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Abstract — This paper presents a new hierarchical  
representation of huge 3D meshes for fast and seamless 
rendering in cloud computing. Shape-outlines, simplified 
meshes, and uniform mesh partitions construct a hierarchy. 
Our hierarchy enables on-demand rendering of huge 3D 
meshes in cloud computing. 

Keywords-cloud computing, 3D meshes,  interactive 
rendering,  hiearchical representation. 

I.  INTRODUCTION 
Rapid advances in 3D scanning technologies now enable 

us to create huge and exquisite 3D meshes for medical 
imaging and cultural heritage preservation. Nevertheless, it 
is hard and even impossible to render huge meshes on 
consumer computers and mobile devices due to limited 
resources. Various techniques such as mesh compression [1], 
[2], simplification [3], [4] and chartification [2] allow the 
transfer and display of huge meshes on mobile devices; 
however, interactive rendering in real time is hard to 
achieve using these methods. Though image-based 
rendering [5] has recently been introduced, pre-rendered 
images and grid-based sparse meshes cannot provide 
detailed views of original meshes. Moreover, these methods 
do not allow for the control of file size. Advances in CPU-
related technologies have dramatically decreased CPU 
processing times so that I/O time contributes to almost the 
entire processing time. Uniformly sized files optimize I/O 
processing time and are especially necessary for mobile 
computing. 

In this paper, we present an interactive rendering method 
of a hierarchical data structure for huge meshes for cloud 
computing platforms. Moreover, with our method the file 
size for each of a series of files for hierarchical data 
structures can be uniformly controlled for optimized and 
predictable I/O processing time. 

The remainder of the paper is organized as follows: the 
basics of hierarchical rendering are described in detail in 
Section II; uniform mesh partitioning and simplifications 
are explained in Section II, parts A and B; our interactive 
view modes are listed in Section II, parts C through E; our 
conclusions and future work are presented in Section III. 

II. HIERARCHICAL 3D MESH RENDERING 
New hierarchical representations of huge 3D meshes 

allow for fast and seamless rendering of 3D meshes in cloud 
computing. The hierarchical display structure for a large 3D 

 
Figure 1. A hierarchical rendering of a huge 3D mesh on a mobile device1.  
David has 28,184,526 vertices at 1.1GB. (a) 3D shape-outlines in TP mode; 
(b) simplified David of 10,820 vertices; (c) more detailed head of 10,649 
vertices; (d) original resolution eye of 5,625 vertices fully rendered. 

mesh is composed of several view options: a thumbnail-
preview mode (TP), a coarse-whole-view mode (CWV), a 
zoomed-sector-view mode (ZSV), and finally a deep-zoom-
of-the-mesh mode (DZM). Shape-outlines (TP mode), 
simplified meshes (CWV, ZSV modes), and the original 
mesh partitions (DZM mode) hierarchically represent large 
3D meshes. For example, Table I depicts a huge mesh 
David with 28,184,526 vertices totaling 1.1 GB which 
cannot be loaded and displayed on a mobile device. Using 
our interactive rendering method, David can be displayed in 
real time on a mobile device with a hierarchical data 
structure as illustrated in Fig. 1. First, David is selected from 
a 3D shape-outline in TP mode in (a). A selected CWV is 
then generated with a simplified mesh of only 10,820 
vertices in (b). After selecting the head in (b), a more 
detailed mesh of 10,649 vertices is rendered in ZSV mode as 
depicted in (c). For a  DZM-mode view of the eye, partitions 
of the original mesh having 5,625 vertices are loaded and 
rendered in (d). 

An overview of our interactive 3D mesh rendering for 
cloud computing is depicted in Fig. 2. A huge mesh is 

                                                        
This work was supported by Seoul R&DB program (ST100035). 
1 A mobile device ODROID-7 with Samsung S5PC 110 Cortex-A8 1Ghz 
CPU and 512MB RAM. 
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TABLE I.  LOADING AND RENDERING TIME ON A MOBILE DEVICE2 

 Original Model Our Simplified Model 
File Name Vertices Time(s) Vertices Time(s) 
feline 49,864 3.48 10,379 0.59 
foot 160,226 9.00 8,324 0.56 
dragon 399,332 25.69 9,797 0.61 
ihigenie 351,750 23.90 9,999 0.62 
bddha 541,366 33.99 10,275 0.63 
xyzrgb_dragon 3,609,455 N/A 9,589 0.60 
lucy 14,027,872 N/A 10,180 0.64 
david 28,184,526 N/A 10,820 0.66 
Average  19.21  0.61 

Uniformly partitioned and simplified meshes provide a hierarchical 
representation for huge 3D meshes so that interactive renderings on mobile 
devices can be performed with optimized and predictable processing times. 
 
uniformly partitioned based on a user-specified equal 
number of vertices for uniform I/O processing time. Then a 
3D shape-outline of each uniform partition is extracted and 
simplified through its own boundaries. Mesh simplifications 
in multi-resolution are then executed by calculating the 
representative vertex for a group of vertices in each partition. 
The number of partitions can be controlled by the user 
allowing the file size of a simplified mesh to be easily 
manipulated. This enables the client to transfer and render 
hierarchical structures of huge 3D meshes according to the 
user’s interaction with the server in cloud computing. 

Partitioned mesh files, simplified meshes, and a shape-
outline are generated and stored on a server as a hierarchy 
automatically whenever a huge mesh is uploaded. Then a 
client can access the hierarchy starting from a shape-outline 
as shown in Fig.1. Our work will add interactive mesh 
simplifications to provide appropriate simplified meshes    
according to a user’s choice of views for server-side 
processing in the future. 

A.  Uniform Mesh Partitioning 
The main goal of partitioning a large mesh is to 

minimize processing time while maintaining load balance. 
The CPU in most systems today have improved radically 
resulting in input-output (I/O) processing becoming the 
main factor in the overall processing time. Uniform 
partitioning is the division of a large mesh into partitions 
with an equal number of user-specified vertices. Uniform 
partitioning is essential for a 3D mesh in cloud computing, 
so as to enable the assignment of standardized times to the 
processing of each partition as well as to optimize I/O 
processing time. Typically, mesh partitioning has been 
implemented by clustering vertices or faces. Clustering has 
been accomplished through either space subdivisions [1][7] 
or incremental additions [2][6]. The octree method provides 
fast hierarchical clustering [1][7]. However, the numbers of 
vertices or faces in partitions are varied because the division 
is performed not by the numbers of vertices or faces but by 
the sizes of the cells. K-means clustering [6] can generate 
partially uniform mesh partitions. However, it does not 

                                                        
2 A smart phone LG-SU660 with 1GHz Dual Core CPU and 512MB RAM. 

 
Figure 2. Overview of our interactive 3D mesh rendering in cloud 
computing. 

provide uniform mesh partitioning and hierarchical clusters. 
Also, initial positions of random seeds must be carefully 
selected and an elaborate cost function must be designed to 
attain quality results. Optimization takes a great deal of time 
requiring many repetitions for large 3D meshes [2]. 

Our algorithm constructs a kd-tree for a mesh. Each cell 
in the kd-tree represents a vertex cluster which forms a 
single partition of the mesh. For a given mesh, our kd-tree 
divides space based on the object median where the objects 
are vertices of the mesh. Our kd-tree splits a cell into two 
sub-cells each containing half the vertices of the cell. 
Instead of cycling the axis from x to y to z-axis for a 
perpendicular splitting plane, our kd-tree determines the 
axis adaptively according to the longest axis of a bounding 
box. Compactness is a quantity for measuring the degree to 
which a shape is compact. Given a partition with area w and 
perimeter p, we define the compactness c of the partition as 
a ratio of its squared perimeter p2 to its areas w [9]. 

w
pc
p4

2

=          (1) 

A square figure has better compactness than a long thin 
rectangular figure. To avoid long thin shaped partitions, our 
algorithm considers compactness when determining an axis 
for perpendicular splitting planes to subdivide cells in the 
kd-tree. Fig. 3 depicts the steps from level 1 to level 4 of the 
kd-tree in a simplified 2D format. The dotted-line is the 
bounding box of vertices in a cell. The solid lines are 
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Figure 3. An example of our kd-tree construction in 2D. Our kd-tree is 
based on the uniform number of vertices in each cell. An axis to be split is 
adaptively determined to lower the compactness of the cell. 

determined by, and are perpendicular to, the longer of the 
two axes, x and y, of the bounding box and colored red for 
two cells in level 1, blue for four cells in level 2, green for 
eight cells in level 3, and yellow for sixteen cells in level 4. 
The axes for cells at the same level may be chosen 
differently depending on the shape of the bounding boxes as 
depicted in Fig. 3. Median values are computed to split 
vertices in half. Finally, sixteen uniform partitions of the 
mesh are created from sixteen clusters of vertices in sixteen 
leaf-cells in the kd-tree. To construct a kd-tree of a mesh, a 
median value of the vertices in a cell needs to be determined 
so as to split a cell into two subcells with equal numbers of 
vertices. For an out-of-core mesh which has more data than 
the size of the main memory, external sorting needs to be 
applied; however, external sorting takes a lot of time. 
Therefore, we plan to introduce an improved out-of-core 
sorting method to find median values. 

In Fig. 4, two previous partitioning methods are 
compared with our method for a model foot of 40,058 
vertices in (a). Partitioning results are listed in (b) by k-
means clustering, (c) by octree-based clustering, and (d) by 
our kd-tree based clustering. The numbers of vertices in 
each partition are charted in (e). K-means clustering 
generates 128 partitions in 6.22 seconds with a compactness 
measure of 3.155. Octree clustering runs fast in 3.76 
seconds with a compactness of 1.806 for 126 partitions. Our 
kd-tree clustering generates 128 uniform partitions in 3.85 
seconds with a compactness of 1.929. Only our kd-tree 
based clustering creates uniform partitioning with quality 
shapes in a relatively fast processing time. 

B. Mesh Simplification Using Our Mesh Partitioning 
A uniform number of vertices in a partition plays a key 

 
Figure 4. Examples of mesh partitioning. A mesh Foot of 40,058 vertices 
and 80,112 faces is rendered in wire frame in (a). Partitioning results are 
listed in (b) by k-means clustering, (c) by octree-based clustering, and (d) 
by our kd-tree based clustering. The numbers of vertices in each partition 
are charted in (e).  

role in the quality of the mesh simplification. A single 
representative vertex for a partition was calculated for the 
vertices of the partition. Triangulations were performed with 
simplified vertices according to the original connectivity. 
The size and the shape of simplified triangle faces are more 
regular with our kd-tree method since each simplified vertex 
represents a uniform number of vertices, whereas each 
simplified vertex using the octree method represents various 
numbers of vertices as depicted in Fig. 5. In (a), the mesh is 
simplified to 1,104 vertices using our kd-tree method 
whereas in (b) the mesh is simplified to 1,206 vertices using 
the octree method. The mean distortion to the original mesh 
is 0.4149 by our kd-tree and 0.4563 with the octree [8]. Our 
simplification preserves the original shape better with better 
triangulation. 

C. 3D Shape-Outlines: Interactive 3D Previews 
For 2D images, TP mode provides small thumbnail 

images so that a user can easily and quickly identify and 
select a specific image. Until present, an interactive TP mode 
for 3D meshes has not been available. As such, we offer our 
TP mode which uses shape-outlines for interactive 3D mesh 
previews to dramatically reduce file size. As shown in Fig. 
1(a), a series of shape-outlines can easily be displayed on 
mobile devices with no need for file names. A shape-outline 
also depicts how the mesh is partitioned. As illustrated in Fig. 
6, each TP shape-outline can be interacted with to translate 
or rotate the thumbnail with no need to fully display the 
mesh. 
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Figure 5. Examples of simplified meshes with a mesh Foot. In (a), the mesh 
is simplified to 1,104 vertices using our kd-tree method whereas in (b), the 
mesh is simplified to 1,206 vertices using the octree method. 

D. Simplified Meshes in Multi-Resolution 
Simplified meshes in multi-resolution can provide CWV 

and ZSV modes of 3D meshes. As shown in Fig. 7, the more 
detailed Buddha of 9,539 vertices in (b) provides higher 
resolution than simply an enlarged but degraded view of the 
simplified mesh of 2,569 vertices in (a). 

E. Mesh Partitions for the Closest View 
Finally, for DZM-mode views of meshes, uniformly 

partitioned files of the selected area of the original mesh are 
transferred and rendered as shown in Fig. 1(d). The number 
of vertices in each partition can be specified by a user to 
provide optimized and predictable processing time for each 
partition. 

III. CONCLUSION AND FURTURE WORK 
This paper introduced a hierarchical representation of 3D 

meshes for interactive rendering in cloud computing. As 
listed in Table I, the rendering of 3D meshes on a mobile 
device took 19.21 seconds on average while huge meshes 
could not be loaded due to device memory limitations. With 
our hierarchical method, interactive rendering can be 
provided in real time in about 0.6 seconds on average even 
for huge meshes. In our future work, we will investigate how 
to automatically control simplification levels on the server or 
the client. Our research has led us to conclude that texture 
mapping to simplified meshes should be further studied. 
Moreover, how to approximate texture coordinates for 
simplified meshes also needs further investigation. 

 
Figure 6. A shape-outline of a model Buddha in various views. A user can 
interactively control TP mode views of the shape-outline. 

 
(a)  Simplified in a low resolution       (b) Simplified in higher resolution 

Figure 7. Simplified meshes in multi-resolution for a mesh Buddha. Rather 
than zooming in to a lower resolution of the simplified mesh in CWV mode 
in (a), rendering can automatically switch to ZSV mode to get a higher 
resolution zoom. 
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