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Abstract—Most Ad Hoc networks use diffusion to commu- fined a distributed system to be self-stabilizing if, redesd of
nicate. This approach requires many messages and may causethe initial state, the system is guaranteed to reach a et
network  saturation. To optimize these communications, ONe (coprect) state in a finite time [10]. Our approach builds fon
solution consists in structuring networks into clusters. h this . o
paper, we present a new self-stabilizing asynchronous didbuted oyerlapplng k-hops .Clu_s‘ters and ‘?'063 n_Ot requ're iniastn.
a|gorithm based on message_passing model. We compare thelt IS based on the criterion Of maximum |dent|ty attached’lE)t
proposed algorithm with one of the best existing solutions &ised nodes for clusterhead selection and relies only on the gierio
on message-passing model. Our approach does not require anyexchange of messages with the 1-hop neighborhood. The
initialization and builds non-overlapping k-hops clusters. It is choice of the identity metric provides more stability agin

based only on information from neighboring nodes with perialic d . iteri h bility d d weiaht of nod
messages exchange. Starting from an arbitrary configuratio, the ~@YNa@mic criteéria such as mobility degree and weight ot nodes

network converges to a stable state after a finite number of sps. The remainder of the paper is organized as follows. In
A legal configuration is reached after at mostn + 2 transitions  Section Il, we describe some related works of self-stahijz

and uses at most x log(2n + k + 3) memory space, wheren is  ¢|ystering solutions. Section Ill presents our contribntiin
the number of network nodes. Using theOMNeT++ simulator,  geotion v/, we describe the computational model used in
we performed an evaluation of the proposed algorithm to notaly . . .
show that we use fewer messages and stabilizing time is bette 1€ Paper and give some additional concepts. In Section V,
we first present a broad and intuitive explanation of the

algorithm before defining it more formally. In Section VI, we
present performance evaluation conducted withQMNeT++
simulator. Finally, we conclude and present some futurekwor
in Section VII.

In Ad Hoc networks, the most frequently used commu-
nication solution is diffusion. This is a simple technique Il. RELATED WORK
that requires few calculations. But this method is expeansiv
and may cause network saturation. In order to optimize thisSeveral clustering solutions have been done in the litera-
communication, which is an important source of resourdere [4], [5], [6], [7], [8], [11], [9]. Approaches [6], [7]{11],
consumption, one solution is to structure the network i9] are based on state model at opposed of message-passing
trees[1] or clusters[2]. model algorithms  [4], [5], [8].

Clustering consists in organizing the network into groups o Self-stabilizing algorithms presented in [4], [5], [6]][@re
nodes called clusters, thus giving a hierarchical strecf@8f. 1-hop clustering solutions.
Each cluster is managed by a particular node called clus-A metric calleddensityis used by Mitton etal. in [4],
terhead. A node is elected clusterhead using a metric sughorder to minimize the reconstruction of structures fow lo
as the mobility degree, node’s identity, node’'s densitg, etopology change. Each node calculates its density and broad
or a combination of these parameters. Several solutions csists it to its neighbors located at 1-hop. For the maintesman
clustering have been proposed. They are classified into df-clusters, each node calculates periodically its mgbditd
hop and k-hops algorithms. In 1-hop solutions [4], [5], [6]density.
[7] nodes are at a distance df from the clusterhead and Flauzac eal. [5], have proposed a self-stabilizing clustering
the maximum diameter of clusters & However, in k-hops algorithm, which is based on the identity of its neighborthoo
solutions [8], [9] nodes can be located at a distanck fobm  to build clusters. This construction is done using the iiiexst
the clusterhead and the maximum diameter of cluste®kis of each node that are assumed unique. The advantage of this
However, these approaches, generate a lot of traffic andreeqalgorithm is to combine in the same phase the neighbors
considerable resources. discovering and the clusters establishing. Moreover, deis

In this paper, we propose a self-stabilizing asynchronoteyministic algorithm constructs disjoint clusters, ,i.e.node
distributed algorithm that builds k-hops clusters. Dijlastle- is always in only one cluster.

Keywords-ad hoc  networks; clustering; distributed
algorithms; self-stabilizing; OMNeT++ simulator

|. INTRODUCTION
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In [6], Johnen etal. have proposed a self-stabilizing prothe number of network nodes. Using t©&INeT++ simulator,
tocol designed for the state model to build 1-hop clustevge performed an evaluation of the proposed algorithm and
whose size is bounded. This algorithm guarantees that tnecomparison with one of the best existing solution based
network nodes are partitioned into clusters where each ome message-passing model [8]. We show that we use less
has at mostSize Bound nodes. The clusterheads are choseanessages than and stabilizing time is better.
according to theirweight value. In this case, the node with
the higher weight becomes clusterhead. In [7], Johneal.et
have extended the proposal from [6]. They have proposed aVe consider our network as a distributed system that can
robust self-stabilizing weight-based clustering aldorit The be modeled by an undirected gragh= (V, E). V = n is the
robustness property guarantees that, starting from atrampi set of network nodes anfl represents all existing connections
configuration, after one asynchronous round, the networkhstween nodes. An edge:,v) exists if and only ifu can
partitioned into clusters. After that, the network stays-pacommunicate withv and vice-versa. This means that all links
titioned during the convergence phase toward a legitimaee bidirectional. In this case, the nodeandwv are neighbors.
configuration where clusters verify the ad hoc clusteringhe set of neighbors € V' of nodew is markedN,. Each

IV. MODEL

properties. nodew of the network has a unique identifie#,, and can
Self-stabilizing algorithms proposed in [8], [11], [9] ake communicate withV,.. We define the distancé,, ., between
hops clusters solutions. nodesu and v in the graphG as the minimum number of

In [11], using criterion of minimal identity, Datta ef. have edges along the path betweerandv.
proposed a self-stabilizing distributed algorithm desidjifior Our algorithm is designed for the asynchronous message-
the state model that computes a subskeis a minimalk- passing model following standard models for distributes- sy
dominatingset of graph=. Using D as the set oflusterheads tems given in [12], [13]. For this purpose, each pair of nodes
a partition ofG into clusters, each of radius k, follows. Thisis connected by a bi-directionnal link. Links are asynclous
algorithm converges irO(n) rounds andO(n?) steps and and messages transit time is finite but not bounded. Moreover
requireslog(n) memory space per process , wheras the links are reliable. They do not create, corrupt or lose ngp=sa
size of the network. Furthermore, each node periodically sends to its neighbors

Datta etal. [9], using an arbitrary metric, have proposed a message that is received correctly within some finite but
self-stabilizingk-clusteringalgorithm base on a state modelunpredictable time by all its 1-hop neighbors. Each nede
Note thatk-clusteringof a graph is a partition of nodes intomaintains a table containing the current state of its neighb
disjoints clusters in which every node is at a distance of@dtm at distance 1. Upon receiving a message, a no@xecutes
k from the clusterhead This algorithm executes i®(nk) our clustering algorithm.
rounds and require®(log(n) + log(k)) memory space per
process, where is the network size.

In [8], Miton et al. applied self-stabilization principles A. Preliminaries
over a clusterization protocol proposed in [4] and presents\y,e give some definitions used in the following.
properties of robustness. Each node calculates its demsity  pefinition 5.1: (Cluster) We define &-hopscluster as a
broadcasts it to its neighbors located at k-hops. This oSS  onnected graph in the network, with a diameter less than or
is an issue related to the dynamicity of ad hoc networks, Eﬁual t02k. The set of all the nodes of a clusieis denoted
reduce the time stabilization and to improve network siigbil V.
Definition 5.2: (Cluster identifier) Each cluster has an

o o unique identifier corresponding to the greatest node igenti
We propose a self-stabilizing asynchronous distributed &), jis cjuster. The identity of a cluster that owns a nadés
gorithm that builds k-hops clusters. Our approach is based 9anoteder. .

a message-passing model as opposed to solutions proposgf] or clusters, each node has a status notestatus,.
in [6], [7], [11], [9]. We use the criterion of maximum idetyti Thus, a node can be clusterhe@@ ), a Simple Nodd SN)

that brings more stability compared to metric variablesduse . 4 Gateway Nodeg(GN). Moreover, each node selects a

in [8], [4], [6], [7]. Our algorithm structures the networkpejghhory € N, notedgn,,, through which it passes to reach
into non-overlapping clusters with a diameter at most equgl ~ 7

to 2k. This structuring does not require any initialization. nqfinition 5.3: (Nodes status)

It is based only on info.rmation from neighboring nod_es. « ClusterheadCH): a nodeu hasCH status if it has the
Contrary to other clustering algorithms, we use an unique highest ID among all nodes of its cluster.

message to discover the neighborhood of a node at distance  _ g4rys, = CH = Yo € Vi, (ide > idy) A

1 and to structure the network into-hopsclusters. Starting (dist(u,v) < k).

from an arbitrary configuration, the network converges to a. Simple NodgSN): a nodeu hasSN status ifu and all

legal configuration after a finite number of steps. A legal its neighbors are in the same cluster.

configuration is reached after at most+ 2 transitions and — status, = SN <= (Vv € Ny,cly = clu) A (w €

requires at most xlog(2n + k+3) memory space, where s Viu/(status, = CH) A (distuw) < k)).

V. SELF-STABILIZING K-HOPS CLUSTERING ALGORITHM

IIl. CONTRIBUTION
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o Gateway Nod€GN): a nodeu hasGN status if exists a
nodewv in neighborhood in a different cluster.

— statusy, = GN <= Jv € Ny, (cly # clv).

Definition 5.4: (Node Coherence)

A nodeu is coherent node if and only iit is in one of the

following states:

o if status, = CH then (cl, = id.) A (dist(y,cr,) = 0) A

(gnu = idu),

o if status, € {SN,GN} then (clu # idu) A (dist,cm,) #

0) A (gnu # idy).

status = CH status = SN status = SN
cl =1 cl=2 cl
dist = O dist = 0O dist = 2
agn =2 gn =1 gn =1
= : <
(a) Incherence nodes
status = CH status = SN status = SN
cl=2 cl=2 cl=2
dist = O dist = 1 dist = 2
agn =2 gn =2 gn =1
= : <

(b) Coherence nodes

Fig. 1. Coherent and incoherent nodes

Definition 5.5: (Node stability)

A nodew is stable nodéf and only if its variables no longer
change, it is coherent and satisfies the following states:
o if status, = CH thenVv € N, (status, # CH) A {((cl, =
cly) A (idy < idu)) V ((clo # clu) A (diste,.cmr,) = k))}-

(Example of node in clusterVy)

o if status, = SN thenVv € Ny, (cl, = clu)A(dist(y,cm,) <
k) A (diste,cm,y < k). (Example of nodé in clusterVig

node7 in Vjy).

o if status, = GN then Jv € Ny, (cly
{((diSt(u,CHu) = k‘) A (diSt(v,CHv) S k})) Vv ((diSt(v,CHv) =
k) A (dist,cr,) < k))}. (Example of node2 in cluster Vo

or nodes8 in Vip).
Definition 5.6: (Network stability)

Starting from any arbitrary configuration, with only one
type of message exchanged, the nodes are structured in
non-overlapping clusters in a finite number of steps. This
message is callethello messageand it is periodically ex-
changed between each neighbor nodes. It contains the fol-
lowing four items information: node identityid, ), cluster
identity (cl,), node status(status,) and the distance to
clusterheadlist(, cx,). Note that cluster identity is also the
identity of the clusterhead. Thus, the hello message streic$
hello(id., cly, status,, dist(, cm,)). Furthermore, each node
maintains a neighbor tabl&tate Neigh, that contains the
set of its neighboring nodes states. Wheng&ite N eigh, [v]
contains the states of nodeseighbor ofu.

The solution that we propose proceeds as follows:

As soon as a node receives a hello message, it executes
Algorithm 1. During this algorithmu executes these three
steps consecutively. The first step is to update neighbakhoo
the next step is to manage the coherence and the last step is
to build the clusters. After this three steps,sends a hello
message to its neighbors.

After updating the neighborhood, nodes check their co-
herency. For example, as a clusterhead has the highestygent
if a nodeu hasCH status, its cluster identity must be equal to
its identity. In Figure 1(a), node is clusterhead. Its identity
is 2 and its cluster identity id, so node 2 is not a coherent
node. Similarly for node$ and0, because they do not satisfy
definition 5.4. Each node detects its incoherence and derrec
its during the coherence management step. Figure 1(b) shows
nodes that are coherent.

During the clustering step, each node compares its identity
with those of its neighbors at distanteA nodeuw elects itself
as a clusterhead if it has the highest identity among all aode
of its cluster. If a node: discovers a neighbar with a highest
identity then it becomes a node of the same cluster agth
SN status. Ifu receives again a hello message from another
neighbor that is in another cluster thanthe nodeu becomes
gateway node withz N status. As the hello message contains
the distance between each nadand its clusterhead, knows
if the diameter of cluster is reached. So it can choose anothe

The network isstableif and only if all nodes are stable nodescluster.

(see figure 2)

Legend:

Clusterhead Simple Node Gateway Node

Fig. 2. Stable Nodes - Stable network

B. Basic Idea of Our Solution

C. k-hops self-stabilizing algorithm

Each nodeu of the network knows thé parameter value
and executes the Algorithm 1.

VI. PERFORMANCE ANALYSIS

In [14], we have proved that our network is stable after
at mostn + 2 transitions and requires at mostx log(2n +
k+ 3) memory space. This reflects the worst case scenario of
a topology where the nodes form an ordered chain. Ad Hoc
networks are often characterized by random topologies.

In order to evaluate the average performance of our solution
in a random topology, we have implemented our algorithm
using theOMNeT++ environment simulation [15]. For gen-

Our algorithm is self-stabilizing and does not require amgrating random graphs, we have us&dAPlibrary [16]. All

initialization.

Copyright (c) IARIA, 2013.  ISBN: 978-1-61208-257-8
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Algorithm 1: k-hops clustering algorithm

/* Upon receiving message from a neighbor */
Predicates

Pi(u) = (status, = CH)

Py (u) = (status, = SN)

Ps(u) = (status, = GN)
Pro(u) = (clu # idy) V (disty,cm,) 7 0) V (gnu # idu)
Pao(u) = (clu =idy) V (dist,,cm,) = 0) V (gnu = idu)
P40(u) =
Vv € Nu, (idy > idy) A (idu > cly) A (dist, ) < k)
Pyi(u) = Jv € Ny, (status, = CH) A (cly > clu)
Piz(u) = Jv € Ny, (cly > clu) A (dist(y,cm,) < k)
Pyz(u) = Vv € Nu/(cly > clu), (dist,cm,) = k)
Puy(u) = v € Ny, (clv # clu) AN{(dist,cn,) =

d

ist,cm,) = k)}

NeighCH, = {id,/v € Ny A statut, = CH A cly, = cly}.

NeighMaz, =
(Maz{id, /v € Ny A statut, # CH Acly =cly}) A
(diste,cm,y = Min{distz cu,), * € Nu A cle = cly}).

Rules
/* Update neighborhood */
StateNeigh.[v] := (idy, cly, status,, dist(, cm,));

for arbitrary topologies, the average stabilization timéélow

n + 2, formal value proved in the worst case. Moreover, the
number of transitions needed to reach a legal configuration
appears stable when the network size increases (500 to 1000
nodes).

To observe the impact of the network density as illustrated
in figure 3(b), we consider a network size of 100, 200 and
400 nodes and we vary the nodes degree. We observe that
the stabilization time decreases as the nodes degree $esrea
The main reason is due to the fact that each node has more
neighbors, thus during each transition, we have more nodes
that fixed at the same time. With our approach, we have a
better stabilization time with networks of high density.

B. Scalability

To examine the scalability of the proposed solution, we vary
the number of nodes in the network at the same time as the
density of connectivity. Fok = 2, we consider a network size
of 100 to 1000 nodes. For each value of the network size, we
vary the density froml0% to 100%. Note that we generate
Erdos-Renyi random graphs modelsing SNAPlibrary. We

obtain the 3D curve illustrated in figure 4. We note that excep
for low densities (0% and20%), the stabilization time varies
slightly with the increasing number of nodes. In case of a low
network density, we observe a peak that is due to longer shain
in the network topology. With these series of simulation, we
can make two remarksi)(The only determining factor with
our approach is the density of connectivity and our solution
is scalable. i{) On average, for networks with an arbitrary
topology, the stabilization time is far below that of the &tor
case { + 2 transitions).

[* Cluster-1: Coherent management */

Rlo(u) Py (u) A P1o(u)

— cly = idy; gne = idu;dist(u’CHu) =0;

Rgo(u) i {Pg(u) V Pg(u) } A\ PQo(u) —

status, := CH;cly :=idy; gny = idy; dist(u’CHu) =0;

[* Cluster-2: Clustering */

Rll(u) i —‘P1(u) A P40(u) —

status, := CH;cly = idy; dist(u’CHu) = 0; gny 1= idy;
Riz(u) i =P1(u) A Pai(u) — status, := SN;cly :=
idy; dist(um) = 1;gn, := NeighCHy;

Riz(u) i =P1(u) A Paz(u) — status, := SN;cly :=
cly; distey,cm,) = dist,,cm,) + 15 gnu := NeighMaz.;
R14(u) Y =1 (u) A\ P43(u) —
status, := CH;cly = idy; dist(u’CHu) =0
Ris(u) i@ Pa(u) A Paa(u) — status, := GN;
Rig(u) = Pr(u) A Piu(u) — status, =

idy; dist(y,) = 1; gnu = NeighCHy;

Ri7(u) i Pi(u) A Pia(u) — status, := SN;cly =
cly; distu,cm,) = dist,cm,) + 15 gnu := NeighMax.,;

Stabilizing time

/* Sending hello message */
Ro(u) :: hello(idu, clu, status., dist(,, cm,));

Density of network

A. Impact of density and network size on the stabilizatioeti

First, we study the impact of nodes degree and network Fig. 4. Scalability

size on the stabilization time. In figure 3(a), we have fixed

a hops numbek = 2. For each node degree 68f 5 and 7 _

we consider a network size from 100 to 1000 nodes. Note Size and number of clusters

that we generatd-regular graphs modelasing SNAPIlibrary, As the density of connectivity is the determining factor for
where d represents node’s degree (number of neighbors four algorithm, we evaluate the number of clusters obtained
each node). For each given network size, we compute severatording to the network density. Fér = 2, we consider
series of simulations. We give the average stabilizatioetas a network size of 100, 500 and 1000 nodes. We vary the
the average of all values corresponding to simulation tesulnode degree from 5 to 100 neighbors. Figure 5(a) shows that
We note that the stabilization time increases as the numbegardless the number of nodes in network, we get less ciuste
of nodes in the network increases. Furthermore, we note thdien the number of neighbors increases. In fact, in denser
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Stabilizing time
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(a) Stabilization time according to the number of nodes

Fig. 3.
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(b) Stabilization time according to nodes degree
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(b) Size and number of clutsers

Size and number of clusters

networks, nodes with the largest identity absorb more nod480, 500 and 1000 nodes. For each network size, we vary the

into their clusters.

parameter from 2 to 10. Figure 6 shows the stabilization time

As we have more clusters with low density, we consideraccording to the variation of thie parameter. We observe that
network size of 1000 nodes with 5 neighbors for each nodée stabilization time decreases as thparameter increases.
We evaluate nodes distribution between clusters. We nate tHn fact, if £ parameter increases and because the hello message
as illustrates in figure 5(b), we have clusters of variatte.si contains the distance between each ne@ad its clusterhead,

We have 39 singleton clusters, aroutfd of the total number the sphere of influence of the largest nodes increase. Thus,
of nodes. We also note that the highest identity clustetsdiec nodes carrying fewer transitions to be fixed atCdf. In

the more nodes its. The main reason is due to the fact thla¢ end, we have fewer clusters. Nevertheless, in the case
nodes choose a8 H those with the highest identity.

D. Impact of the k parameter

60

50 r

Stabilizing time

f degrée=5
, degree=5

, degree=5 -
, degree=5
, degree=5

Fig. 6.

Impact ofk parameter

10

of a small value of the: parameter, we have more clusters
with small diameters. Therefore, it requires more traosgi
to reach a stable state in all clusters. Note that regardthess
value of thek parameter, the stabilization time is far below
that of the worst case scenario { 2 transitions).

E. Comparison with a well known solution based on message-
passing model

In message-passing model, their exist few solutions. We
compare our approach with a well known existing solution in
message-passing model [8]. We compare these two approaches
in terms of number of messages exchanged K(eceived
messages) and number of clusters. We have implemented
our algorithm and [8] on OMNeT++ environment simulation.
Simulations are made within the same random graph.

In order to evaluate number of exchanged messages, we fix
the node degree 8tand6 and we consider a network size from

In order to observe the impact of tihgparameter, we fix the 100 to 1000 nodes. For each given network size, we compute
node degree at 5 and we consider a network size of 100, 266vyeral series of simulations. We give the average number of
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Fig. 7. Comparison with Mitton et al. [8]

exchanged messages in the network to achieve the legal statpology change.
Figure 7(a), show that our approach generates less messages
than [8]. The main reason is due to the fact that our approach _ _ _ _
is based only on information from neighboring at distance This work is supported in part by Regional Council of
to build k-hopsclusters. As opposed to solution [8], each nodehampagne-Ardenne and European Regional Development
must know{% + 1}-Neighboring computes itk-densityvalue Fund. The simulation are executed on Grid’5000 experintenta
and locally broadcasts it to all its-neighbors This is very testbed, hosted at the ROMEO HPC Center.
expensive in terms of exchanged messages. The authors wish to thank the reviewers and editors for their

We also evaluate the number of clusters obtained by bothluable suggestions and expert comments that help improve
approaches. As illustrates in figure 7(b), our approacht buine contents of paper.
more than clusters. Moreover it generates less messagiss. Th
implies that our clusters are less densely. Therefore, &asy L Bin MG P 5 4 S Rovedakis. “Siisiini

. Blin, M. G. Potop-Butucaru, an . Rovedakis, “ izing
manage by the clusterhead and consumes fewer- re,sourcgg'minimum degree spanning tree within one from the optimalreley
Less densely clusters leads to a decrease communicatidns an jppc, 2011, pp. 438 — 449.
an optimization of resource consumption. [2] A. Datta, L. Larmore, and P. Vemula, “Self-stabilizingalder election
: in optimal space,” in SSS, 2008, pp. 109-123.

. Note that we .have made comparisons for= 2. In fa(?t’ ési] C. Johnen and L. Nguyen, “Self-stabilizing weight-bdselustering
if k£ parameter increase, the broadcast area of solution [8] algorithm for ad hoc sensor networks,” in ALGOSENSORS, 206
increases. Whereas our approach is based only on a neigih- 83-94.

: : 4] N. Mitton, A. Busson, and E. Fleury, “Self-organizatiom large scale
borhood of a node at distandeto structure the network into ad hoc networks.” in MED-HOC-NET, 2004.
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