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Abstract—Today’s computer systems are under relentless at-
tack from cyber attackers armed with sophisticated vulnerabil-
ity search and exploit development toolkits. To protect against
such threats, we are developing FUZZBUSTER, an automated
system that provides adaptive immunity against a wide variety
of cyber threats. FUZZBUSTER reacts to observed attacks
and proactively searches for never-before-seen vulnerabilities.
FUZZBUSTER uses a suite of fuzz testing and vulnerability
assessment tools to find or verify the existence of vulnerabilities.
Then FUZZBUSTER conducts additional tests to characterize the
extent of the vulnerability, identifying ways it can be triggered.
After characterizing a vulnerability, FUZZBUSTER synthesizes
and applies an adaptation to prevent future exploits.
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I. INTRODUCTION

Modern computer systems face constant attack from so-
phisticated adversaries, and the number of cyber-intrusions
increases every year [1], [2]. Cyber-attackers use numerous
vulnerability scanning tools that automatically probe target
software systems for a wide array of vulnerabilities. For
example, attackers use fuzz-testing tools (such as Peach
and SPIKE) that try to crash target applications, and SQL
injection tools (such as sqlmap and havij) that attempt to
manipulate the contents of databases. Upon discovering a
potential vulnerability, attackers use powerful exploit devel-
opment toolkits (such as Metasploit and Inguma) to quickly
craft exploits that take advantage of identified vulnerabilities.

Under DARPA’s Clean-slate design of Resilient, Adaptive,
Survivable Hosts (CRASH) program, we are developing
FUZZBUSTER to provide adaptive immunity from these
and other cyber-threats. FUZZBUSTER provides long-term
immunity against both observed and novel (zero-day) cyber-
attacks.

As shown in Figure 1, FUZZBUSTER operates proactively
to find vulnerabilities before they can be exploited, and
reactively to address exploits observed “in the wild.” Fuzz-
BUSTER directs the execution of custom and off-the-shelf
fuzz-testing tools to find and characterize vulnerabilities.
Fuzz-testing tools find software vulnerabilities by exploring
millions of semi-random inputs to a program. Given time
and expert guidance, fuzz-testing has proven effective at
finding a wide variety of software flaws, including defects
that account for the most severe security problems [3].
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Figure 1. When reacting to a fault, FUZZBUSTER creates an exemplar test

case that reflects the environment and inputs at the time of the observed
fault. During proactive exploration, FUZZBUSTER synthesizes exemplar test
cases that could lead to a fault.

FUzZBUSTER uses fuzz-testing tools to find and charac-
terize vulnerabilities, determining what inputs to a program
can cause a fault. FUZZBUSTER then synthesizes defenses
to shield or repair the flaw, protecting against entire classes
of exploits that may be encountered in the future.

In this paper, we describe our rapidly-evolving implemen-
tation of the FUZZBUSTER architecture, and present some
preliminary results.

II. ARCHITECTURE
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Figure 2. FUzzZBUSTER’s IRM guides its efforts to automatically find,

refine, and adaptively shield vulnerabilities.
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Figure 2 illustrates FUZZBUSTER’s major components and
how they interact to provide adaptive immunity. Fuzz-
BUSTER uses both proactive and reactive exploration to
identify (and then shield) vulnerabilities in a CRASH host.
For each vulnerability, FUZZBUSTER creates a vulnerability
profile representing the nature of the vulnerability, including
what ranges of inputs lead to the vulnerability. These vul-
nerability profiles represent as much of the vulnerability as
FUZZBUSTER can identify. After constructing a vulnerability
profile, FUZZBUSTER creates and applies an adaptation that
prevents future exploits of the vulnerability.

Processing begins with the Exemplar Generator creating
an exemplar test case. The Exemplar Generator may create
an exemplar in response to a fault notification from the
CRASH innate immune system or in response to an instruc-
tion from the Immunity Response Manager (IRM) to initiate
proactive exploration. At some point, the IRM determines
that looking for vulnerabilities relating to a particular exem-
plar test case is the next highest priority activity, and the
IRM assigns this activity to the Meta-Fuzz Tester (MFT).
Based on the nature and attributes of the exemplar test case,
the MFT chooses a fuzz-testing tool to search for or assess
vulnerabilities associated with the exemplar test case. Each
fuzz-testing tool refines a vulnerability profile based on the
results of its exploration. The MFT may use multiple fuzz-
testing tools to construct as complete a vulnerability profile
as possible given the available time or resources. For each
vulnerability profile, the Adaptation Generator creates one
or more candidate adaptations to protect the system against
being exploited via the vulnerability. When appropriate, the
IRM directs the Adaptation Generator to verify and then
subsequently apply these patches to the CRASH host. Since
fuzz-testing and patch verification both run tests that may
require significant time or resources to complete, the IRM
is intended to balance the priorities of these operations
with the available resources on the system, to minimize
FUzZZBUSTER’s impact on system performance.

When an actual exploit or flaw is encountered and trapped
by the CRASH innate immune system, FUZZBUSTER re-
sponds reactively. In our design, the IRM puts a high priority
on responding to a live exploit, and may immediately choose
to use the Adaptation Generator to synthesize a customized
adaptation to shield the application while also engaging the
MEFT to refine the vulnerability profile. FUZZBUSTER may
be conservative when reacting to an exploit, initially dis-
abling useful features of the subject software while disabling
the vulnerability. As the tests yield additional information,
FUZZBUSTER revises the adaptation to relax (or tighten) the
behavior restrictions it enforces. In this way, FUZZBUSTER
acts as a self-protecting, self-regenerative system, initially
clamping down on security and limiting functions when
attacked, and then gradually relaxing limits and restoring
functions as it gets a better picture of the vulnerabilities
that are being exploited.
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A. Infrastructure

1) GBBopen: Our FUZZBUSTER implementation is built
within the GBBopen blackboard system [4], [5], which sup-
ports object-oriented data storage and event-triggered proce-
dural code. The functional components shown in Figure 2
are implemented as blackboard Knowledge Sources (KSs)
that respond to events on blackboard objects representing
the ongoing tasks and results.

For instance, exemplar objects are used to describe cases
raised by the immune system and cases where proactive ex-
ploration is suggested. Vulnerability profile objects capture
a progressively-refined model of the set of situations that
leading to security warnings for a particular software system.

During FUZZBUSTER’s exploration, it often needs to
initiate resource-intensive testing tasks or perform operations
that change the behavior of the CRASH host. To prevent
these activities from executing concurrently, and thus inter-
fering with each other, FUZZBUSTER defines a set of task
objects that are managed by the IRM. The processing of
these tasks is started and stopped by the IRM as necessary
to ensure effective operation of the system and to prevent
conflicts between concurrent activities. The KSs that perform
the processing have specific code to manage task status and
their own work. In the near future, we will replace this ad
hoc mechanism with a more automated and rigorous meta-
control scheme. The more complete meta-control scheme
will control the starting and stopping of tasks to ensure
consistent and correct behavior, while easing the effort
required to specify the desired properties and interactions
between them.

2) Interface to CRASH Host (run.pl): FUZZBUSTER
is designed to run in the context of a CRASH host whose
innate immune system provides alerts to violations that may
indicate vulnerabilities. Since a physical instantiation of the
CRASH host is not yet available, FUZZBUSTER defines
a proxy that serves as a stand-in. The proxy is currently
implemented as a Perl script that provides key CRASH
functionality on existing systems. In particular, the proxy
mimics the CRASH innate immune system by identifying
and reporting certain classes of faults. The proxy also pro-
vides an adaptation mechanism that allows FUZZBUSTER to
modify the environment and inputs of executing programs.

B. Exemplar Generator

The Exemplar Generator captures relevant inputs and
environmental aspects of an observed or suspected vulner-
ability as an exemplar test case. Ideally, an exemplar test
case contains all of the information required to generate
a repeatable test case for the MFT. However, since it
is not always possible to record every relevant piece of
information, and knowing the relevant bits is impossible
in the context of proactive exploration, the MFT treats an
exemplar test case as a starting point for exploration. An
exemplar test case may also indicate that it pertains to a
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frequently-observed attack or applies to a mission-critical
software system, which the IRM will use to set a suitably
high priority on the discovery of the vulnerability and the
implementation of a defense.

When the CRASH proxy run.pl detects a fault, it sends
the Exemplar Generator a description of the environment and
inputs that triggered the fault. The description includes each
environment variable and its value, the path of the command,
the command line arguments, and the content passed thru
open streams including standard-input.

For proactive exploration, the Exemplar Generator also
synthesizes exemplar test cases from application models.
FUZZBUSTER stores models of applications that include the
absolute path to the command, a specification of the allowed
(or expected) command line arguments, and a flag indicating
whether the application accepts input via standard-input.
The Exemplar Generator translates these application models
into exemplar test cases by choosing specific command line
arguments or inputs.

C. Meta-Fuzz Tester

The Immunity Response Manager invokes the MFT to
conduct an analysis of subsystem or protocol vulnerabil-
ities, focused by the exemplar test case and limited by
some computing resource constraints (initially, just execu-
tion time). The MFT attempts to identify the specific cause
of an observed defect, or probe for a latent vulnerability in
the case of proactive analysis. Starting from the exemplar
test case, the MFT constructs a belief state describing the
vulnerabilities that could be present. Then, as long as the
MFT has remaining resources, it chooses a fuzz-testing tool
and uses it to try to gain more information about the possible
vulnerability. This analysis culminates in a vulnerability pro-
file describing the observed aspects of the vulnerability and
providing a basis for the Adaptation Generator to generate
an adaptation that protects the system. The choice of fuzz-
testing tool should be guided by a “performance profile”
model of each tool’s capabilities, in terms of what types of
vulnerabilities they can detect and how long they may take.
Our early experiments, discussed below, will help develop
those performance profiles. In the meantime, our preliminary
implementation uses a simpler method to allocate effort to
different fuzz-testing tools.

To facilitate the integration of diverse fuzz-testing tools,
FUZZBUSTER defines a fuzz-tool wrapper interface to each
tool, providing a common API for controlling tool execution.
Each fuzz-tool wrapper defines an action that may be
taken by the MFT. Moreover, each wrapper interprets the
results of execution, updating the vulnerability profile with
additional information. Fuzz-tool wrappers provide a simple
mechanism for FUZZBUSTER to incorporate dumb or smart
tools, with or without knowledge of the internals of the test
object.
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D. Adaptation Generator

FUZZBUSTER’s Adaptation Generator improves system
security by creating and applying custom adaptations that
prevent exploitation of the flaws characterized by vulnera-
bility profiles. The Adaptation Generator uses a variety of
adaptive techniques, making the choice between them based
on an adaptation’s needs and the facilities available for the
relevant input channels. Our design anticipates that adapta-
tions could be defined at any level in the system, from an
atomic instruction, to a function call, to a high-level function
of an application. Our initial implementation operates only
at the application-input level, using the facilities provided
by the run.pl CRASH proxy.

To safely adapt a live system, the Adaptation Gener-
ator follows two core principles. First, adaptations only
restrict or reduce capability or privilege. Second, adaptations
do not disable key functionality. To enforce the second
principle, FUZZBUSTER will capture a set of test cases
during vulnerability analysis. Some of these tests will trigger
the vulnerability and others will exercise the vulnerable
application without triggering the vulnerability. These tests
will be used during adaptation creation to verify that an
adaptation successfully prevents the vulnerability without
otherwise changing the results or behavior of the vulnerable
application. Once an adaptation is applied to the CRASH
system, the tests will be added to a regression suite that
FuzzBUSTER will use to ensure that future patches do not
conflict with or invalidate existing adaptations.

The Adaptation Generator performs the following actions
on adaptations:

o Create — Search for adaptations that make the best
trade-off between performance, functional impact, and
security.

o Verify — Execute recorded test cases to ensure that
an adaptation prevents exploitation of a vulnerability
without otherwise affecting execution.

« Apply — Apply adaptations to the system to prevent
exploitation of vulnerabilities.

« Revoke — Remove previously applied adaptations
from the system because they are no longer desirable,
due to external software updates, more comprehensive
adaptations, or to improve performance.

When creating an adaptation, the Adaptation Generator
maps the constraints in the vulnerability profile to a set of
actions that the adaptation can take to prevent the fault.
FUZZBUSTER’s initial set of actions includes ‘“remove,’
“modify,” “truncate,” and “filter”. An adaptation using the
remove action completely removes the fault-inducing in-
put, for instance unsetting an environmental variable. An
adaptation using the modify action performs an arbitrary
modification of the input, for example replacing the value
with another one. The truncate and filter actions apply
common modifications to inputs. Truncate reduces the size
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of the input channel to a specific threshold, for example
shortening the length of an argument to prevent a buffer
overflow. The filter action replaces specific substrings in
the input channel. The Adaptation Generator examines the
vulnerability profile to derive parameters for these actions,
such as the target length for truncation or the content to
remove.

When instructed by the IRM, the Adaptation Generator
verifies an adaptation by temporarily applying the adaptation
to the system and running the accumulated test-cases. Once
an adaptation passes verification, the IRM may instruct the
Adaptation Generator to apply it to the system, thus prevent-
ing a vulnerability from being exploited. An adaptation fails
verification if it changes the behavior for non-fault-inducing
inputs or if it fails to prevent a fault.

E. Immunity Response Manager

The IRM oversees and manages FUZZBUSTER’s adaptive
immunity processes, ensuring that FUZZBUSTER’s proactive
and reactive protection functions are effective, while avoid-
ing undue burden on the resources of the protected system.

The IRM’s chief roles include initiating proactive vul-
nerability exploration, assigning test priorities, and tasking
the MFT and Adaptation Generator. Across these activities,
the IRM controls the system by creating, assigning, and
pausing tasks. Each task specifies a unit of work to be
performed by a component in the system. FUZZBUSTER
defines tasks for exploring an exemplar test case, verifying a
patch, applying a patch to the system, and revoking a patch.
By controlling which tasks are active, the IRM controls the
balance between proactive and reactive testing, decides when
to allocate resources to verifying that patches are acceptable,
and controls when FUZZBUSTER modifies the system.

Our initial implementation of the IRM uses a hand-
coded, static prioritization scheme that ranks tasks based on
their order of arrival. This initial implementation ensures
that FUZZBUSTER eventually explores all exemplar test
cases and attempts to apply adaptations for all identified
vulnerability profiles. In the future, the IRM will evolve
into an MDP-based meta-controller similar to the approach
described in [6].

III. EXPERIMENTAL RESULTS

With the first version of each FUZZBUSTER module
now functional, we have conducted numerous small tests
and one significant series of long experiments. In those
experiments, we used FUZZBUSTER to proactively search
for vulnerabilities in a set of 53 command-line utilities. We
ran the exploration on a Debian VM and a laptop running
OS X; both systems were fully patched at the time of the
experiment. FUZZBUSTER used a wrapper around Barton
Miller’s fuzz-testing tool to generate random byte sequences
to feed to the programs being tested. For each trial, we
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configured FUZZBUSTER to use a specific set of options
to the fuzz-testing tool, varying:

« whether the inputs could contain non-printable charac-
ters or not,

« whether the inputs could contain null characters or not,

« the initial seed to use for randomization, and

o the length of the input.

Each trial ran for a fixed period of time (usually 20 sec-
onds), or until FUZZBUSTER found a fault. We relied on
our CRASH stand-in (run.pl) to identify faults. For the
purposes of this experiment, we identified faults as program
crashes (abnormal exits, such as from segmentation faults).

FUzzZBUSTER ran 3,380 trials in just over 18 hours,
encountering 49 faults. Fifteen of those faults were “dupli-
cates” caused by the same input as another trial but with
additional, unnecessary, content at the end. For example, we
found a fault in tcsh with a 1,000 byte input created with
both printable and non-printable characters, no nulls, and a
seed of 1,002; that same fault was subsequently encountered
using a 10,000 byte input created with the same parameters.
Another eleven faults differed only in that one fault was
caused by feeding an input string to standard-input and the
other was caused by feeding the same string via a file argu-
ment. The remaining 23 faults correspond to unique crashes
in five programs: a2p, dc, indent, tcsh, and troff.
FUZZBUSTER considers these to be unique vulnerabilities,
as the inputs have unique combinations of printable/non-
printable characters, presence of null characters, and seeds.
However, we recognize that it is probable that these inputs
are triggering fewer than 23 software problems, perhaps as
few as five (one per program). Even if several of these faults
stem from a single vulnerability, the full FUZZBUSTER will
identify and shield the common vulnerability, thus protecting
the system against the original and related faults.
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Figure 3. FUZZBUSTER executes 4.7 test cases per second when the inputs
are short (10 to 100 bytes). The testing rate decreases with larger test inputs,
falling to 3.0 tests per second when the inputs are 50,000 bytes long.

We configured FUZZBUSTER to repeat the proactive ex-
ploration numerous times, varying each of the conditions.
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Figure 4. FUZZBUSTER requires larger input files to uncover all the faults
encountered during the experiment. Inputs with non-printable characters led
to discovery of 19 faults.

We tested with inputs of length 10, 100, 1,000, 10,000, and
50,000 bytes. As shown in Figure 3, running with the larger
inputs modestly reduces the rate at which FUZZBUSTER
runs individual test cases. Figure 4 shows that FUZZBUSTER
usually needs inputs of at least 1,000 bytes to trigger the
faults. Since we removed faults that were duplicates except
for size, Figure 4 illustrates unique faults discovered at each
size. Thus, FUZZBUSTER requires inputs with a length of
50,000 bytes to discover all of the faults in the test. From
this graph we can also see that testing with non-printable
characters is more effective than testing without, accounting
for 19 out of the 23 faults (82.6%). Inputs containing null
characters account of 10 faults and inputs without nulls
account for 13.

While this suggests that FUZZBUSTER should focus on
inputs containing non-printable characters, two applications
(a2p and indent) only faulted when the inputs consisted
entirely of printable characters. Moreover, our experiment
encountered only a single fault in each of these applications.
Thus, we can see the benefit of the MFT producing multiple
actions for each fuzz-tool wrapper.

As shown in Figure 5, FUZZBUSTER discovers faults
much more frequently using larger inputs. This graph il-
lustrates how much more effective it is to test with larger
inputs, despite the decrease in the number of test cases per
second. We would like the MFT to try to optimize its use
of limited fuzz-testing resources, so we’re also interested
in estimating how long FUZZBUSTER should run a test
configuration before giving up and trying another fuzz-tool
wrapper or abandoning the task. We can begin to answer this
by examining how many inputs FUZZBUSTER tried before
finding one that caused a fault. Figure 6 shows how many
non-faulting seeds were tried in each trial that found a fault.
The graph shows that it took, at most, 53 test-cases for inputs
of 10,000 bytes and 50 test-cases for inputs of 1,000 bytes
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Figure 5. Even though short inputs result in faster test execution, due to
the relative rarity of faults identified by short inputs, the average time spent
searching per fault is much higher.
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Figure 6. Number of seeds tested in a trial before finding one that induces
a fault.

before finding the fault. Given the test rates from Figure 3,
this shows that each of the successful tests took less than
fifteen seconds, for larger inputs. While the precise test
duration will vary according to the type of software being
tested, these values provide a good starting point for our
upcoming MDP-based Immunity Response Manager meta-
controller.

IV. RELATED WORK

As previously noted, the FUZZBUSTER approach has roots
in fuzz-testing, a term first coined in 1988 in the context of
software security analysis [7]. It refers to invalid, random,
or unexpected data that is deliberately provided as program
input in order to identify defects. Fuzz-testers and the closely
related “fault injectors” are good at finding buffer overflow,
XSS, denial of service (DoS), SQL Injection, and format
string bugs. They are generally not highly effective in
finding vulnerabilities that do not cause program crashes,
e.g., encryption flaws and information disclosure vulnerabil-
ities [8]. Moreover, existing fuzz-testing tools tend to rely
significantly on expert user oversight, testing refinement, and
decision-making in responding to identified vulnerabilities.
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FUzzZBUSTER is designed both to augment the power
of fuzz-testing and to address some of its key limitations.
FUzzBUSTER fully automates the process of identifying
seeds for fuzz-testing, guides the use of fuzz-testing to
develop general vulnerability profiles, and automates the
synthesis of defenses for identified vulnerabilities.

To date, several research groups have created specialized
self-adaptive systems for protecting software applications.
For example, both AWDRAT [9] and PMOP [10] used
dynamically-programmed wrappers to compare program ac-
tivities against hand-generated models, detecting attacks and
blocking them or adaptively selecting application methods
to avoid damage or compromises.

The CORTEX system [11] used a different approach,
placing a dynamically-programmed proxy in front of a
replicated database server and using active experimentation
based on learned (not hand-coded) models to diagnose new
system vulnerabilities and protect against novel attacks.

While these systems demonstrated the feasibility of the
self-adaptive, self-regenerative software concept, they are
closely tailored to specific applications and specific repre-
sentations of program behavior. FUZZBUSTER provides a
general approach to adaptive immunity that is not limited
to a single class of application. FUZZBUSTER does not
require detailed system models, but will work from high-
level descriptions of component interactions, such as APIs
or contracts. Furthermore, FUZZBUSTER’s proactive use of
intelligent, automatic fuzz-testing identifies possible vulner-
abilities before they can be exploited.

V. CONCLUSION AND FUTURE WORK

FUZZBUSTER is intended to augment and eventually
outmode various post-exploit security tools such as virus
scanners. Rather than scanning a computer all night to see
if it has been compromised by an exploit, FUZZBUSTER
will scan for vulnerable software and repair or shield it.
Our preliminary experiments have shown that there are still
many such vulnerabilities to be found, even on heavily used
software in mature systems. As we extend FUZZBUSTER
to address more complex applications with more forms of
input, we expect that FUzZBUSTER will find vulnerabilities
even more frequently. We hope that FUZZBUSTER will
play a crucial role in proactively finding and eliminating
vulnerabilities, making fuzz-testing no longer an effective
strategy for cyber-attackers.
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