts by resolving layers of the hierarchy, introducing
new ones, or reorganising existing ones.

To form a hierarchy, these intermediaries are themselves
partitioned. Thus, whenever an intermediary switches to
another partition, the controlled agents switch with it. In
the case study, a leader is always represented by an AVPP.

The HiSPADA control loop is usually dormant as long as
the system is stable. It monitors the system however (more
precisely: each instance of the control loop monitors the
agent it runs on) and reacts to the violation of constraints.
These constraints are depicted as guards on the transitions in
Fig. 2. A run of SPADA and the introduction or resolution
of layers is thus an attempt to restore these constraints. This
behaviour conforms to the Restore Invariant Approach [15].

B. The HiSPADA control loop
HiSPADA has three major functional aspects: resolve

an existing layer of the hierarchy by removing intermedi-
aries; introduce a new layer in the hierarchy by creating
intermediary agents; reorganise a level in the hierarchy
by changing the relationships between intermediaries and
the agents they control. Fig. 2 shows the control flow of
HiSPADA, including these three aspects. In the following,
we will use the term “hierarchy level” to denote all agents
that are controlled by the same father or grandfather.

Resolve hierarchy levels: The resolution of existing
hierarchy levels can occur for a number of application-
specific reasons. In the power management example, it is
triggered when the runtime of the scheduling algorithm
falls below a given threshold. In that case, the AVPP that
encountered this constraint violation is dissolved and all
power plants are added to the father of the dissolved AVPP.
In general, the predicate isDissolvable(x) is checked
before the actual resolution. It tests whether intermediary
x can be dissolved at all.

isDissolvable(x)⇔ x.mayBeDissolved∧
x.timeInExistence ≥ minTimeInExistence

73Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

…

(a) Before resolution

…

(b) After resolution

Figure 3. Resolution of a hierarchy level. The initiating agent is marked in
grey. Children of the initiator become children of their previous grandfather.

…

(a) Before reorganisation.

…

(b) After introduction of new layer.

Figure 4. Introduction of a new hierarchy level. The initiating agent is
marked in grey, new agents are black. The child agents of the initiating agent
form the neighbourhood, marked as a dashed rectangle, that is partitioned
with SPADA. New agents are introduced to form an intermediary layer.

x.mayBeDissolved is false if agent x is a higher-
level structure that is part of a predefined hierarchy. To
avoid thrashing, it also checks if the period of grace
(minTimeInExistence) that prevents newly formed hier-
archy levels to be resolved right away has already expired.
The age of the agent is stored in x.timeInExistence.

Fig. 3 shows a hierarchy in which a layer is resolved.
After the resolution and before the initiating agent is deleted,
it informs the new father agent of the changes made. The
father agent then has to react appropriately by adopting its
new children and by, e.g., requesting essential data from the
new children or running the control algorithm again.

Introduce new hierarchy levels: In the case study, new
intermediaries are introduced when an AVPP requires too
much time to calculate the schedule for the power plants
it controls. Other applications can of course give specific
conditions under which this action is performed.

When a new hierarchy level is introduced, a father agent
f creates an intermediary level for its child agents. For
this purpose, f ’s HiSPADA control loop initialises SPADA
with its child agents as the neighbourhood and a minimum
number of two partitions, thus ensuring that the agents are
not subsumed in just one partition. A way to guarantee this
is to require that each leader knows at least one other leader.
SPADA then uses this and other, application-defined criteria
to create a suitable partitioning. Fig. 4 illustrates this process.
The newly created agents become children of f .

Reorganising a hierarchy level: Whenever intermediary
x introduces a new hierarchy level is introduced or detects
violation of an application-specific constraints, it uses HiS-
PADA to reorganise a hierarchy level. For this purpose,
it limits the scope of reorganisation to a certain neigh-
bourhood, thus preventing it from crossing organisational
boundaries. The original SPADA has no such limitation and
reorganises the entire system.

HiSPADA has to consider some limitations when a hi-

erarchy level has to be reorganised. First of all, reorgan-
isation can not occur while an agent’s father or children
are being reorganised. Otherwise, it would be possible that
some agents are part of several reorganisation efforts at
once, possibly resulting in changes that would violate the
tree-structure of the hierarchy. This limitation is captured
in the canReorganise(x) predicate that is tested before
reorganisation occurs. The predicate father(p, q) denotes
that p is the direct predecessor of q in the hierarchy. If an
agent p currently is reorganising or is being reorganised,
reorganising(p) evaluates to true.

canReorganise(x)⇔ isDissolvable(x)

∧ ¬∃y ∈ Agents : father(x, y) ∧ reorganising(y)
∧ ¬∃z ∈ Agents : father(z, x) ∧ reorganising(z)

The second limitation is the restriction of the algorithm
to neighbourhoods. In this case, the neighbourhood of the
initiating agent is defined as all its children and “nephews”,
i.e., its siblings’ children (cf. Fig. 5). Therefore, we define
the neighbourhood Nx of an agent x as follows:

Nx := {y ∈ Agents | ∃a, ay ∈ Agents :

father(a, x) ∧ father(a, ay)∧
father(ay, y) ∧ canReorganise(ay)}

This neighbourhood definition ensures that only agents
with fathers that can be reorganised are part of the neigh-
bourhood, thus ensuring that predefined hierarchies or levels
that are still in their period of grace are not changed. In
theory, neighbourhood definitions that include more distant
relatives are possible and can be implemented easily in HiS-
PADA. However, recursing the hierarchy up too far reduces
the benefit as including more agents in the neighbourhood
makes the partitioning problem more complicated and agents
that are only distantly related to each other have usually been
separated by HiSPADA in the course of hierarchy creation.
Partitioning them closer together is not useful and might
even jeopardise the system goal. Also, this approach ensures
that HiSPADA tries to provide a local solution with only a
limited amount of communication.

After the neighbourhood has been determined, SPADA
is initialised with the set of agents in Nx and a minimal
number of new partitions. Then, the partitioning algorithm
is executed the same way as in the non-hierarchical case.
After the algorithm has been run, existing intermediaries are
reused or – depending on the number of created partitions –
new ones are created or old ones removed. Fig. 5 shows an
example for the reorganisation of a hierarchy level.

Bootstrapping the system: HiSPADA assumes very
little about the initial conditions of the system. As the
partitioning control runs on the agents of the system, a
hierarchy will develop in the system if the constraints
monitored by the control loop are violated. If there is no
hierarchical structure to begin with, an initial run of SPADA

74Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

…

(a) Before reorganisation.

…

(b) After reorganisation.

Figure 5. Reorganisation of a hierarchy level. The initiating agent
(corresponding to intermediary x) is marked in grey and the neighbourhood
is marked by a dashed rectangle. The dashed agent can not be reconfigured.

can establish a partitioning on all agents in the system.
This ensures that the initial partitions are suitable for the
purposes of the system as SPADA uses application-specific
metrics in the process. The (flat) hierarchy introduced by
SPADA can easily be transformed into a tree by establishing
a root agent that subsumes the intermediaries representing
the newly formed partitions. This root is not dissolvable and
stays at the root of the hierarchy throughout the runtime of
the system. Instead of running SPADA, the system can also
be partitioned randomly. In such a case, however, HiSPADA
will take a while to find a suitable hierarchy if the initial
partitioning did not make use of application-specific criteria.

If an organisational structure exists, corresponding parti-
tions have to be initialised. These agents have appropriate
relationships with their children to depict the organisation.
HiSPADA can then work on this hierarchy by introducing in-
termediaries and resolving hierarchy layers formed by those
intermediaries. It is therefore possible to let the partitioning
control find a suitable sub-hierarchy for each of the prede-
fined organisational enitities. Of course, there is a trade-off
to be made between the fine-grained depiction of existing
structures and the organisational prowess of HiSPADA: if
the predefined structure is too rigid, the partitioning control
is not able to tackle the scalability issues it is intended for.

V. EVALUATION

HiSPADA has been tested in a simulation environment
for power management applications, simulating 435 power
plants and 12 consumers. In the application, a constraint
optimisation problem is solved to assign the overall power
demand to individual power plants while minimising the
gap between the power demand and the scheduled power
production. The scheduling problem is NP-complete and
the runtime of the solution algorithm increases polynomially
with the number of agents involved. Power plant models and
power demand are based on real-world data. Such an appli-
cation is a typical operational scenario for HiSPADA, since
the main task is computationally much more expensive than
hierarchy formation and can be hierarchically decomposed.

If no hierarchies exist (Scenario A), schedules are created
by a centralised control system for all 435 power plants. If
the original SPADA is used to establish a flat hierarchy in the
system (Scenario B), the power plants’ schedules are created
by the respective AVPPs. The schedules of the AVPPs are

TABLE I
EVALUATION RESULTS FOR SCALABILITY AND SYSTEM STABILITY

Sc. A Sc. B Sc. C Sc. D
Max. sequential runtime 3624 925 499 484

of scheduling in ms ± 55 ± 638 ± 220 ± 213
Avg. height of hierarchy – 2 4.99 3.52

again created by a root AVPP, as described in Section IV. In
case HiSPADA can work without predefined organisations
(Scenario C) and within a predefined hierarchy with an
initial height of 3 (Scenario D), schedules are created in
each AVPP on different levels of the hierarchy. We define the
height of the hierarchy as the length of the longest downward
path to a leaf from the root.

The evaluation’s focus is on performance indicators for
scalable operation. The most important criterion is the aver-
age runtime of the scheduling algorithm: if the partitioning
control works, the overall runtime should be reduced when
hierarchies are introduced while maintaining stable system
operation. The latter can be measured by comparing the gap
between power production and demand as calculated by a
central authority with the sum of the gaps calculated on the
different levels of the hierarchy. As the deviation between
these numbers was minimal and the quality of the scheduling
thus was not impaired, we did not include it in Table I which
lists the results for runtime and height of the hierarchy.

All results were averaged over 100 simulation runs for
each scenario. The maximum sequential runtime provided
in the table is the maximum of the sums of the runtime in
each branch originating from the root. After the root node
has calculated a schedule for its direct children, these in
turn schedule their children. The scheduling is recursively
performed on lower levels until the schedules for the phys-
ical power plants are created. As each branch performs the
scheduling concurrently, no overhead is introduced.

The evaluation results in Table I show that the average
maximum sequential scheduling time is reduced significantly
with the introduction of hierarchies. In Scenario B, the
high standard deviation can be explained by the variation
of partition sizes created by SPADA in different runs.
HiSPADA ensures more homogeneous partitions and thus
less variation in the scheduling times. At the same time,
the average height of the hierarchy has a direct effect on
the interaction between SPADA and the partitioning control.
The deeper the hierarchy, the smaller the neighbourhoods
on which SPADA is executed but the more scheduling runs
are performed, making it necessary to find a proper balance.
Since SPADA scales very well for small sets (see Fig. 6) and
HiSPADA reduces set sizes, hierarchies additionally reduce
the overhead for restructuring the system. Very large systems
will profit most from these reductions. The results for
Scenario D also show that HiSPADA can work effectively
with predefined organisations. If necessary, HiSPADA adds
additional layers to further decompose the computation task
and thus reduces scheduling runtime.

75Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

Figure 6. Runtime of SPADA for different neighbourhood sizes. The
algorithm scales nearly linearly for sets below 1000 agents. Hierarchies
limit the neighbourhood size and allow to leverage this property.

VI. DISCUSSION AND FUTURE WORK

We have introduced HiSPADA, a hierarchical partition-
ing control that – in combination with a set partitioning
algorithm such as SPADA – forms hierarchical layers in
large multi-agent systems. The formation of hierarchies is
driven by scalability metrics provided by the application.
We gave an example limiting the duration of scheduling in
a power management scenario. HiSPADA introduces layers
to limit the number of agents controlled by an intermediary
and removes layers if they are no longer necessary. As it only
removes layers that have been introduced by the partitioning
control itself, it respects representations of existing organisa-
tional structures. The evaluation shows that scalability issues
can be tackled this way and that the benefits of the hierarchy
formation outweigh the overhead of the partitioning control.

In systems in which a hierarchical task decomposition is
not possible, HiSPADA can be useful to establish a hierarchy
in which control can be delegated to sub-ordinate levels or
to subsume certain responsibilities on a higher level of the
hierarchy. In such cases, normative systems are helpful to
regulate the delegation of power and responsibilities at the
different levels [16], a topic considered for future work.

Finally, an important issue in heterogeneous multi-agent
systems that use hierarchical task decomposition are the
models used in the decision making process. An hierarchical
scheduling mechanism like the one used in the example
requires models of the power plants that are scheduled. Since
power management systems are long-lived and consist of a
variety of different power plants of different types and from
different vendors, the models used in the process are only
known at runtime. Therefore, model synthesis is necessary
to form a new, combined model from the individual parts
on each hierarchical layer whenever the structure of that
layer changes. Likewise, as each layer in the system is in
turn regarded as a power plant, the combined model has to
be abstracted so it can be used on a higher layer to make
control decisions. Both the processes of model synthesis and
abstraction are important topics of future work.

ACKNOWLEDGMENT

This research is partly sponsored by the German Research
Foundation (DFG) in the project “OC-Trust” (FOR 1085).

REFERENCES

[1] B. Horling and V. Lesser, “A survey of multi-agent orga-
nizational paradigms,” The Knowledge Engineering Review,
vol. 19, no. 04, pp. 281–316, 2004.

[2] G. Anders, F. Siefert, J.-P. Steghöfer, and W. Reif, “A
decentralized multi-agent algorithm for the set partitioning
problem,” in PRIMA 2012: Principles and Practice of Multi-
Agent Systems, ser. Lecture Notes in Computer Science,
I. Rahwan, W. Wobcke, S. Sen, and T. Sugawara, Eds.
Springer Berlin / Heidelberg, 2012, vol. 7455, pp. 107–121.

[3] G. Anders, F. Siefert, J.-P. Steghöfer, H. Seebach, F. Nafz,
and W. Reif, “Structuring and Controlling Distributed Power
Sources by Autonomous Virtual Power Plants,” in Proc. of
the Power & Energy Student Summit 2010, October 2010,
pp. 40–42.

[4] A. Koestler, The ghost in the machine. London: Hutchinson,
1967.

[5] A. Colombo, R. Schoop, and R. Neubert, “An agent-based
intelligent control platform for industrial holonic manufactur-
ing systems,” Industrial Electronics, IEEE Transactions on,
vol. 53, no. 1, Feb. 2005, pp. 322–337.

[6] H. Prothmann, S. Tomforde, J. Branke, J. Hähner, C. Müller-
Schloer, and H. Schmeck, “Organic traffic control,” in Organic
Computing – A Paradigm Shift for Complex Systems, ser.
Autonomic Systems, C. Müller-Schloer, H. Schmeck, and
T. Ungerer, Eds. Springer Basel, 2011, vol. 1, pp. 431–446.

[7] S. Bandyopadhyay and E. Coyle, “An energy efficient hierar-
chical clustering algorithm for wireless sensor networks,” in
INFOCOM 2003. Twenty-Second Annual Joint Conference
of the IEEE Computer and Communications Societies, vol. 3,
2003, pp. 1713–1723.

[8] V. Kotov, “Systems of systems as communicating structures,”
in Object-oriented technology and computing systems re-
engineering, H. Zedan and A. Cau, Eds. Chichester, USA:
Horwood Publishing, Ltd., 1999, pp. 141–154.

[9] W. H. Manthorpe, “The emerging joint system of systems:
A systems engineering challenge and opportunity for APL,”
Johns Hopkins APL Technical Digest, vol. 17, no. 3, 1996,
p. 305.

[10] A. P. Sage and C. D. Cuppan, “On the systems engineering
and management of systems of systems and federations
of systems,”Information, Knowledge, Systems Management,
vol. 2, no. 4, 2001, pp. 325–345.

[11] T. Lenaerts, D. Chu, and R. Watson, “Dynamical hierarchies,”
Artificial Life, vol. 11, no. 4, 2005, pp. 403–405.

[12] A. Dorin and J. McCormack, “Self-assembling dynamical hi-
erarchies,” in Proceedings of the 8th International Conference
on Artificial life, ser. ICAL 2003. Cambridge, MA, USA:
MIT Press, 2003, pp. 423–428.

[13] V. Valev, “Set partition principles revisited,” in Advances in
Pattern Recognition, ser. LNCS. Springer, 1998, vol. 1451,
pp. 875–881.

[14] T. Rahwan, S. D. Ramchurn, N. R. Jennings, and A. Giovan-
nucci, “An Anytime Algorithm for Optimal Coalition Struc-
ture Generation,” Journal of Artificial Intelligence Research,
vol. 34, 2009, pp. 521–567.

[15] F. Nafz, H. Seebach, J.-P. Steghöfer, G. Anders, and W. Reif,
“Constraining Self-organisation Through Corridors of Correct
Behaviour: The Restore Invariant Approach,” in Organic
Computing – A Paradigm Shift for Complex Systems, ser.
Autonomic Systems. Springer Basel, 2011, vol. 1, pp. 79–93.

[16] A. Artikis, M. Sergot, and J. Pitt, “Specifying norm-governed
computational societies,” ACM Transactions on Computa-
tional Logic (TOCL), vol. 10, no. 1, 2009, pp. 1–42.

76Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

