
The Challenge of Validation for Autonomic and Self-Managing Systems

Thaddeus O. Eze, Richard J. Anthony, Chris Walshaw and Alan Soper

Autonomic Computing Research Group

School of Computing & Mathematical Sciences (CMS)

University of Greenwich

Park Row, SE10 9LS, London, United Kingdom

{T.O.Eze, R.J.Anthony, C.Walshaw and A.J.Soper}@gre.ac.uk

Abstract - The research community has achieved great

success in building autonomic systems (AS) in line with the

vision of autonomic computing (AC) released by IBM in

2001. The success is gaining ground in addressing the

perceived concerns of complexity and total cost of

ownership of information technology (IT) systems. But we

are now faced with a challenge springing from this very

success. This challenge is trustworthiness and there are

limited research results published in this direction. This, if

not addressed will definitely undermine the success of AC.

How do we validate a system to show that it is capable of

achieving a desired result under expected range of contexts

and environmental conditions and beyond? This paper

identifies the challenges and significance of AS validation

and proposes a roadmap towards achieving trustworthiness

in autonomic systems.

Keywords-trustworthiness; autonomicity; validation; certification

I. INTRODUCTION

IBM in 2001 observed in a manifesto [1] that the main

obstacle to the future growth of IT is a looming software

complexity crisis. The innovations in software development

have increased exponentially, the sophistication and

complexity of system design thereby stretching human

capabilities to the limits to install, configure, optimise,

maintain and manage these systems. The software is so

complex that almost no single person knows everything

about the software anymore. Another issue is how upgrades

are handled; it is not clear whether or not an upgrade in one

part of a system will result in loss of functionalities in other

parts that integrate with it.

AC is chosen as a way forward [2]; the idea of building

self-managing computing systems in the same fashion as the

biological autonomic nervous system using high-level

policy objectives set by human administrators. Though

complete AS do not yet exist, some products from leading

AC enterprises now claim to have self-managing features

[3]. We have also seen great level of research interest in AC.

A large number of surveys e.g., [4][3][5] have considered

the work along a number of criteria and dimensions. In [4]

the paper looked at AC to highlight which characteristics are

necessary to evaluate and compare AS and derive definitive

metrics for the evaluation. The survey in [3] categorizes

complexity in IT systems and identifies which AC self-*

properties address which complexity. [5] looks at IBM‟s

MAPE-K (monitor, analyze, plan, execute and knowledge)

control loop and identifies works that have been done in

each of its components and also proposes an alternative to

IBM‟s method of measuring system autonomicity [6]. There

is also progress in injecting autonomic capabilities into

legacy systems [7]. Other efforts such as those reported in

[8][9] focus on using policy-based autonomic techniques to

build generic AC frameworks arguing that the integration of

techniques gives rather greater flexibility and more powerful

adaptation than the individual techniques. With this huge

effort devoted to the design and development of ASs,

emphasis is lacking on the certification of these systems.

We suggest that ASs must reach trustworthy status and be

„certifiable‟ to achieve the full vision of AC. Appropriate

measures for validating AS decision-making processes

should be defined. We identify this as the core challenge

facing the success of AC. This is our main research focus.

Another major problem facing the AC research field is the

lack of standards. We have seen proliferation of approaches

and the misuse of AC terms –different terms mean different

things to different researchers. This shortcoming can only be

addressed by standards.

Certification of ASs is a specific work area that needs

attention and we believe this can be achieved through

defining proper AS validation mechanisms. AC systems are

designed and deployed across many application domains to

address the challenge of human management complexities.

We may come to a point where these systems take over full

control of operations in those domains (e.g., businesses,

military, health etc.) and any failure can be extremely costly

–in terms of down time, danger to life, loss of control etc.

This underpins the criticality of AS validation. Robust self-

management in AC systems resulting in dynamic changes

and reconfigurations requires that ASs should be able to

continuously perform self-validation of their own behaviour

and configuration, against their high-level behavioural goals

and be able to reflect on the quality of their own adaptation

behaviour. Such systems are considered trustworthy and

then certifiable. It is then necessary to have a testing

approach that combines design/run-time elements and is

also an integral part of the self-management architecture.

We have a longer term vision to develop certifiable systems.

By trustworthiness, we mean a state where we can be

confident that an AS will remain correct in the face of any

possible contexts and environmental inputs and sequences

of these; this is achieved through robust validation.

128

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

Our motivation is driven by the identified challenge of

lack of certifiable ASs. In this paper we present a roadmap

towards achieving certifiable AC systems by defining a

layered autonomic solution architecture that incorporates

validation as an integral part of the self-management

structure. In our proposal, we identify the features and

define a proper validation approach as one that is generic,

cuts across design/run-time, and is an integral part of the

whole self-management structure. Currently, most AS are

tested in the same way other software is tested: unit testing.

This includes simulations for performance analysis. In [10]

it is suggested that a complete testing plan will require

developmental stage-by-stage testing. This approach is

limited because it is only design-time based and cannot

guarantee trustworthiness. Though autonomic solutions

methods establish system policies at design-time, AS must

be able to deal with unforeseen conditions (unpredicted at

design-time) that might arise during run-time and with this

comes the possibility of ASs to deviate from intended

behaviour and/or yield inconsistent results. As a result, what

is needed is a system of validation that will not only test AS

behaviour at design-time but also tests the system‟s

behaviour under environmental circumstances or contexts

not predictable at design time. It is not the component‟s

behavior that is of key focus in the sense of being unknown

– it is the circumstances in which it executes which is

fundamentally unknown – and this may in turn cause

unknown behavior in the component we are testing – or

indeed in the whole system as a result. Only few works e.g.,

[11][12] provide means of run-time testing of AS adapted

behaviours by introducing self-testing activities to ASs. The

main goal of this paper is to outline challenges in current AS

validation methods and propose a strategy leading to the

achievement of certification of autonomic systems.

The remainder of this paper is organised as follows:

Background, significance and challenges of AS validation

are discussed in Section II. Analysis of identified validation

techniques is presented in Section III. We propose a

roadmap towards AS trustworthiness in Section IV and

conclude the work in Section V.

II. BACKGROUND OF AS VALIDATION

In this section we define the problem of trustworthiness,

identifying its significance and the extent of its challenge.

We believe that the ultimate goal of AC should be the

certification of AC systems. Yet to achieve certification

requires a process and the meeting of some conditions

(explained with Figure 1). For unknown reasons and in a bid

to get things working faster, the AC research community

has concentrated efforts on designs and architecture with

little or no emphasis on system validation. Only very few

researchers have identified trustworthiness as a major AC

challenge and yet fewer [11][12][21] have actually

suggested or proposed techniques. The problem in clear

terms is the ignoring of AS trustworthiness and the general

lack of validation efforts that specifically target the dynamic

aspects of these systems.

Figure 1 represents a section in the journey towards full

AC. At point (a) we assume that a system is developed and

is considered autonomous at some level. This level is

determined by a LoA measurement methodology which

needs some form of standardization. The definition of LoA

at this point is prerequisite to the next step. At point (b) is

the system‟s self-validation distributed across design-time

and run-time. When it is ascertained that a system is

validated then it is trustworthy and trustworthiness is a vital

foundational step on the road towards certification. It then

follows that for a system to be certified, it must be trusted

and only validated systems can be trusted. We draw a

conclusion here that for an AS to be certifiable there must be

a standard for measuring the level and extent of its

autonomicity as it makes no meaning to certify a system

whose extent of autonomic capability cannot be measured.

A. Significance of The Problem

The consequence of a lack of validation comes in two

dimensions. On the one hand is the risk of losing control

and loss of confidence that the autonomic system will not

fail. This is obvious owing to the nature of ASs which

includes dynamic changes caused by the self-* features in

unpredictable environments and conditions. On the other

hand is the issue of standardization of AS design processes.

It is very unlikely to secure standards for invalidated

systems as the general standardisation of a system will

largely depend on the level of confirmation of its „process

correctness‟. Process correctness is the demonstration of the

correctness of a system‟s behaviour under a range of

environmental conditions. According to [13] the

requirement for determining process correctness arises from

the human fear of selfish and uncontrolled behaviours that

potentially might emerge inside self-managed systems. This

is yet another factor that underpins the urgent need for

standardisation in autonomics. We believe that once there is

validation in place to ensure process correctness,

standardization will be achieveable. Despite the huge effort

in AC there are no known standards in the field [9]. The

lack of certification and standards leads to proliferation of

designs.

B. Extent of The Challenge of Trustworthiness

Trustworthiness is a broad area that needs extensive

investigation and requires a carefully thought-out approach.

In this section we look at the challenges of achieving AS

trustworthiness and what form a trust solution must take.

Figure 1: Proposed Certification process and requirements

(b) (c) (d) (a)

LoA

Autonomic system Validate Trustworthy Certify

Level of Autonomicity

129

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

 Level of Autonomicy (LoA): We have identified in

Figure 1 the role of defining LoA in AS certification. LoA is

a way of categorising ASs according to degrees; levels of

dependences on humans for decision-making. Autonomic

systems come in different degrees. Take for instance, one

UAV (Unmanned Aerial Vehicle) that has a ground human

pilot and one that hasn‟t are both autonomic systems but of

different capacities. Now certifying both systems will

demand different requirements as the later system will

obviously need to meet higher requirements being more

autonomic than the first. Classifying systems will give us an

idea of their full capabilities and also identifies what

conditions they must meet for certification. It also explains

what level or extent of validation that is needed. This point

is supported in [14] where it is argued that for a UAV to be

certified, the level of its autonomicity should first be

established to point out the direction and level of its

certification. Currently, there is no agreed method of

classifying AS and the only solution to this is

standardization of approaches.

 Design-time and run-time consideration: As we have

identified earlier, validation approaches will need to take

care of both design-time and run-time owing to the nature of

AC. Validating design-time decision making process does

not suffice as systems‟ decisions that handle evolving

conditions also need to be validated. The challenge here is

extending validation algorithms to deal with run-time

changes that may or may not be anticipated at design. For

ordinary software applications where outcomes are as

expected or predicted, design-time validation can suffice.

 Reusability: Validation approaches should be generic in

nature –i.e. approaches should not be specifically defined

for given self-adaptation processes. They should be

adaptable to different processes. But with LoA in mind,

approaches are expected to be generic within levels. What

that means is that the reusability of approaches will be

restricted according to LoA.

 Robustness: Validation solutions must show

consistency with the dynamism of the AC environment. In

other words solutions should also be autonomic in their

approach. Validation approaches are also expected to be

integral parts of the AC process.

III. CURRENT APPROACHES TO AS VALIDATION

In this section we survey a cross section of validation and

testing approaches. These have been predominantly design-

time or laboratory based although the nature of system in

question determines, to a large extent, the type of validation

or testing needed. Other forms of testing include simulations

for performance analysis and self-testing approaches. We

group the approaches as follows:

 Unit Testing: Unit testing deals with the testing of

known testable parts of a system. Usually the tested part, at

the point of test, has definite (or well known) functions and

outcomes. At this level of testing are laboratory and

simulation based testing. [15] has proposed AML (Agent

Modelling Language), a visual simulation software that

models systems operations and concepts that are multi-agent

based. Since AS are multi-agent based, this simulator makes

good case for modelling the operations of individual agents

(Autonomic Elements –AEs in this case). The paper shows

how AML can be used to „comprehensively‟ and

„efficiently‟ model the NASA‟s Prospecting Asteroids

Mission (PAM) system. However, this simulation based

validation does not suffice for AS trustworthiness as it

depends on (or is limited to) the designer‟s knowledge of

the system‟s environment and operations. Simon Dobson in

[16] attempted adaptive network calculus which allows for

both design and verification of adaptive systems. In this

approach, the description of the adaptive behaviour and its

verification are done mathematically; network calculus. This

method however is specifically for network functionality.

For example, in its expression it is assumed by definition

that R*(t) ≥ R(t) for all t. Where R(t) and R*(t) define,

respectively, the sum of bytes received and that of output by

a network element at time t. For us this expression can only

hold under ideal circumstances (for systems of well known

and predictable service curves) but cannot hold in a

dramatically different set of circumstances beyond the

design-time expected conditions.

 Real Life: Testing and validation in a live system is

arguably the most accurate way of verifying a system to

ensure its compliance with the set system‟s goal. We

understand that not all systems can be exposed to real life

validation nonetheless researchers have identified it as one

of the main approaches. In [17] the VisLab at the University

of Parma, Italy, in seeking for new ways to test (validate)

their developed autonomic vehicle for the 2010 World Expo

in China, decided to drive their autonomic vehicles (through

real-world traffic) 13000Km from Parma to China. Alberto

Broggi (VisLab‟s director) says “When you do things in the

lab, it all really works. But when you go out in the real

road, with real traffic, real weather, it’s another story.”

 Pervasive Supervision: Pervasive supervision is a

monitoring approach proposed in [18] to ensure process

correctness of ASs. The supervision system is designed to

continuously monitor the (known) configurations of each

AE, interpret the monitored data according to certain

operations requirements, like functional correctness,

performance, consistency etc., and enforce corrective

measures in case of requirement(s) violation. An example of

pervasive self-supervision is found in [22] in which the

policy mechanism monitors its own rate of decision change.

130

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

It was found that if a policy is faced with a situation where

the utility of two outcomes are very close it is possible for

the policy to rapidly switch between these options -

effectively adding noise into the system for no additional

benefit. By monitoring its own rate of decision change, the

policy mechanism is able to detect this instability and

temporarily shuts down its 'execute' function whilst

continuing to run the 'monitor', 'plan' and 'analyse'

components. A similar approach, model checking, is found

in [19]. It provides automatic analysis of models for

adherence to specified properties. A kind of logic is used to

specify model properties that should hold during adaptation

processes and these properties are automatically checked for

adherence so as to provide assurance.

 Self-testing: Self-testing is an approach to allow the

managed system to carry out self validation of its decision

making process. In [11] a framework to validate change

requests in ASs is proposed. The approach is based on

extending the current MAPE-based autonomic structure to

include self-testing as an integral and implicit part of the

AS. The same model or structure for AS management using

autonomic managers (AMs) is replicated for the self-testing.

In the self-test structure, test managers TMs (which extend

the concept of AMs to testing activities) implement closed

control loops on AMs (such as AMs implement on managed

resources) to validate change requests generated by AMs.

The work in [11] is extended in [20] to include auxiliary test

services components that facilitate manual test management

and a detailed description of interactions between the TMs

and these new components. [21] proposes a reusable object-

oriented design for developing self-testable autonomic

software by providing a detailed reusable design for AMs,

TMs, touchpoints and also extending the proposed self-

testing framework in [11] to include knowledge sources to

testing activities in autonomic software. This design

(proposed for autonomic software systems) also applies the

concepts of AMs. Arguing that these approaches are not

generic, [12] has proposed a „generic self-test approach‟.

In the structure presented in Figure 2 the authors of [12]

extended IBM‟s MAPE control loop to include a new

function called Test. By this they define a new control loop

comprising Monitor, Analyze, Decision, Test and Execute –

MADTE activities. The MADTE loop works like the MAPE

loop only that the Decision activity calls the Test activity to

validate a chosen action should it determine to adapt a

suggested behaviour. The Test activity carries out a test on

the action and returns its result to the Decision activity

which then decides whether to implement, skip or choose

another action. (An adaptation is favoured if Test indicates

that it will lead to component‟s better performance in terms

of characteristics such as optimization, robustness or

security.) The process is repeated if the latter is the case.

When an action is decided on, the decision activity passes it

to the Execute activity for implementation. A general

method for testing context aware applications, which in a

way simplifies the understanding of self-testing in AS is

presented in [23]. The paper simplifies the concept of

system management using context information while also

testing the whole process including the interactions within.

A. Taxonomy of Validation Approaches

Our research has shown that different approaches can be

used complementarily depending on what system is being

tested and validated. In some cases, for example, using the

software environment (simulation) to build a testing setup

makes it relatively easier (and complementary) to build

models for the real-world testing.

Table 1: Taxonomy of validation approaches

Validation Approach Generic Design-time Run-time Integrated

Unit Testing

Sim. [15] √ √ − −

Lab. [8]

 [16]

√ √ − −

√ √ − −

Real World [17] √ √ √ NA

Pervasive

Supervision /

Model

Checking

[18] √ − √ √

[19] − − √ −

Self-testing

[11] − − √ √

[12] √ − √ √

[21] √ − √ √

 We present the taxonomy of approaches under some

selected properties as shown in Table 1. (Note that

Approaches and referenced works are selected examples

directly related to AS validation and so not exhaustive.). By

Generic, we mean approaches that can be adapted to

different adaptation processes. Design-time and Run-time

indicate approaches that are design-time based and run-time

based respectively. By Integrated, we mean approaches that

are not separated from the autonomic management

architecture. In some senses real world testing is more of

testing than validation. It actually shows whether or not a

particular AS is able to make appropriate decision(s) in the

face of any change but says nothing about scrutinizing the

decision(s) before implementing them. In the end, humans

are needed to methodologically justify the decision(s) made.

In our view, pervasive supervision is more of a component

Self-adaptation

Process

Analyze

Test

Execute

Monitor

Decision

Figure 2: New control loop with test activity [12]

131

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

control paradigm than a validation method. In simple terms,

pervasive supervision makes sure that a component takes a

defined action (according to specified configurations) when

a change occurs (e.g., contextual) but doesn‟t bother with

validating the action taken. The works in [12][21] meet all

the properties with the exception of design-time. The

difference between [12] and [21] is that [21] defines a

separate test loop (consistent with the self-management

control loop) and integrates both loops while [12] integrates

testing to the self-management control loop. Again the

architecture in [21] is more complex than that in [12].

What we have discovered so far is that AS validation is

much in its earliest stages with only self-testing as a

promising approach amongst all identified approaches.

What is then needed is a more robust and less complex self-

testing validation methodology for AC systems. Research

has also shown that AS validation is still much

underdeveloped in some areas e.g., with respect to

reusability of validation techniques. Though researchers

claim their approaches are generic, it is not yet clear to what

extent this is true considering the level of tweaking that

needs to be done. In [12] for example, necessary actions to

make the proposed framework generic are listed. This can

be argued in terms of its robustness and the expected range

of application domains (or self-adaptation processes) to be

covered. It then follows that techniques for reusable

validation is another research area needing attention.

IV. OUR PROPOSED ROADMAP TOWARDS AS

TRUSTWORTHINESS

From the ongoing investigation discussed above, we now

draw up a roadmap towards AS trustworthiness. This entails

our view on how to achieve certifiable AC systems. This is

a long road but it is vital that we take steps along this road.

This forms the basis of our research strategy. First, we

identify characteristics or features, if you like, a proper

validation approach in our opinion should possess. Then we

look at the inter-related steps towards certifiable Ass.

A. Features of AS Validation Approach

It is our opinion that a proper validation approach should

have the characteristics shown in Table 1. Generic:

Reusability reduces complexity and cost (in terms of time

and effort) in developing validation processes for AS. A

good validation approach should be flexible to be adapted to

different adaptation processes and the procedure or process

for this adaptation clearly detailed. Design/Run-time: The

dynamic changes and reconfigurations in AS could result in

drawbacks such as the possibilities of policy conflicts and

incorrect goal specifications. Again it is clear that some AS

frameworks facilitate decision-making both at design-time

and run-time. It is then necessary to consider testing both at

design-time and run-time. Integrated: In our view testing

should be an integral part of the whole self-management

architecture. Testing being integrated to the management

structure achieves real time validation which is necessary to

mitigate adaptation conflicts and promote consistency.

Automatic: We emphasize the importance of self-validation.

Validation activity should be human independent (i.e.

should be triggered by a change in application context,

environmental volatility or a locally-detected failure

requiring reconfiguration) following a defined validation

process. But proving that a validation mechanism actually

meets its set requirements is another issue of concern.

B. Towards Certifiable AC Systems

We define a proper validation approach as one that is

generic, cuts across design/run-time, and is an integral part

of the whole self-management structure. These features can

be defined and implemented in a „class’ architecture, i.e.

each feature being seen as a class thereby defining four

classes (a – d in Figure 3). This makes the design process

flexible as it allows designers to tackle features within the

boundaries of their separate classes. Take the integrated

feature for example; at this class the designer will be

concerned with such issues as defining algorithms for

components interactions, spontaneous test activity call, etc.

One of the ways to achieve robust validation may be

through heterogeneity of approaches but the challenge still

remains the lack of approaches in this direction. But

following from Figure 1 we identify that validation is a

process towards certifiable AC systems.

1
Autonomic System

(defining

autonomous)

Autonomic characteristics, decision-

making algorithms and policies are

defined. (Architecture + self-*

properties)

2

Classified AS –
according to LoA

(defining autonomicity)

Autonomicity measuring metrics are

specified.

3 Tested AS
(Appropriate validation

for identified LoA)

Validation is defined according to

system‟s LoA. Validation is also

implemented in a layered structure

4

Trustworthy AS

Trustworthy AS is dependable AS. It

is not reasonable to consider other
properties such as evolvability

without first achieving

trustworthiness. Validation is
prerequisite for trustworthiness

5

Certifiable AS

Certifiable AS is at the height of AC

goal. It is shown at this point, beyond

every reasonable doubt, that a system
can be trusted

 Figure 3: Layered autonomic solution

a

Generic
(within LoA)

Validation approach should be

reusable across LoA.

Procedure/process for approach to

adaptation is clearly specified

b
Design-time Policies that handle design-time

validation are defined

c Run-time

Run-time validation policies and

algorithms are defined

d

Integrated

Algorithms for components

interactions and spontaneous

(automatic) test activity call are

defined

S
ta

n
d
ar

d
iz

at
io

n
 r

eq
u
ir

ed

132

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

If we consider (1 - 5) in Figure 3 as layers, each layer is

characterized by different attributes. To put it in more

context we define three cardinal processes in the path

towards certifiable AS; (1) defining autonomous –

acceptable characteristics that define an autonomic system.

This includes issues such as AC architecture (including

decision-making algorithms) and self-* properties. The

defined characteristics will influence the design and

structure of the LoA in layer 2; (2) defining autonomicity

(LoA) –this is concerned with the whole study of classifying

AC systems according to the level of machine or human

dependency. This entails measuring or calibrating AS using

such metrics as LoA [24]. The designed AS is measured in

(2) to determine its autonomic capacity. This gives an idea

of the required validation for the system; (3) validation of

systems –following the capacity of the system an

appropriate validation mechanism is mapped out in layer 3

following the validation sub-layer (defined as classes a - d).

These three processes are separate research areas and

standards are required at each level. The roadmap identifies

that a conceived AS is first designed following a predefined

architecture, evaluated according to a set of autonomic

characteristics to determine LoA and then validated against

its goal. A trustworthy AS is achieved when the design of an

AS follows layers 1 to 3. A trustworthy AS is dependable

thereby making it certifiable.

V. CONCLUSION AND FUTURE WORK

Designing an autonomic and self-managing system is one

thing while validating its management processes is another.

Notwithstanding the emergence of products now claiming to

have self-managing features, there is very little research

effort towards the validation of AS and hence there are no

known trustworthy AC systems. We have evaluated some

proposed validation approaches against some features which

are generic, design-time, run-time, integrated, and

automatic. We have identified the importance of validation

and measuring AS level of autonomicity to achieving

certifiable AS, outlined challenges in current validation

methods and have proposed a roadmap towards certifiable

AC systems. As a future work we will be addressing the

three cardinal processes identified in Figure 3 which

includes autonomic solution architecture, methodology for

measuring LoA and developing validation approaches.

VI. REFERENCES

[1] Horn Paul, Autonomic computing: IBM perspective on the state of
information technology, IBM T.J. Watson Labs, NY, 15th October

2001. Presented at AGENDA 2001, Scottsdale.

[2] J. O. Kephart and D. M. Chess, The vision of autonomic computing,

In IEEE Computer, volume 36, pp 41–50, January 2003

[3] Mazeiar Salehie and Ladan Tahvildari, Autonomic Computing:
Emerging Trends and Open Problems, Workshop on the Design and

Evolution of Autonomic Application Software (DEAS 2005), St.

Louis, Missouri, USA, 2005
[4] J. A. McCann and M. C. Huebscher, Evaluation issues in Autonomic

Computing, Grid and Corporative Computing (GCC) Workshop,

LNCS 3252, pp. 597-608, Springer-V erlag, Birlin Heidelber, 2004

[5] Huebscher M. C. and McCann J. A., A survey of autonomic
computing—degrees, models, and applications, ACM Computer

Survey, 40, 3, Article 7 (August 2008)

[6] IBM Autonomic Computing White Paper, An architectural blueprint
for autonomic computing. 3rd edition, June 2005, pp 25

[7] Kaiser G, Parekh J, Gross P, and Valetto G., Kinesthetics extreme:

an external infrastructure for monitoring distributed legacy systems.

In: Proceedings of the AC workshop, 5th international workshop on
active middleware services (AMS), Seattle. pp 22–30, 2003

[8] Radu Calinescu, General-Purpose Autonomic Computing, In:

Autonomic Computing and Networking, SpringerLink, 2009

[9] Richard John Anthony, Policy-centric Integration and Dynamic

Composition of Autonomic Computing Techniques, Int‟l Conference

on Autonomic Computing (ICAC), June 2007, Jacksonville, FL

[10] Walt Truszkowski, Lou Hallock, Christopher Rouff, Jay Karlin,
James Rash, Michael G. Hinchey and Roy Sterritt, Autonomous and

Autonomic Systems: with Applications to NASA Intelligent

Spacecraft Operations and Exploration Systems, Springer-Verlag
London Ltd, London, 2009

[11] Tariq King, Djuradj Babich, Jonatan Alava, Peter Clarke and Ronald

Stevens, Towards Self-Testing in Autonomic Computing Systems,
Proceedings of the Eighth International Symposium on Autonomous

Decentralized Systems (ISADS'07), Arizona, USA, 2007

[12] Andrew Diniz, Viviane Torres and Carlos José, A Self-adaptive
Process that Incorporates a Self-test Activity, Monografias em

Ciência da Computação, No. 32/09, Rio – Brasil, Nov. 2009.

[13] Mikhail Smirnov, Jens Tiemann, Ranganai Chaparadza, Yacine

Rebahi and Symeon Papavassiliou, Demystifying self-awareness of
autonomic systems, Conference Proceedings ICT-MobileSummit

2009, Santander, Spain. Dublin: IIMC, 2009, pp 9.

[14] R. D. Alexander, M. Hall-May and T. P. Kelly, Certification of

Autonomous Systems under UK Military Safety Standards,

ScientificCommons, 2007

[15] Radovan Cervenka, Dominic Greenwood, and Ivan Trencansky, The

AML Approach to Modeling Autonomic Systems, International
Conference on Autonomic and Autonomous Systems (ICAS‟06), Silicon

Valley, USA, July 19-21, 2006.

[16] Simon Dobson, An adaptive systems perspective on network

calculus, with applications to autonomic control, Int. J. Autonomous

and Adaptive Communications Systems, Vol. 1, No. 3, pp.332–341. 2008

[17] Erico Guizzo, Autonomous Vehicle Driving From Italy to China,
IEEE Spectrum tech alert, 23rd Sept. 2010

[18] Luciano B., Matthias B., Maurice M., Chris N., Kevin C. and Peter

H., Towards Pervasive Supervision for Autonomic Systems,
Proceedings of the IEEE Workshop on Distributed Intelligent

Systems: Collective Intelligence & Its Applications, 2006

[19] J. Zhang, H. J. Goldsby, and Betty H.C. Cheng. Modular verification
of dynamically adaptive systems. In Proceedings of the 8th Int‟l

Conference on Aspect-Oriented Software Development, 2009.

[20] Tariq M. King, Alain E. Ramirez, Rodolfo Cruz, and Peter J. Clarke,
An Integrated Self-Testing Framework for Autonomic Computing

Systems, Journal of computers, vol. 2, no. 9, november 2007

[21] Tariq M. King, Alain Ramirez, Peter J. Clarke, Barbara
QuinonesMorales, A Reusable ObjectOriented Design to Support

SelfTestable Autonomic Software, Proceedings of the 2008 ACM

symposium on Applied computing, Fortaleza, Ceara, Brazil, 2008

[22] R. J. Anthony, Policy-based autonomic computing with integral

support for self-stabilisation, International Journal of Autonomic

Computing, Inderscience, Vol. 1, No. 1, pp.1-33. 2009.

[23] Stefan Taranu and Jens Tiemann, General Method for Testing

Context Aware Applications, Proceedings of the 6th international
workshop on Managing ubiquitous communications and services

(MUCS), Barcelona, Spain, June 15, 2009

 [24] Haffiz Shuaib, Richard J. Anthony and Mariusz Pelc, Towards
Certifiable Autonomic Computing Systems, Technical report 1,

Autonomic Research Group, CMS, University of Greenwich, 2010

133

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

