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Abstract—In this article, we discuss path optimization to solve 
the problem of path planning for autonomous mobile robots. 
We consider the case of constrained environments where the 
robot is represented as a point. For that, we used an approach 
based on models of evolution; the genetic algorithms which are 
an interesting alternative to conventional methods of path 
planning. A population of paths is obtained firstly using a 
random distribution strategy. The performance of the 
proposed Genetic Algorithm based approach is tested on 
environments with increasing complexity. Through some 
results, we give a comparison between this strategy and a 
method based on Lazy A* search. 

Keywords-path planning; PRM; Genetic algorithms; 
robotics.  

I.  INTRODUCTION  
The aim of motion planning is to find the allowable 
movements of a robot in a constrained environment 
(clearance of a robot from obstacles is low). In its simple 
version, it consists of finding a path free of collision from an 
initial configuration qinit to a final configuration qfinal, it is a 
PSPACE-hard difficulty as shown by Reif [1]. 

 This means that the complexity of the path planning 
problem increases exponentially with the dimension of the 
configuration space. Based on scientific research over the 
past twenty years, we found that there are two major families 
of algorithms that address this problem. One uses a 
deterministic approach while the second uses a probabilistic 
approach [2]. There are several deterministic search 
algorithms; we can cite Bellman, breadth first search, etc. 

Recently, random sampling has emerged as a powerful 
technique for planning in large configuration spaces [3][4]. 
Random-sampling planners are classified into two 
categories: PRM (Probabilistic RoadMap) and RRT 
(Rapidly-Exploring Random Tree). 

An other approach uses genetic algorithms which are 
Meta-heuristic search algorithms. Genetic algorithms (GA’s) 
are search strategies based on models of evolution [5]. They 
have been shown to be able to solve hard problems in 
tractable time. Here, we need a solution space composed  of 
a set of nodes randomly generated in Cfree (free 
Configuration space).  

When using GA’s, we need a solution space composed of 
a set of nodes randomly generated in Cfree. The algorithm 
execution is performed by the research of the best 
configurations between the initial and the final nodes with 

checking the optimization criterion which is here the 
distance. 

The strength of this method is that it allows to explore 
and exploit the best solutions by two operators, which are 
selection and genetic reproduction. 

Section II gives an overview of previous related works 
and exposes this work's motivations, Section III lays the 
mathematical description of the terms and concepts used in 
this article, Section IV describes briefly the PRM-based path 
planning, Section V details our approach in using genetic 
algorithms to plan optimized paths. In the last section, we 
report a series of actual runs.  

II. RELATED WORK 
GA’s are considered as optimization algorithms for 

search in a space of potential solutions, so they are faced 
with the exploration-exploitation dilemma.  The solution to 
the problem of planning by Genetic Algorithms is proposed 
for the first time by [5]. There are also other contributions by 
several researchers [6][7]. The common problem to all 
methods is how to choose the initial population. Most of 
these methods use a set of paths encoded in the 
chromosomes. The optimal path is calculated after several 
iterations. The necessary step in these algorithms is the 
determination of the fitness function (optimization criterion).   
[4] proposed to use a function of performance determined by 
the linear combination of distance, the smoothing angle and 
the robot position from the obstacles. Some papers have 
focused on dynamic environments [8] and others have tried 
to investigate in the synergism of respectively fuzzy logic - 
GA’s [10] and neural networks-GA’s [11].  

In this article, we discuss path optimization to solve the 
problem of path planning for autonomous mobile robots. We 
have mainly focused on using genetic algorithms to calculate 
optimized paths, we have thus demonstrated their advantages 
and disadvantages, and for this we made a comparison with a 
widely used approach, PRM associated with A* algorithm for 
finding optimal paths. 

III. PRELIMINARIES 
As the paper covers several notions relating to C-space 

(configuration space), we give some definitions for the most 
pertinent ones used here. 

Definition 1:  A Workspace  ࣱ  is a physical space 
represented by Թ² for planar (2D) or Թ3 for 3D spaces. 
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Definition 2: An Obstacle ࣩ  is a portion of ࣱ  that is 
“permanently” occupied, represented by the obstacle 
region ࣩ, ࣩ ك ࣱ. 

Definition 3: A robot ࣛ consists of one rigid body, or 
more “motion-constrained” rigid bodies, represented by the 
robot region ࣛ and is the set of all points in ࣱ that lie in ࣛ, 
ࣛ ك ࣱ. 

Definition 4: A robot configuration q is a set of 
parameters that completely specify the position of robot ࣛ  
with respect to a fixed frame F , ࣛሺݍሻ is the region of ࣱ 
occupied by ࣛ at configuration q. Each parameter of q 
corresponds to one degree of freedom of the robot. 

Definition 5: The configuration space ࣝ for a robot ࣛ  is 
the set of all configurations of robot ࣛ in  ࣱ or: 
 

ࣝ ൌ ሼݍ  |ࣛሺݍሻ ك ࣱሽ              (1)      
                                                                             

Definition 6: The configuration space obstacles ࣩࣝ is the 
mapping of the obstacles in the workspace to the 
configuration space, it is the set of all configuration of robot 
ࣛ at which the robot region is in contact or overlaps with 
obstacles regions or: 
 

ࣩࣝ ൌ ሼ݈݈ܽ ݍ, ݅ |ࣛሺݍሻ ת ࣩ ്     ሽ                    (2)
                                                                 

Definition 7: Free configuration space ࣝfree is the set of 
configurations at which the robot is free from collision with 
the Workspace obstacles, or simply: 
 

ࣝfree ൌ ࣝ\ࣩࣝ                                    (3)  
                                                                                                       

Definition 8: A local-path lp is a continuous function of 
a parameter s which takes values in the interval : [0, 1] to ࣝ 
or: lp: [0, 1] →  ࣝ | lp(s)=q(s). 
Furthermore, if the local-path is defined by its end 
configuration lp(q0,q1), then lp(0)= q0, lp(1)= q1. 

Definition 9: The general definition of a path p is the 
same as that of a local-path, and when it is additionally 
defined by its start and end configurations p(qs, qe), then p(0)= 
qs, lp(1)= qe.  

Given the discrete search used here, p will be mostly 
defined as an ordered set of k local-paths, or p(lp1, lp2,.. lpk) 
where; lpi(1)= lpi+1(0), i=1,..k-1, this results in a continuous 
path. A sub-path(q1,q2) of a path p is a continuous function 
from ሾݏଵ, ଶሿݏ  →  ࣝ  where ሺݏଵሻ ൌ ,ଵݍ ଶሻݏሺ ൌ ଶݍ  and   
א ݏ ሾݏଵ, ሻݏଶሿ: sub-path(q1,q2) ሺݏ ൌ ሻ. 0ݏሺ  ଵݏ ൏ ଶݏ  1. 

IV. PLANNING WITH PRM 
Probabilistic algorithms are based on the use of 

randomness for the construction of a graph capturing, in 
condensed form, the connectivity of the free space  ܥ  , 
thereby precluding any explicit representation of the 
configuration space C. The basic idea of planners based on 
random sampling is to exploit the outstanding performance 
of collision detection algorithms that verify whether a given 
configuration is free or not. It should be noted that the 
completeness of these algorithms is rather low. 

The principle used to sample the space Cfree is that of 
uniform random sampling, which can blanket the entire free 
region. 

 
Simple Query PRM Algorithm (N, B,M,v's, qini , qfin) 
1. Sample N configurations 
2. R(V,E)←For every node n, assign the closest B visible 

nodes as visible from n. 
3. Add qini and qfin to R and query it using Lazy A* for 

path p, if successful return p. 
4. Sample and connect M new nodes to R in "difficult" 

regions. 
5.  Query R using Lazy A* for path p, if successful return 

p else return Failure. 
 
We may note that in step 1 and 2 we only construct a 

roadmap without actually checking the nodes in V nor the 
edges in E for collision. This will be performed during the 
query phase only when necessary by using a Lazy A*[9] 
with weighed L-infinity norm  ݀ሺݍԢ, ሻ௪ஶ"ݍ  (the weights 
being νi's ) as the cost of  edge e(q',q"). the difficult regions 
in step 4 are those collision free nodes that fail more often to 
connect to their neighbouring nodes compared to others, this 
could potentially indicate that these nodes are located in 
narrow regions [9][12] (Figure 1). 

V. PATH PLANNING USING GENETIC ALGORITHMS 
The algorithm is divided into two phases; first, we 

generate a set of configurations in free space and then in the 
second phase we use genetic algorithms as a metaheuristic 
search procedure to find the optimal path that leads robot 
from qini and qfin. In order to sample the space Cfree , we use 
the uniform random sampling, which can blanket the entire 
free region. Each time we generate a configuration, we check 
whether it is in collision or not. In our case, we generate an 
initial population of segments with a performance function 
based on the minimum distance (Figure 2).  

To find the optimal path by the approach of genetic 
algorithms, we try to find the best segments of this path, such 
that the sum of their metric distance is minimal. The coding 
of these solutions is as follows: each chromosome contains 
two nodes, an initial and final node. These nodes are those 
generated in the first phase, so they are free of collision. 

 

 
 

 Figure 1. Roadmap built by PRM in a C-space with narrow 
regions.  
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Table I gives the computation time of a path by the two 

approaches in the four environments. 
 

TABLE I.   

 PRM/Lazy A*                   GA’s 
M N T M N T

Envt 1 500 500 118.90 500 34 20.02
Envt 2 500 1015 122.63 500 38 23.85
Envt 3 500 1634 168.92 500 41 21.96
Envt 4 500 2043 168.36 500 70 24.02

 

VII. DISCUSSION 
In the typical results shown in Figure 2, we find that the 

final path is always optimized (in length) when using genetic 
algorithms. The time required to find the optimal path is 
about 24 seconds with a number of samples equal to 500. 

If we increase the complexity of the environment, we 
obtain a path generally better optimized in distance and also 
in computation time. The number of iterations (70) is 
significantly lower than the one obtained from PRM (2043). 
Even if we increase the number of samples, the optimal path 
keeps the same performance. 

The GA’s approach does not require the construction of 
the graph of visibility, it minimizes the computation time of 
the path, it is very interesting for solving NP-hard problems. 

Despite the good results, there remains a problem when 
meeting environments with narrow regions (Figure 4(c, d)) 
which makes very difficult the search for configurations that 
optimize the way, the algorithm falls into a local minimum. 
In this case, a probable solution is to generate additional 
configurations in these regions. But this is not always the 
right solution, because if we increase the number of 
configurations, there is a risk of not finding the way, despite 
the existence of feasible configurations in Cfree. The failure to 
find a solution path is often due to the inefficiency of 
collision detection. By making several attempts, we can 
reach an acceptable solution. For example, for the 
environment 4, the path is found after 5 tests and 70 
iterations. 

VIII. CONCLUSION AND FUTURE WORKS  
This paper investigates the application of GA’s for 

solving the problem of path planning for mobile robots. We 
studied two approaches based on randomized algorithms, 
PRM and GA’s. For the first approach, the results showed 
that we can find feasible paths for several types of 
environments, however, this does not qualify as ‘robust’ this 
approach, since we encounter cases where we can not find 
solutions, despite that there are configurations eligible to 
generate a path. In the second approach, which is based on 
genetic algorithms, a population of paths is obtained firstly 
using a random distribution strategy. The performance of the 
proposed Genetic Algorithm based approach is tested on 
environments with increasing complexity. The results 
obtained by this approach show the effectiveness of GA’s, 
these algorithms can find the optimal path in a very short 
time and has the capacity to enrich the configuration space 
by a different set of eligible movements by using the 
crossover operator and selection.  

As future works, we would like to extend this approach 
to multiple cooperating robots and mobile manipulators. 
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