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Abstract—The growth in the number of elements and services
in current computer networks and the integration of several
technologies, in order to provide connectivity and services
everytime and everywhere, have renderede the computing
infrastructure complex and susceptible to malicious activities.
In this sense, the use of autonomic computing principles arises
as an alternative to face these challenges, in special to deal with
the development of security mechanisms capable of infering
malicious activities with the purpose of self-protecting the
infrastructure against attacks.This paper presents and evaluates
a novel model of an autonomic element which is based on the
notions of novelty detection and concept drift. The element
is able to infer malicious activities that may compromise
the proper functioning of the network. Experimental results,
extracted from real samples network traffic, indicate that the
element autonomic element infact is very useful.

Keywords—Autonomic network, autonomic element, novelty
detection, concept drift.

I. INTRODUCTION

In recent decades the industry has increasingly produced
new technologies, products and services, thus satisfying the
demands for computer systems with large storage capacity
and fast communication. These advances, although they bring
important benefits, they have produced highly complex and
heterogeneous systems. As a result, ensure security, fault
tolerance, design capabilities, integration and management are
becomming critical factors [1]. Therefore, solving the pro-
blems and difficulties generated by this scenario is a big cha-
llenge, which will only be achieved when computer systems be
designed and built to adjust to changing situations, treating and
managing of their resources efficiently. These factors are the
main motivations for developing a new management system,
delegating such tasks to machines, thus enabling the removal
of administrative staff from the cycle and putting it only in
a supervisory position. This view has been referenced in the
academic community as autonomic computing [2].

This paper addresses the challenge of implementing an
autonomic element, with the following combination of proper-
ties: continuous unsupervised learning of new concepts, an
approach based on statistical properties extracted from the
initial packet payload of the TCP flows and the use of a
sorting algorithm of low computational power, the clustering
algorithm k-means [3]. Moreover, our work is not limited to
submitting a proposal, because it evaluates an implementation

of an autonomic element using real traces. It is expected that
the autonomic element proposed in this work will enable self-
protection, self-configuration and able to learn new concepts
over time, based on flows generated by the traffic.

The paper is organised as follows: Section II presents
the concepts of novelty detection, the continuous learning
OLINDDA (OnLIne Novelty and Drift Detection Algorithm)
algorithm used by the autonomic element proposed in this pa-
per and the k-means clustering algorithm. Section III presents
our proposed autonomic element. Section IV describes the
procedure for collecting and labeling the data used in the
validation of the autonomic element. Section V presents our
results and analysis, and finally, on Section VI our paper is
concluded with some remarks and future works.

II. NOVELTY DETECTION

The mining of data streams brings several challenges to
machine learning techniques. Its importance increases with
the need for real-time analysis of a large amount of data.
In this scenario, the ability to identify emerging concepts is
an important attribute, and the Novelty Detection technique
can contribute toward that goal. In Machine Learning, novelty
detection can be defined as the identification of patterns that
differ somehow from those normally expected, keeping a
certain similarity with the concept of outliers [4]. In the context
of this work, we consider a novelty as a new concept, i.e.,
an abstraction of instances or examples that share a set of
characteristics that differ from those previously identified.

If the characteristics of a new concept are similar to a
concept learned initially we use the term concept drift. Within
this paper, was used the OLINDDA, a cluster-based algorithm
which considers the problem of detecting concepts from
Internet Traffic and operates over a continuous flow of data
[4].

A. The OLINDDA algorithm

In this subsection, we present the functions of the
OLINDDA. In terms of the learning paradigm, it may be
divided in two phases: a supervised learning phase, where a
normal model is built from a set of examples that describe
the data domain, and an unsupervised learning phase, where
unlabeled examples arriving from a data stream are analized
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and novel concepts are continuously learned [4]. The im-
plementation of OLINDDA used in the proposed autonomic
element made use of the k-means clustering algorithm [5].

1) The k-means algorithm: Cluster analysis aims to divide
the elements of one sample, or population, in clusters so that
the elements belonging to the same group are similar to each
other based on variables (features) used for measuring them,
and the elements in different clusters are heterogeneous with
respect to these same characteristics.

Let x ∈ Rn be a vector of features with a known pro-
bability density p. We want to compute a partition of Rn,
{R1, R2, . . . , Rn}, representing each class by a vector x̂i ∈ Ri

that is called centroid. The choice of centroids and the partition
is made to minimize the average distance of each vector to its
centroid:

D = E {d (x, r (x))} (1)

The solution adopted in practice is to alternately estimate
the centroid and the partition of space. The algorithm of Lloyd-
Max is summarized in the following table [5]:

1) Initialization: Choose a static number of classes and
initialize the centroids of each class according to some
criterion.

2) Classification: Determine a partition of X ,{
X1, X2, . . . , Xc

}
, associating each training sample to

the class whose centroid is closest:

x ∈ Xk : k = argmin
i

d(x, x̂i) (2)

3) Update centroids: Calculate new centroids for each class
by the equations∑

x∈Xp

∂

∂x̂p
d(x, x̂p) = 0, p = 1, . . . , c, (3)

where Xp means the data set assigned to the p-th class.
If d(x, y) = ‖x− y‖2,

x̂p =
1

Np

∑
x∈Xp

x, p = 1, . . . , c (4)

where Np = |Xp|
4) Back to step 2 until there is a stop condition.
In the second step, each pattern is classified in the class of

the closest centroid. During the third step, the centroids are
recalculated, starting to occupy the midpoint of the standards
in its class.

B. Distinction between normal and unknown

For construction of the normal concept, OLINDDA initially
considers a set of examples that are used to represent the
normal concept. The initial data are grouped into k clusters
by the k-means clustering algorithm. For each cluster, we
calculate the distance between the centroid and the farthest
example. This allows us to establish a decision boundary for
each cluster. The union of the boundaries of all clusters is
the global decision boundary which defines the model. A
new unseen example that falls inside this global boundary is

consistent with the model and therefore considered normal;
otherwise, it is labeled unknown. Otherwise, the example is
marked as a member of an unknown profile and moved to a
short-term memory for further analysis. That memory works
like a FIFO queue to avoid its uncontrolled growth, eliminating
old samples to permit the inserting of new samples [4].

C. Identification of novelty and concept drift

To monitor the formation of clusters in the short-term
memory of unknown data, we use k-means to generate k
candidate clusters. For a candidate cluster to be considered
valid, which might indicate a concept in our approach, it must
fulfill the following requirement. We use the in implementation
of the proposed autonomic element, the sum of the squares of
the distances between examples and the centroid divided by
the number of examples as a validation criterion of the degree
of cohesion, defined by:

d(xj , x̂i) =

∑
xj∈ci

(xj − x̂i)
2

Ni
(5)

where ci represents the candidate cluster, x̂i their respective
centroids and Ni the number of examples of their respective
centroids belonging in ci.

Then, we compare this value to the mean distance between
the centroid and examples of the candidate cluster. If the
value for the candidate cluster is lesser than or equal to
the one obtained for the model, the candidate cluster is
considered valid. This restriction aims at selecting clusters
whose density is not lower than that of the model. Once a
candidate cluster has been validated: it may either represent
a novel concept (novelty) or be an evidence that the normal
concept is undergoing a change (concept drift).

To establish the limit between conceptual change and no-
velty, we calculate the global position of a centroid for the
Normal template and then calculates the distance between
this centroid and the overall centroid farther away, resulting
in a decision boundary. If the centroid of the new cluster is
beyond this boundary, the new cluster is considered a new
and separate for further analysis. Otherwise, it is attributed to
this new cluster a change of concept, and this information is
used to update the standard model itself. An overview of the
OLINDDA is shown in Figure 1.

III. OUR PROPOSED AUTONOMIC ELEMENT

In this section, we present our proposed autonomic element
(Figure 2), which aims to identify, by monitoring the network
traffic, malicious activity resulting from deviations and possi-
ble changes in the normal concept.

Our autonomic element uses the general format of auto-
nomic element, proposed by [2] and based on traffic sub-
flows [6], which can be defined as a stream of packet being
transmitted between a pair of hosts. Only TCP traffic was
analyzed during this research, generating a set of 52 statistical
variables candidates for discriminant, calculated based only on
information obtained from the packet headers (for example:
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Fig. 1. Overview of the OLINDDA [4].

TABLE I
EXAMPLES OF CANDIDATE VARIABLES TO DISCRIMINANT

Candidate Variable

Total of packet (Client to Server)
Minimum Windows Size (Server to Client)

Mean of Inter-Packet Length Variation(Client to Server)
Maximum of Bytes in Ethernet Packet (Client to Server)

packet size and TCP flags), without the use of inspection of
payload and port numbers. The variables are calculated for
each direction of a bidirectional flow (client to server and
server to client). Table I shows some of these variables.

Fig. 2. Proposed Autonomic Element.

The implementation of the proposed autonomic element
occurs in two phases: the first is called supervised phase and
the second phase called unsupervised. In the first phase, the
autonomic element determines the statistical variables that best
discriminate the traffic considered normal(attack free) from a
trace previously classified. At this stage the autonomic element
use the mechanisms proposed to select the set of statistical

candidates variables that best characterizes the normal traffic.
Once you have determined the set of variables, the autonomic
element builds the initial model, which will be used to identify
potential malicious activities on the network and verifies the
accuracy of the chosen variables. In the unsupervised phase,
the proposed element performs the implementation of the
autonomic cycle, as described below:

Monitor: The autonomic element (Figure 2(a)), works on
the network traffic in promiscuous mode and reconstructs the
TCP flows, extracts sub-flows, and calculates the statistical
variables selected during the supervised phase, passing them
to the analysis phase.

Analyze: Our autonomic element (Figure 2(b)), verifies if
each sub-flow generated in the previous phase can be explained
by the normal concept built during supervised phase. All sub-
flows explained by the normal concept are labeled as normal
to the next phase. The sub-flows not explained are temporarily
stored in the short-term memory of unknown data. When the
amount sub-flows stored in the short-term memory reaches
a certain threshold, new clusters are generated, which will
be labeled as a change of concept or novelty in accordance
with the criteria used by OLINDDA and forwarded to the next
stage.

Plan: Our autonomic element (Figure 2(c)), identifies the
flows which were explained by the normal concept. These
follow without any analysis in the next phase. The clusters
labeled as concept drift or novelty are built into the normal
concept. The information of the of remaining packets of sub-
flows the clusters labeled as a novelty are stored, so they are
discarded at the execute phase.

Execute: Our autonomic element (Figure 2(d)), in this phase
execute the action plan established in the plan phase, i.e.,
all remaining packets of each sub-flows that were considered
normal concept following without any changes and all the re-
maining sub-flows identified as novelty are discarded, because
in our approach these packages represent some malicious
activity.

Knowledge: stores the informations found by the autonomic
element in all phases, such as the statistical variables, limits,
the normal model, error rates, among other items.

Figure 3 describes temporally the stages of implementation
of the proposed functioning of the autonomic element during
the unsupervised phase. Initially, at time t0, the autonomic ele-
ment has only the model for normal traffic. In between times
t0 and t1, the proposed autonomic element is performed in the
presence of normal flows and classes of attacks. During this
period abnormal sub-flows are stored in short-term memory of
unkown. At time t1, temporary memory is filled and moves
the analysis of sub-flows into candidate clusters, validating
and classifying them into innovations and changes in concept.
From the time t1, the autonomic element has proposed the
concept of related clusetrs and normal clusters validated and
classified as concept drift and novelty.
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Fig. 3. Incorporation of novelty.

IV. DATA AND MEASUREMENTS

Considering the difficulties to obtain actual samples of mali-
cious traffic properly identified, we used artificially generated
attacks and inserted into traces that are supposedly free of
attacks to validate our experimental autonomic element. Thus,
it is possible to verify whether the attacks can be correctly
detected by our autonomic element.

To represent the normal traffic were used samples collected
from a network gateway at the University of Fortaleza, during
the period April 26-28, 2010. The captured packets were
temporarily stored and the flows were reconstructed. Each flow
was labeled with an application class. The process of labeling
each flow was performed in a semiautomated manner through
the use of the payload inspection tool OpenDPI [7]. Aiming to
ensure that normal traffic really was free of malicious traffic,
was also applied to each flows the tool Snort NIDS [8], with
rules dated from November, 2010.

Our autonomic element was trained and validated through
the use of 3 traffic datasetsts (referred as T1, T2 and T3).
Each dataset was collected during periods of 1 hour (morning,
afternoon and evening) and they contain the network traffic
of the following classes: HTTP(browsers) and Snort Alerts
(Alerts of possible flows of malicious activities identified by
Snort [8]). Also were added to each dataset, 1250 attacks
flows: Denial of Service and Brute Force, artificially generated.

The process of generating of the attack traffic, was con-
ducted in a controlled manner in the laboratory. Figure 4 shows
the topology used to generate the attack traffic.

In this scenario, we used three computers: the attacker, the
victim and sniffer. The attacker has the role of sending traffic
from attacks against services like FTP, SMTP and HTTP, to a
victim. To generation the Denial of Service Attack and Brute
Force Attack, were used the tools Heyenae [9] and Brutus
[10], respectively.

Table II describes the classes, applications and total flows
found within each dataset.

Fig. 4. Network topology used in the generation of artificial attacks.

V. RESULTS AND DISCUSSION

In this section, we present the experimental results obtained
with the implementation of our autonomic element using

TABLE II
SUMMARY OF DATASETS.

Class Number of Flows
T1 T2 T3

HTTP 6835 5284 2588
Snort Alerts 1845 1296 697

Denial of Service 1250 1250 1250
Brute Force 1250 1250 1250

the process of cross-validation with 10 partitions [11]. To
measure the accuracy of our autonomic element, we use the
average rate of false-positive error eFPos, which measures
the average error committed when examples of sub-flows of
attacks are considered as normal and average of false-negative
error eFNeg , which measures the average error committed
when normal traffic flows are labeled as attacks. These metrics
are given below:

eFPos =
Total of false-positive sub-flows

Total of normal sub-flows
(6)

eFNeg =
Total of false-negative sub-flows

Total of attacks sub-flows
(7)

In the supervised phase in order to determine the set of
statistical variables that best characterizes the traffic to be
considered normal, we used 50% of HTTP flows and 50%
of Snort Alert flows of T1, T2 and T3. The remaining HTTP
flows and Snort Alert, along with attack flows of T1, T2 and
T3, were used in the unsupervised phase, to verify the learning
ability of the our autonomic element.

A. Supervised phase

When considering the use of discriminating variables, it is
essential to have measured in the sample elements, variables
that can really distinguish the population, otherwise the quality
of the classification will be compromised. A very common
mistake is to think that increasing the number of discrimi-
nators, a better solution is reached. The Java implementation
of the Wrapper [12] evaluator found in Weka [13] was used
for selection of features that better characterize the flows
associated to normal concept. Wrapper evaluates features using
precision estimations produced by the learning algorithm that
will be used on the classification. In this case, the Naı̈ve Bayes
and Best First were selected as search method for the Wrapper
evaluator.

Figures 5 and 6 show, respectively, the results of the rates
of eFPos and the HTTP flows considered unknown in datasets
T1, T2 and T3 for the set features selected by Wrapper for N
initial packets.

As we can observe on Figures 5 and 6, the initial 11 packets
utilization of each flow, was the result with lower average
rates of eFPos unknown HTTP flows considered by normal
concept generated and so used by the autonomic element in
the unsupervised phase.
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Fig. 5. Rate of false-positive error.

Fig. 6. HTTP flows considered unknown by the normal concept.

B. Unsupervised phase

The tabulated data below represent the results found by
applying our autonomic element over 50% remainder set of
HTTP flows 50% of Snort Alert flows and Denial of Service
and Brute Force flows.

TABLE III
PERCENTAGE OF FLOWS CONSIDERED NORMAL.

Class
Dataset HTTP Snort Denial of Brute

Alert Service Force
T1 66,11% 4,03% 0% 0%
T2 69,11% 3,12% 0% 0%
T3 67,51% 3,87% 0% 0%

Table III presents the percentage of flows considered nor-
mal by the autonomic element. We can see that on average
67.59% of HTTP traffic was correctly classified as normal, ie,
were explained by the model correctly formed during normal
supervision. We also had an average of 3.67% of false positive,
flows of Snort Alert class that were classified as normal trafic.
No Denial of Service and Brute Force attack, were classified
as normal traffic flows.

TABLE IV
PERCENTAGE OF FLOWS CONSIDERED AS UNKNOWN.

Class
Dataset HTTP Snort Denial of Brute

Alert Service Force
T1 33,89% 95,97% 100% 100%
T2 30,86% 96,88% 100% 100%
T3 32,49% 96,13% 100% 100%

Table IV presents the percentage of flows considered as
unknown by the autonomic element. We can see that on
average 32.15% of HTTP flows were classified as unknown.
It is noteworthy that the initial error rate may indicate a slight
concept drift of such flows. We also see that our autonomic
element, obtained an average accuracy of 96.33% of Snort

Alert flows and 100% in classes of attacks, which implies a
high degree of discriminantion of the model generated during
the supervised phase.

Tables V and VI show the Concept Drift and Novelty
percentage of candidates clusters generated by autonomic
element after analysis on the short-term memory.

TABLE V
CONCEPT DRIFT PERCENTAGE OF CANDIDATES CLUSTERS.

Class
Dataset HTTP Snort Denial of Brute

Alert Service Force
T1 100% 0,83% 0% 0%
T2 100% 0,78% 0% 0%
T3 100% 0,81% 0% 0%

Table V presents the percentage of candidates clusters en-
dorsed by our autonomic element of the type concept drift. We
can observe that from the flows HTTP classified as unknown,
100% of there are classied concept drift, which indicates
a slight concept drift of these flows relative to the normal
concept determined during supervised phase. We also see that
we had an average rate of 0.81% of Snort Alert flows regarded
as the type concept drift, which may explain the rate of 3.67%
of false positive found by our autonomic element. Table V also
shows that none of the flows of the classes of attacks Denial of
Service and Brute Force, generates clusters of the type concept
drift.

TABLE VI
NOVELTY PERCENTAGE OF CANDIDATES CLUSTERS.

Class
Dataset HTTP Snort Denial of Brute

Alert Service Force
T1 0% 99,17% 100% 100%
T2 0% 99,22% 100% 100%
T3 0% 99,19% 100% 100%

Table VI presents the percentage of candidates clusters
endorsed by our autonomic element considered novelty. We
can observe that none of the HTTP flows generated candi-
date clusters like novelty, which indicates a high degree of
discriminator the of chosen variables and the normal model,
both made during supervised phase. We can also observe that
our autonomic element found a rate of 99.19% of candidates
clusters of the Snort Alert class as type Novelty and 100%
accuracy in the classes of attack artificially generated, show-
ing once again the high discriminat degree of the variables
chosen and the quality of the model generated during normal
supervision.

From the results presented, we can observe a high capacity
of the our autonomic element to identify the traffic considered
normal, with an average accuracy of 98.77%. It noteworthy
also that all normal sub-flows considered unknown, generated
concept drift clusters and all sub-flows of the classes of attacks,
were correctly classified as unknown and generated novelty
clusters.
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VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented an autonomic element to provide
self-protection and self-configuration in a computer network,
that makes use of OLINDDA, a novelty and concept drift
algorithm in data streams. The OLINDDA uses a cluster-based
approach, which considers the problem of detecting concepts
from an one-class classification perspective.

The implementation of the proposed autonomic element
occurs in two phases: the first is called supervised phase and
the second phase called unsupervised. In the first phase, the
autonomic element determines the statistical variables that best
discriminate the traffic considered normal(attack free) from
a trace previously classified. In the unsupervised phase, our
autonomic element implementation executes the autonomic
cycle, using the set of variables and the normal concept is
determined during the supervised phase.

From the results presented, we can observe that the im-
plementation of our autonomic element showed an average
accuracy of 98.77% of all flows classified as malicious, which
indicates a high degree of accuracy in the classification of
flows and a strong learning ability of our autonomic element.
Despite our autonomic element has been applied in a small
set of attacks, it can be perfectly applicable to other types
of attacks. We intend in future work, add new attacks and
simulate more realistic scenarios.

REFERENCES

[1] T. R. M. Braga, F. A. Silva, L. B. Ruiz, and H. P. Assunção, “Redes
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