
Towards Autonomous Load Balancing for Mobile Data Stream Processing and
Communication Middleware Based on Data Distribution Service

Rafael Oliveira Vasconcelos and Markus Endler
Department of Informatics

Pontifical Catholic University of Rio de Janeiro (PUC-Rio)
Rio de Janeiro, Brazil

rvasconcelos@inf.puc-rio.br, endler@inf.puc-rio.br

Berto de T. P. Gomes and Francisco J. da Silva e Silva
Graduate Program Electric Engineering (PPGEE)

Federal University of Maranhão (UFMA)
São Luı́s, Brazil

bertodetacio@ifma.edu.br, fssilva@deinf.ufma.br

Abstract—Intelligent Transportation Systems, Fleet Manage-
ment and Logistics, and integrated Industrial Process Automa-
tion share the requirement of remote monitoring and high
performance processing of huge data streams produced by
large sets of mobile nodes. The deployment and operation
of infra-structures enabling such mobile communication and
data stream processing have two key requirements: they must
be capable of (a) handling large and variable numbers of
wireless connections to the monitored mobile nodes regardless
of their current use or locations, and (b) automatically adapt
to variations in the volume of the mobile data streams. This
article describes a mechanism for load balancing of mobile
data streams based on the autonomic reference model MAPE-
K. The autonomic capability has been incorporated into a
scalable middleware system based on the OMG DDS standard
and aimed at real-time and adaptive handling of mobile
connectivity and data stream processing for great sets of
mobile nodes. Besides explaining the autonomic extension of
this middleware (MAPE-SDDL) and the generic load balancing
approach implemented, we also present results of initial tests
and discuss the potential benefits of using this model for general
dynamic adaptivity in distributed middleware.

Keywords-Load balancing; Data Stream Processing; Auto-
nomic computing; DDS; mobile communication middleware.

I. INTRODUCTION

As the public and private sectors are increasingly investing
in Intelligent Transportation Systems for smarter cities,
Logistics, and integrated Industrial Process Automation that
depend on monitoring of the real world objects (and people)
through wireless interfaces, systems for mobile tracking,
communication and coordination are becoming common-
place. Such applications share the requirement of remote
monitoring and high performance processing of huge data
streams produced by large sets of mobile nodes, which may
be vehicles, people, or other smart objects with embedded
sensors. Although some sorts of data processing may be
performed locally at the mobile nodes (i.e., simple sensor
data encoding or interpretation), most other application-
relevant information about the monitored mobile system as
a whole that requires execution of complex analysis and
correlation functions over these mobile data streams, in real-
time, has to be done by dedicated machines in a cluster

or cloud. For example, it may be necessary to identify all
the nodes that are located inside a region affected by some
problem/accident and which may imply some danger or
cost to the corresponding nearby mobile users. Moreover,
these systems must also support timely and reliable com-
munication with the monitored mobile nodes, in order to
send instructions, share alternative routes, make enquiries or
disseminate alerts, either to nodes individually, or to groups
of nodes [1].

However, today’s mobile communication and data stream
processing systems lack important features that are neces-
sary in order to support the large amounts of data flows
envisioned by the massive and ubiquitous dissemination of
sensors and mobile devices in industry and city-scale ap-
plications. In particular, the deployment and 24x7 operation
of such mobile data stream processing and communication
infra-structures pose two intrinsic technical challenges: they
must be capable of (a) handling huge and variable numbers
of connections to the monitored mobile nodes regardless
of their current locations, and (b) automatically adapt to
variations in the volume of the mobile data streams, either
because of sudden increase in the set of nodes (e.g. a popular
event happening in a region), intensified message exchange
among the mobiles, or because new sensed data is required
for a more precise analysis of a regional problem, such as
road defect or an potential accident. In order to address these
challenges we have developed a scalable middleware system
that supports efficient and adaptive handling of mobile
connectivity and data stream processing for thousands of
mobile nodes. In this paper, we specifically explain the
autonomic load distribution mechanisms implemented in the
middleware, and discuss their potential benefits.

The remainder of this paper is organized as follows:
Section II gives an overview of the enabling technologies,
which are the Data Distribution Service for Real-Time
Systems standard and the MAPE-K reference model for
autonomic systems; Section III presents the Scalable Data
Distribution Layer (SDDL) used as the middleware for
mobile communications and the MAPE-SDDL extension,
which adds autonomic capabilities to the SDDL middleware;

7Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

Section IV delves into the proposed Data Processing Slice
Load Balancing approach for mobile data streams and shows
initial performance results of the implemented system using
a prototype application. Section V reviews related work
on load balancing for Publish/Subscribe systems, including
DDS. Section VI discusses the advantages of using an
autonomic approach for load balancing and the benefits of
the load balancing solution proposed by this work. Section
VII contains with some concluding remarks about the central
ideas presented in this work and with probable lines of future
work on the subject.

II. ENABLING TECHNOLOGIES

The efficiency, scalability and adaptiveness of our mid-
dleware system builds upon a combination of the following
two key technologies.

A. Data Distribution Service for Real-Time Systems

The Data Distribution Service for Real-Time Systems
(DDS) [2] is an Object Management Group (OMG) standard
which specifies a publish/subscribe communication infras-
tructure aimed at high performance and real-time distribution
of critical information in distributed systems. This specifi-
cation was designed with the intention of obtaining a high
scalability, portability and interoperability [3]. The DDS was
conceived around a Data-Centric Publish-Subscribe (DCPS)
model based on topics, which makes the complex program-
ming of distributed communication protocols transparent
to the developer. Topics are typed structures that connect
Publishers to Subscribers and is where it is located the in-
formation that will be exchanged on the network. Publishers
and Subscribers of a DDS Domain (the collection of nodes
pertaining to a single application) are containers for Data
Writers and Data Readers, respectively, which exchange
typed data through a common Topic.

Specifically, the DCPS automatically manages delivery of
all DDS messages in a totally decoupled and asynchronous
way, i.e. without requiring the application to explicitly deter-
mine which will be the sender and receiver of each message,
or handle message acknowledgements and retransmissions.
The DCPS makes it possible to organize its Topics in a
relational model, providing support for identity and relations,
i.e. for each Topic it is possible to define one or more
primary keys, and any number of foreign keys representing,
respectively, relationships with other Topics. It also supports
a large array of Quality of Service (QoS) policies for
communication (e.g. best effort, reliable, ownership, several
levels of data persistency, data flow prioritization and several
other message delivery options) [3] [4].

Unlike traditional Publish-Subscribe middleware, DDS
can explicitly control the latency and efficient use of network
resources through fine-tuning of its Network Services, that
are critical for implementing real-time and soft real-time

systems that use QoS policies such as Deadline, Latency
Budget, Transport Priority, etc.

Among the several existing implementations, we chose
CoreDX DDS [5] as the basic communication substrate.
The reason for choosing DDS as the communication layer
is the fact that it is focused on high-performance and low-
overhead, with great latency and message throughput num-
bers. CoreDX DDS includes fundamental design principles
aimed to meet the requirements of real-time and near-
real time systems, including minimal data copies, compact
encoding on the wire, light-weight notification mechanisms,
pre-allocation of resources and pre-compilation of type-
specific code blocs.

B. MAPE-K: a Reference Model for Autonomic Systems

The MAPE-K [6] (Monitoring, Analysis, Planning, Ex-
ecuting and Knowledge) model, illustrated in Figure 1, is
a general architecture for the development of autonomic
software components, as proposed by IBM [7]. This model is
being increasingly used to interrelate the architectural com-
ponents of autonomic systems. It is divided into two main
components: autonomic manager and managed resource.

Figure 1. MAPE-K Autonomic Architecture

The managed resource corresponds to the system or some
system component providing the business logic that is to be
dynamically adapted as the computing environment changes.
The managed resource can be, for instance, a Web server, a
database, a software component in a given application (e.g.,
the query optimizer in a database), an operating system,
etc. The autonomic manager performs all the functions
comprising the adaptation logic on the managed resource:
monitoring, analysis, planning, and adaptation execution.
This model requires two types of touch points within and
outside the managed resource: sensors and effectors. Only
they have direct access to the managed resource. Sensors
are responsible for collecting information from the managed
resource, which can be, for instance, the customers requests
response time, if the managed resource is a Web server.
The information collected by the sensors are reach the
monitors, where they are interpreted, classifieds and placed
in a higher level of abstraction. They are then sent to the

8Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

next step of the cycle, the analysis and planning phase.
This stage produces an action plan, which consists of a
set of adaptation actions to be performed by the executor.
The effectors are the components that allow the autonomic
managers to perform adjustments in the managed resources.
The decision of which adaptation actions must be applied
in a given situation requires a knowledge representation of
the computing system and its environment. This knowledge
can be represented and processed in different ways (e.g.,
Ontologies, basic ECA-Rules, machine learning, etc.) and
must be shared among the monitoring, analysis, planning
and executing services of the autonomic manager.

III. THE SDDL MIDDLEWARE AND ITS EXTENSIONS

A. Overview of the Scalable Data Distribution Layer

The Scalable Data Distribution Layer (SDDL) [4] [8] is
a communication middleware that connects stationary nodes
running in a DDS Domain and deployed in a cloud to mobile
nodes that have an IP-based wireless data connection, as
illustrated in Figure 2. Some of the stationary nodes are
data stream processing nodes, while others are gateways
for the communication with the mobile nodes (MNs). Gate-
ways use the Mobile Reliable UDP (MR-UDP) protocol to
maintain a virtual connection with each MN. The MR-UDP
protocol was developed to be robust to short-lived wireless
disconnections, IP address changes of the MNs and capable
of Firewall/NAT traversal. One of the nodes in the DDS
Domain, the Controller, is also a Web Server that can be
accessed by a Web browser, for displaying all the MN’s
current position (or any other node specific information)
and for send unicast, broadcast, or groupcast message to
the mobile nodes. Figure 2 shows other nodes in SDDL that
are Load Balancer, PoA-Manager and Processing Nodes. All
nodes showed in Figure 2 will be explained throughout this
work.

Figure 2. SDDL Architecture

Taking advantage of DDS’ distributed P2P architecture
and its highly optimized Real-Time Publish Subscribe wired
protocol, SDDL is naturally scalable, i.e. new processing
nodes or Gateways can be dynamically added to SDDL’s
core whenever more MNs have to be served, or new data
flow processing is required. In regard to the connections
with the MNs, whenever some Gateway is overloaded the
data flow to and from a large set of MNs, SDDL is capable
of seamlessly migrating a fraction of this set of MNs to
a underloaded Gateway. This is possible through a SDDL-
internal management node, called the PoA-Manager, which
continuously monitors the load of each Gateway - in terms
of the number of served MNs - and a Client communi-
cation library (CNClib) at the MNs, which accepts both
updates of alternative Gateway addresses and/or commands
to reconnect to a new Gateway address, from the PoA-
Manager. In spite of the unavoidable mobile disconnection,
these handovers between Gateways are very fast and com-
pletely transparent to the client applications running on the
mobile nodes. On the one side, the messages from the MN
are buffered in the CNClib until the new connection is
established, and on the other side, messages addressed to
the MN are also temporarily intercepted by a SDDL node
and then re-routed to the new Gateway, as soon as it signals
the connection establishment.

B. MAPE-SDDL: an Autonomic Extension for the SDDL

In order to address general dynamic adaptivity require-
ments for the SDDL middleware, we decided to extend it
with autonomic capabilities. This extension, inspired by the
MAPE-K loop, is called MAPE-SDDL. The goal is to sup-
port resource monitoring, as well as analysis, planning and
execution of dynamic reconfigurations on components of the
SDDL middleware. It comprises four services: Monitoring
Service (MS), Local Event Service (LES), Analysis and
Planning Service (APS), and Control and Executing Service
(CES).

The MS collects data from any SDDL resources, such as
Gateways and Processing Nodes. The monitoring is applied
to properties from these resources, such as: CPU load,
amount of memory available, network bandwidth and la-
tency, number of served MNs (by each Gateway) or number
of DPSs assigned to each Processing Node (see DPS concept
in Section IV-A). Each property is associated with a set of
operation ranges, which are defined by the framework user.
For example, one could use the following operation ranges
for monitoring the CPU load usage: [0%,30%], [30%,70%]
and [70%,100%]. The MS then notifies the LES (located at
the same node) whenever the monitored property switches its
operation range, which might indicate a significant change
on resource usage.

The LES receives these range change events from the
MS and publishes event notifications to subscribed compo-
nents. Events are occurrences which indicate that a resource

9Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

availability condition extended itself throughout a specified
amount of time, i.e., its duration time. Event evaluation is
based on regular expressions written by application develop-
ers or operators, as part of each event definition. For an event
notification to be triggered, the corresponding expression
must remain valid during the specified duration time. This
avoids the generation events when short-lived situations
occur (e.g., a CPU load peak on a Processing Node during
a few seconds).

The APS analyzes the received event notifications and
makes a diagnosis of the problems to be solved. Mobile
connection overload on the Gateways, and unbalanced load
between Processing Nodes are examples of problems that
are already diagnosed by the APS of MAPE-SDDL. After
diagnosis, the APS will seek the dynamic reconfiguration
actions to resolve the problem, and then build an appropriate
action plan. The decision-making for building the plan
is defined by the user through the use of rules and a
rule processing engine. Each type of reconfiguration action
supported by CES receives a UID. This identifier is included
in the action plan in order to allow the CES instances to
know what reconfiguration actions must be performed. The
action plan for mobile connectivity management takes the
form of a mandatory handover request to several mobile
nodes (with a new Gateway address list) that is generated
by the PoA-Manager, an instance of the APS. In the case
of the load balancing process, the action plan is a sequence
of actions to the Processing Nodes, as will be explained in
Section IV-A

Finally, the CES is the adaptation engine that applies
the corresponding reconfiguration actions at the resources
in response to their availability/load changes. Among the
types of dynamic reconfiguration actions supported is the
ability of moving DPSs from a Processing Node to another
(cf. Section IV-A) The ability to migrate to some set of
MNs form one Gateway to another (cf. Section III-A) is
also implemented by CES, which in this case, resides in the
mobile Client Lib, which performs the disconnection from
one Gateway and the reconnection to the new Gateway. In
the load balancing process the CES is implemented as part
of the Cache manager at each Processing Node.

IV. LOAD BALANCING OF MOBILE DATA STREAMS

A. Proposed Autonomous Approach

This work proposes a load balancing solution for DDS-
based systems named Data Processing Slice Load Balancing
(DPSLB). The key concept of the proposed solution is the
Data Processing Slice (DPS), which is the basic unit of
load for balancing among server nodes. These nodes will
be called Processing Nodes (PNs) throughout the text. The
general idea is that each PN has some DPS assigned to it,
and that load balancing is equivalent to a redistribution of
the total number of DPS among the PNs according to their

current load (which is indicated by several metrics, such as
CPU and memory utilization).

The types of DDS nodes that compose the DPSLB ap-
proach, showed in Figure 2, are PNs, which execute the
MS, LES and CES (only Execution Service) services, and
the Load Balancer, which executes the APS and CES (only
Control Service) services of the MAPE-SDDL. The Load
Balancer is responsible for monitoring the load of PNs,
generating the actions to redistribute the system’s workload
when an unbalance is detected and controlling the actions
executed by PNs to move DPSs between them.

As mentioned, the proposed solution relies on the concept
of DPS, or simply, Slice, which represents a percentage of
the total system workload being processed by the PNs. Every
data item of the data stream (e.g. produced by a mobile node)
must have assigned a single DPS, in order to be processed
by some PN. If a data item has no associated Slice, it will
not be delivered to a PN for processing. Each Slice is logical
identified by a unique numeric ID (identifier), commonly in
a range between zero and the total number of defined Slices,
minus one. Thus, the DDS Topic carrying application data
produced by the publishing nodes has a specific numeric
field holding the Slice-ID assigned to each data item.

The Attribution Function, is responsible for choosing a
valid DPS for each produced data item. The DPSLB solution
requires the Attribution Function to be a very low cost
function, since it has to compute/choose a DPS for each
produced data item, and this data will probably be produced
at a very high rate. This function may be a hash function
applied to a field of the data item, to the data producer’s
ID, or a random value. A good candidate function for this
is modulo operator (remainder of division). The Attribution
Function does not have to ensure that the data items are
uniformly distributed over the total set of Slices.

Load Balancing Process is the process of moving Slices
from a PN to another. The process is started when the Load
Balancer detects a load unbalance of the system and decides
that some DPS should be moved to a different PN to reach a
better load balance. During this process both PNs involved,
i.e the Slice-giving and the Slice-taking PN, must work in
a coordinated manner so to guarantee that all data items are
processed, and only by one of the PNs.

The Load Balancer plays the role of coordinator of the
actions executed in the Load Balancing Process, which are
effectively executed by the overloaded and the underloaded
PNs. Figure 3 illustrates the redirection of the data stream
when Slice DPS-5 is moved from PN A to PN B. During
the Load Balancing Process both PNs receive the data items
of DPS-5, but initially none of them will process the data
from this DPS. Instead, they store these received data in their
local caches. Then, PN A sends its cached items to B. After
receiving A’s cached items, PN B has to identify the data
items that appear in both caches and then generate a Merged
Cache, which contains all data items of DPS-5 without

10Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

Figure 3. Data flow during Load Balancing Process

duplicates. Thus, the specific sequence of actions sent by
the Load Balancer to move a DPS between two PNs are: (i)
Update DPS’s state at A to Cache Data Items, (ii) Add DPS
at B with Cache Data Items state, (iii) Remove DPS at A, (iv)
Update DPS’s state at B to Process Data Items and (v) Send
cache from A to B. After this, B will generate and process the
Merged Cache, and A will continue to process the data of its
other Slices. The Add and Remove actions determine if the
corresponding data items are delivered or not, respectively,
to a node in a DDS Domain. This is possible by a dynamic
adjustment of the subscriber filters.

B. Preliminary Test Results

Initial dynamic adaptation tests performed with the
MAPE-SDDL middleware have already shown encouraging
performance results. Regarding MAPE-SDDL’s connectivity
load balancing, we did the following test: We initially con-
nected 600 simulated mobile nodes (MNs) to one Gateway,
and then activated a new ’empty’ Gateway. After a while, the
PoA-Manager identified a load unbalance, and requested half
of the MNs to migrate simultaneously to the new Gateway.
At this bulk handover, all 300 MNs were able to reconnect
at the new Gateway in less than 750 ms and none of the
data items produced regularly (every 10 seconds) by each
of the MNs was lost.

In order to evaluate the DPSLB solution and its imple-
mentation, we developed a prototype application (in Java
and using CoreDX DDS) that utilizes the DPSLB prototype
for balancing of its data processing load. This prototype
application consists of clients that publish color images into
the DDS domain, and PNs that receive the images, convert
them to grayscale and, thereafter inform the corresponding
client about completion of the image processing. Both
communication paths happen trough two DDS Topics.

Figure 4 illustrates the deployment of the prototype appli-
cation used for evaluation. Clients publish images through

Figure 4. Deployment of the evaluation application

the ClientTopic and PN servers reply with completion no-
tifications published into the ServerTopic. The ClientTopic
has fields: sliceId (required by DPSLB to produce the
merged cache); id of the data item; senderId to identify the
client; timestamp to inform the data item creation time and
message, that carries the serialized image. The ServerTopic
holds fields: the data item id, timestamp, senderId and
message, which carries the reply message, a serialized Java
String, such as “Processed”. Although this message could
as well carry the result image (grayscale), this application
prototype sends only a “OK” message, since the content
and size of the reply message is irrelevant for evaluating
the DPSLB solution. The Load Balancer analyzes the load
of PNs and, transparently to the application, balances their
image processing workload. It is important to stress that
there is no communication, neither directly nor indirectly,
between clients and the Load Balancer. Hence, the load
generated by clients does not affect the Load Balancer, only
the PNs.

DPSLB prototype was tested with data/image publication
rates starting from 160 (1,4 MB/s) up to 1.365 (10 MB/s)
data items per second. The Attribution Function of choice
was the modulo operator applied on the id field, and the
number of available slice was chosen to be ten. The setup
used for the experiment was the following: 5 PNs, one Load
Balancer and a Client simulator deployed on three Physical
Machines. executing in a LAN with bandwidth 100 Mbps.
Each PN executed on a dedicated Virtual Machine running
the Ubuntu [64] 12.04 32-bit Operating System, configured
to use one CPU core and 512 MB. The three physical
machines had following configurations: Intel i5 4 x 2.66
GHz, 8 GB DDR3 1333 MHz running Windows 7 64-bit;
Intel i5 4 x 3.1 GHz, 8 GB DDR3 1333 MHz running Fedora
15 64-bit; and Intel Dual-Core 4 x 2.66, 8 GB DDR2 667
MHz running Mac OS X 10.7.5.

To assess the Load Balancing overhead, we compared the
throughput and the mean RoundTripDelays (RTD) of the
same image processing application using CoreDX DDS in
two configurations: using the DPSLB solution and without

11Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

Load Balancing support. The overhead of the DPSLB so-
lution was expressed by percentages (%) of the throughput
loss, and the mean RTD increase, respectively. To evaluate
the DPSLB overhead, 10.000 data items were produced with
a data production rate of 1.150 data items per second (DI/s).
The application using DPSLB was able to process 81,044
DI/s and the application without any load balancing support,
was able to process 82,194 DI/s. These numbers show an
overhead of 1,4% introduced by the DPSLB implementation.
Regarding to the RTD, the application using DPSLB had a
mean RTD of 60,45 seconds, while the application without
DPSLB delivered a mean RTD of 59,51 s. This difference
represents an increase of 1,58% on the RTD. The mean time
required to complete a Load Balancing Process with a data
production rate of 10 MB/s and ten slices was 454 ms.

V. RELATED WORKS

There is much research and development of autonomic
load balancing in middleware for distributed systems, but
to the best of our knowledge, there is no other work that
leverages the benefits of the MAPE-K model for dynamic
adaptiveness in DDS-based systems, and more specifically,
proposes a load balancing approach for mobile data stream
processing that is reliable, efficient and flexible. However,
[9] [10] [11] propose load balancing mechanisms for dis-
tributed systems, either for the routing layer or the data
processing layer.

The work by Cheung et al. [9] has developed a load bal-
ancing mechanism to balance the subscription load among
Brokers on the Padres Pub/Sub system, where publishers or
subscribers may freely migrate among Brokers. While [9]
focuses on the routing layer for a broker-centered Pub/Sub
system and clients (publishers or subscribers) are impelled to
change their Brokers for data flow load balancing, DPSLB
solution is based on DDS’ P2P architecture for balancing
the load among Processing Nodes.

REVENGE [10] is a DDS-compliant infrastructure for
news dispatching among mobile nodes and which is capable
of transparently balancing the data distribution load within
the DDS network. In the same way, [10] only load balances
the routing substrate, while MAPE-SDDL is able to load
balance the mobile connections via PoA-Manager and pro-
cessing nodes via Load Balancer in the DPSLB.

In [11], a non-coordinated load balancing approach that
relies on Magnetic Fields is proposed: the idea is that
underloaded nodes attract data from overloaded nodes. In
an completely opposite way, the Load Balancer in DPSLB
performs the MAPE-K tasks of Analysis, Planning and
Execution, and carefully synchronizes the re-allocation of
Data Processing Slices from one Processing Node to another.
This has the advantage of a more efficient and reliable load
balancing, but the drawback of the dependability of the Load
Balancer.

VI. DISCUSSION

This paper proposed a novel approach to load balancing
mobile connections and data streams based on the MAPE-K
model, which entails several advantages that go far beyond
a simple boost of performance. Most current load balancing
methods are quite inflexible, since they always make same
sorts of decision, without considering that the system may
require different load distribution approaches depending
on the current state of data stream processing (high/low
load) or the state of the infra-structure (e.g. node failures,
communication failures, re-organization, etc.). Moreover,
by being disassociated from any Autonomic architecture,
traditional load balancing mechanisms fail to incorporate
self-monitoring, self-analysis and self-adaptation behavior as
response to changes in the execution environment.

Since our load balancing mechanism is structured accord-
ing to the MAPE-K model it is able to deliver sustained
load balancing performance under various conditions. For
example, based on the information collected by MS, CES
is capable of adjusting parameters of the load balancing
algorithm directly (i.e. parametric adaptation). For other
changes of conditions, CES may even substitute the load
balancing algorithm by a more effective one. Adaptation can
also be used to circumvent failures of Processing Nodes and
Gateways. For these cases, the APS can choose the best
parameters, algorithms or techniques for handling outage
of failed elements, and recovery actions. Finally, it is also
possible to implement a machine learning technique in the
APS, which would allow the load balancing mechanism
to anticipate future change demands, and thus react in a
more effective and efficient way. This knowledge about past
behavior and adaptation performance of the system would
have to be represented and analyzed by the adaptation logic,
which is a feature made possible in the MAPE-K model.

Furthermore, our load balancing approach for Data Stream
Processing is targeted at DDS-based systems, which support
fully decentralized system architectures. It is a generic
solution, transparent to the SDDL applications, able to route
data streams to Processing Nodes with low overhead and is
inherently scalable, i.e. it supports large numbers of nodes
and large-volume data streams. The DPSLB Solution works
with any type of application object/message and is totally
transparent to the application developers, who must only
inform which DDS Topics are subject to load balancing by
DPSLB. They can still customize their applications with the
DDS QoS policies of their choice.

Also, since Processing Nodes can dynamically join or
leave the system during operation, DPSLB supports seamless
variations of computational resources, i.e. scalable systems.

Finally, the DPSLB also supports customization since
several load balancing algorithms (i.e. implemented in APS
of MAPE-SDDL) can be applied at the Load Balancer.

12Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

VII. CONCLUSION AND FUTURE WORK

The need for remote monitoring and high performance
processing of large mobile data streams in a timely manner
is becoming common to many systems such as Intelligent
Transportation Systems, Fleet Management and Logistics,
and integrated Industrial Process Automation.

The main contribution of this work is the development
of a novel approach to load balancing that has two main
novelties: its autonomic behavior based on MAPE-K model
and the use of DDS as its communication infra-structure.
The underlying middleware, MAPE-SDDL, supports not
only load balancing of mobile connections among different
Gateways but also node balancing of data stream process-
ing across multiple Processing Nodes. To the best of our
knowledge MAPE-SDDL is the first middleware that has
developed an autonomous load balancing approach tailored
to DDS-based systems. Preliminary performance evaluations
have shown encouraging results what motivate us to continue
the development of SDDL and its autonomic extensions.

By being disassociated from any autonomic reference
model, traditional load balancing mechanisms fail to in-
corporate self-* properties, which are the pillars for the
development of more adaptive and scalable systems. More-
over, most of the traditional load balancing approaches are
not well suited for high-throughput mobile communication
and data stream processing systems, as they are not based
on a communication layer with real-time communication
capabilities. On the other hand, our load balancing approach
was specially designed for decentralized systems based on
the DDS standard, and hence is capable of fulfilling appli-
cation requirements such as real-time and high throughput
data communication and processing, scalability and fault
tolerance.

Preliminary tests have yielded encouraging performance
result, which motivate us to proceed with the development
of SDDL’s adaptivity and load balancing capabilities. For a
data stream production rate of 10 MB/s, DPSLB is able to
complete the Load Balancing Process of 5/10 DPS in 454
ms. And regarding load balancing of mobile node (MN)
connections, MAPE-SDDL is able to migrate 300/600 MNs
from one Gateway to another Gateway in less than 750 ms.

As future work, we are planning the design, implemen-
tation and evaluation of other load balancing algorithms,
both for data stream processing and connectivity load dis-
tribution, as well as developing support for general state
transfers among the managed resources (Processing Nodes
or Gateways) during Load Balancing Process. We also plan
to design and implement a new component in MAPE-SDDL,
called Distributed Event Service (DES), which will allow the
detection of composite events made of basic events from
different event sources (e.g., distributed Processing Nodes).

ACKNOWLEDGMENT

“This work is partly supported by project Mobile InfoPAE
and CNPq scholarship no. 310253/2011-0”

REFERENCES

[1] S. Karnouskos and A. Colombo, “Architecting the next gen-
eration of service-based scada/dcs system of systems,” in
IECON 2011 - 37th Annual Conference on IEEE Industrial
Electronics Society, November 2011, pp. 359 –364.

[2] G. Pardo-Castellote, “OMG Data Distribution Service: Archi-
tectural Overview,” in Proc. of the IEEE Military Communi-
cations Conference (MILCOM ’03), vol. 1, Octuber 2003, pp.
242 – 247.

[3] M. Xiong, J. Parsons, J. Edmondson, H. Nguyen, and D. C.
Shmidt, “Evaluating the Performance of Publish/Subscribe
Platforms for Information Management in Distributed Real-
time and Embedded Systems,” 2010.

[4] L. D. Silva, R. Vasconcelos, R. A. Lucas Alves, G. Baptista,
and M. Endler, “A communication middleware for scalable
real-time mobile collaboration,” in Proc. of the IEEE 21st
International WETICE, Track on Adaptive and Reconfig-
urable Service-oriented and component-based Applications
and Architectures (AROSA), June 2012, pp. 54–59.

[5] I. Twin Oaks Computing, “Twin oaks computing, inc.” April
2012. [Online]. Available: http://www.twinoakscomputing.
com/

[6] J. O. Kephart and D. M. Chess, “The vision of
autonomic computing,” Computer, vol. 36, pp. 41–50,
January 2003. [Online]. Available: http://dx.doi.org/10.1109/
MC.2003.1160055

[7] IBM, “An architectural blueprint for autonomic computing,”
IBM White Paper, 2006. [Online]. Available: http://www-03.
ibm.com/autonomic/pdfs/ACBlueprintWhitePaperV7.pdf

[8] “Scalable data distribution layer - overview, use instructions
and download,” 2012. [Online]. Available: http://www.lac-rio.
com/sddl/

[9] A. K. Y. Cheung and H.-A. Jacobsen, “Load
Balancing Content-Based Publish/Subscribe Systems,”
ACM Transactions on Computer Systems, vol. 28,
no. 4, pp. 1–55, December 2010. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=1880020http://portal.
acm.org/citation.cfm?doid=1880018.1880020

[10] A. Corradi, L. Foschini, and L. Nardelli, “A DDS-
compliant infrastructure for fault-tolerant and scalable data
dissemination,” in The IEEE symposium on Computers
and Communications. IEEE, June 2010, pp. 489–495.
[Online]. Available: http://ieeexplore.ieee.org/xpls/abs\
all.jsp?arnumber=5546756http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5546756

[11] A. Calsavara and L. A. P. Lima Jr., “Scalability of Distributed
Dynamic Load Balancing Mechanisms,” in ICN 2011 The
Tenth International Conference on Networks, no. C, 2011,
pp. 347–352.

13Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

