
VCE - A Versatile Cloud Environment for Scientific Applications

Martin Koehler, Siegfried Benkner
Faculty of Computer Science, University of Vienna

Nordbergstr. 15/C/3, Vienna, Austria
koehler,sigi@par.univie.ac.at

Abstract—Cloud computing promises to change the way
scientists will tackle future research challenges by providing
transparent access to distributed heterogeneous data sources
and to high-end computing facilities for performing compu-
tationally demanding and data-intensive modeling, simulation
and analysis tasks. In this article we describe the Vienna Cloud
Environment (VCE), a service-oriented Cloud infrastructure
based on standard virtualization and Web service technologies
for the provisioning of scientific applications, data sources,
and scientific workflows as virtual appliances that hide the
details of the underlying software and hardware infrastructure.
The VCE is based on a virtual appliance model within a
component-based service provision framework, which supports
the configuration of application, data, and workflow services
from a set of basic service components providing capabilities
like job or query execution, data transfers, QoS negotiation,
data staging, and error recovery. The virtual appliance model
constitutes an easy way to provision applications, data sources,
and workflows in the Cloud and a standard way of accessing
and integrating the appliances into client applications. VCE has
been developed and utilized in the context of several projects
for the realization of IT infrastructures within bio-medical and
molecular modeling domains.

Keywords-cloud infrastructure; software as a service; data
mediation; workflow; MapReduce.

I. INTRODUCTION

Cloud computing is often defined as realization of the
”Everything as a Service” model(XaaS) [1]. Cloud comput-
ing promises on demand access to virtually infinite compute
and storage resources, programming and execution plat-
forms, and applications, provided and consumed as services.
More often the cloud computing stack is characterized as
Software/Platform/Infrastructure as a Service (SaaS, PaaS,
and IaaS). IaaS Clouds provide a shared infrastructure to
their customers on a rental basis by utilizing virtualiza-
tion technologies while programming and execution en-
vironments for Cloud programming models (e.g., Google
AppEngine, MapReduce [2]) can be categorized as PaaS.
On the top layer, Cloud computing enables transparent and
dynamic hosting of applications together with their native
execution environment without knowledge about the actual
hardware infrastructure. If applications themselves provide
a direct service interface to the user, this approach is called
SaaS. The emergence of virtualization technologies and
Cloud computing infrastructures (e.g., OpenNebula, Amazon
EC2) enables easy provisioning of software as virtual appli-

ances on remote resources on demand. A virtual appliance
can be defined as a software package preinstalled on a virtual
machine image to enable provisioning of the software in the
Cloud. For utilizing Clouds in the scientific domain, addi-
tional capabilities are required for supporting long running
applications, usually executed on HPC computing resources,
and for extracting knowledge from huge data sets.

In this work we present the Vienna Cloud Environment
(VCE), which follows the Software as a Service model to
expose virtual appliances as services. VCE virtual appliances
hide the details of the underlying software and hardware in-
frastructure and provide a common set of generic interfaces
to the user. The service provisioning framework in VCE
has been developed on top of the Vienna Grid Environment
(VGE), a service oriented infrastructure for virtualizing sci-
entific applications and data sources as Web services. VGE
[3][4] was developed in context of the European projects
GEMSS and @neurIST and has now been Cloud-enabled
by supporting virtual appliances.

VCE enables the hosting of parallel high-performance
computing applications, data sources, workflows, as well
as data-intensive MapReduce applications in the Cloud
by means of specific virtual appliances, all following the
same generic service interface. Virtual application appliances
support on demand access to high performance computing
applications (e.g., parallel MPI/OpenMP codes) including
support for dynamic negotiation of service-level-agreements
based on a flexible QoS infrastructure using business models
specialized for the application [5]. In addition to virtual
application appliances VCE provides virtual data appliances
to facilitate access to and integration of heterogeneous data
sources. Virtual data appliances are built upon OGSA-DAI
and OGSA-DQP and offer transparent access to multiple
data sources via a virtual global schema relying on flexible
data mediation techniques [6]. On top of application and
data appliances, VCE offers support for scientific workflows
[7]. Workflow appliances are based upon the WEEP Work-
flow Engine [8] and can be structured to adaptively load
balance the workload across multiple appliances. In recent
work support for MapReduce appliances was implemented
within VCE [9]. MapReduce appliances include an adaptive
framework for the execution of data-intensive Map-Reduce
applications in the Cloud based on autonomic computing
concepts.

81

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

The remainder of this paper is structured as follows.
The next section describes the architecture of VCE. The
following sections present in detail virtual appliances for
applications, data sources, workflows, and MapReduce ap-
plications. The paper concludes with a summary and an
outlook to future work.

II. VCE CLOUD INFRASTRUCTURE

The VCE Cloud infrastructure comprises a set of virtual
appliances, a generic service provision framework, and a
client-side Cloud programming environment. The service
provisioning environment enables service providers to ex-
pose compute intensive scientific applications, distributed
data sources, scientific workflows, as well as MapReduce
applications as Cloud services that can be securely accessed
on-demand by clients over the Internet. Virtual appliances
include a preconfigured setup of the VCE service provi-
sioning environment as well as appliance specific software
(e.g., Workflow Enactment Engine). The client-side Cloud
programming framework offers a high-level application pro-
gramming interface (API) with Java, C# and C bindings
that may be used to construct advanced applications from
application, data, workflow, and MapReduce services.

A. VCE Architecture

VCE adopts a service-oriented architecture and relies on
standard Web Service as well as Cloud computing technolo-
gies for offering parallel applications, distributed heteroge-
neous data sources, workflows, and MapReduce applications
as virtual appliances. VCE distinguishes four different types
of virtual appliances, application appliances, data appliances,
workflow appliances, MapReduce appliances, which all are
based on virtual images, Web service enabled via WSDL
and securely accessed using SOAP messages.

Application appliances virtualize compute intensive ap-
plications, usually parallel MPI codes available on clusters,
other HPC systems, or Cloud resources. Using application
appliances, clients may run applications on demand over
the Internet and negotiate with service providers required
QoS levels, for example, to ensure that an application job
is completed before a certain deadline. VCE application
appliances provide generic Web service components for
job execution, monitoring, data staging, error recovery and
application-level quality of service support.

Data appliances virtualize data sources as Cloud ser-
vices, facilitating transparent access to and integration of
heterogeneous data sources including relational data bases,
XML data bases and flat files. Relying on advanced me-
diation mechanisms, data appliances provide transparent
access to distributed data sources via a single integrated
virtual schema. VCE data appliances provide generic Web
service components for query execution, data movement, and
staging of result data.

Figure 1. A VCE Cloud comprising Application, Data, Workflow and
MapReduce Services deployed in different Clouds

Workflow appliances virtualize scientific workflows as
Cloud services, facilitating transparent access to and execu-
tion of scientific workflows. They are based upon the Work-
flow Enactment Engine (WEEP) and are able to schedule
the workload to multiple workflow execution appliances.
VCE workflow appliances provide generic Web service
components for workflow execution, data movement, error
recovery, and staging of result data.

MapReduce appliances virtualize data-intensive Hadoop
applications, usually accessing huge data volumes stored in
HDFS. MapReduce appliances internally use an adaptive
execution framework based on autonomic computing con-
cepts. The adaptive framework schedules the execution of
the application automatically on available Cloud resources
by considering the execution time as well as the number of
resources. They provide generic Web service components for
job execution, monitoring, data staging, and error recovery
and are internally based upon the Hadoop framework.

As shown in Figure 1, a VCE Cloud usually comprises
multiple application, data, workflow, and MapReduce ap-
pliances, as well as multiple client applications. Moreover,
VCE offers an integrated certificate authority for providing
an operational PKI infrastructure and end-to-end security
based on X.509 certificates.

The VCE environment provides mechanisms for appliance
discovery based on service registries. Multiple service reg-
istries may be set up in order to enable service providers to
publish their services, and clients to discover these services.
VCE service registries are realized as virtual appliances
providing a Web service interface. Service providers can
describe their services using an arbitrary set of attributes
(name/value pairs), which are published in the registry.
These attributes may be utilized during service selection to
determine potential candidate services that might be able to
fulfill a request.

82

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

Figure 2. Layered abstraction of VCE

VCE virtual appliances, being virtual images, are hosted
within Cloud environments. Different Cloud environments,
as public Clouds (e.g., Amazon EC2) or private/hybrid
Clouds can be utilized for the provisioning of virtual appli-
ances. In several projects the following Cloud environments
have been utilized: Eucalyptus, OpenNebula, and VMWare
server. Virtual appliances provide access to one or more VCE
services, which are hosted within a preconfigured service
container. VCE client applications usually run on PCs or
workstations connected to the Internet and make use of the
VCE client API for interacting with services through the
VCE middleware.

Figure 2 shows a layered abstraction of the VCE infras-
tructure. At the lower layer are a variety of compute and
storage resources, which are Cloud-enabled via Cloud com-
puting infrastructures or provided via schedulers as Sun Grid
Engine (SGE). The HPC applications, scientific workflows,
data sources and MapReduce applications are normally
installed on VCE virtual appliances, but can be provided
directly on the computing resources as well. These resources
are virtualized through the Cloud service middleware layer
and transparently provided through the abstraction of VCE
services on virtual appliances, which are hosted on the Cloud
resources. VCE services are composed of generic service
components providing basic capabilities for job, query, and
workflow execution, QoS, data mediation, data transfer,
monitoring and error recovery. Client applications are able
to transparently access VCE virtual appliances, through the
abstraction of VCE services.

B. VCE Virtual Appliances

VCE virtual appliances provide a preconfigured installa-
tion of a service hosting environment based on the open-
source frameworks Apache/Tomcat and Axis, a preconfig-
ured VCE service, and a deployment tool for configuring
and deploying VCE services. The VCE deployment tool
automates the provision of HPC or MapReduce applications,
data sources, and workflows as services. It offers an intuitive
graphical or command line user interface for enabling ser-
vice providers to describe, configure, deploy and manage
services without having to deal with the details of Web
service technologies.

The deployment tool enables to specify the service hosting
environment, the security level, and a service description.
The description of a service usually comprises the specifi-
cation of input/output file names and of scripts for starting
job execution, or the execution of a scientific workflow. A
description of a data service comprises the specification and
configuration of the underlying data sources. VCE services
support different security levels, including no security, basic
security via SSL, and end-to-end security. Supported security
technologies include PKI, HTTPS, WS Security and an end-
to-end security protocol for separate encryption of sensitive
portions of the transferred data. The information specified
by the user with the deployment tool is stored internally in
an XML service descriptor. Upon deployment of a service,
a Web service with a corresponding WSDL interface is
generated, deployed in the VCE hosting environment, and
published in the VCE registry.

A virtual appliance additionally includes an Apache server
for connecting VCE services with the Internet using a
Tomcat connector (JK connector) between the Apache server
and the Tomcat server. Additionally the appliance includes
a preconfigured firewall enabling access via ssh and http.

C. Virtual Appliance Access Model

VCE relies on a purely client-driven approach for access-
ing VCE virtual appliances via SOAP. All interactions of a
client with appliances are initiated by the client and neither
call-backs nor notification mechanisms are used.

VCE appliances are inherently multi-threaded, i.e., if
multiple clients access a service, a separate thread is gen-
erated for each client, and for each client a separate ap-
plication/workflow job or data access is generated. Session
management and state handling is managed internally and
transparently, conceptually following the WSRF model but
being implemented based on conversational identifiers and
WS-Addressing mechanisms.

A basic VCE appliance access scenario starts with ad-
ministrative steps including authorization and authentication.
The client then usually accesses a registry to find a set
of candidate appliances. Afterwards the client uploads the
input data, initiates execution, queries for the state of the
execution, and finally downloads the result.

83

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

Figure 3. Architecture of Virtual Appliance

D. VCE Client Environment

In order to support the construction of client-side appli-
cations that interact with virtual appliances, VCE provides
a high-level client API with bindings for JAVA, C and C#
(.NET). The client API hides most of the details of dealing
with remote services from the client application developer.
The central abstraction provided by the client API is a
ServiceProxy interface, which specifies all methods required
for transparently accessing application and data services
from a client application. Moreover, the client API provides
a set of classes for dealing with various aspects of the VCE
environment at a high-level of abstraction hiding the details
of the underlying interaction with VCE.

The client API is structured into several layers. The
bottom layers implement data marshaling, message gener-
ation, signing, and encryption, while the top layers provide
abstractions for service discovery and all service interac-
tions provided by the ServiceProxy. Using these high-level
abstractions, users can more easily develop client applica-
tions that interact with VCE appliances. The ServiceProxy
interface comprises methods for handling transfers of input
and output data, for job, workflow or query execution, for
monitoring, as well as for error handling.

Additionally, VCE clients support several security mecha-
nisms as provided by VCE and monitoring of the execution.
The high-level client API is based on the service component
model and therefore extensible with new service component
functionalities.

III. VIRTUAL APPLICATION APPLIANCES

The VCE enables service providers to virtualize HPC
applications available on clusters, other parallel hardware,
or virtual images as application appliances that can be
accessed on-demand by clients over the Internet. Application
appliances hide the details of their execution environment,
providing abstract interfaces for managing job execution on
remote computing resources. The VCE application appliance
infrastructure has been partially developed within the EU

Project GEMSS [10], which devised a service-oriented Grid
infrastructure that supports the Grid provision of advanced
medical simulation. In order to enable the utilization of
Grid-based simulation services during medical procedures,
QoS support to ensure the timeliness of simulation results
was a major requirement. Addressing these issues, VCE
application appliances may be configured with a flexible
QoS negotiation service component, supporting dynamic
negotiation of Service Level Agreements (SLAs) [5]. The
QoS infrastructure enables clients to negotiate guarantees
on service response times and price with service providers.

Virtual application appliances can be provided by directly
installing the application on the appliance. In this case an
application can be distributed to service providers by virtual
application appliances and exposed as Web services by host-
ing the appliance in the Cloud. Virtual application appliances
are able to utilize a scheduling system for the execution of
jobs. Therefore it is possible to access applications installed
on local cluster resources via Sun Grid Engine (SGE) as
well as applications deployed on Cloud resources via VCE
application appliances.

IV. VIRTUAL DATA APPLIANCES

Virtual data appliances were partly developed in the con-
text of the European project @neurIST [11], which devel-
oped an advanced service-oriented IT infrastructure [12][6]
for the management of all processes linked to research,
diagnosis and treatment development for complex and multi-
factorial diseases.

To support such scenarios, VCE includes a generic data
management and integration framework for the provision
and deployment of virtual data appliances. VCE enables
the virtualization of heterogeneous scientific databases and
information sources as Web services hosted in virtual ap-
pliances, which allows transparent access to and integration
of relational databases, XML databases and flat files. The
development of virtual data appliances utilizes advanced data
mediation and distributed query processing techniques based
on GDMS [13], OGSA-DAI [14], and OGSA-DQP [15].

The VCE offers virtual data appliances as well as virtual
mediation appliances, all providing the same interface to
clients. Virtual data appliances (VDA) provide access to a
single data source, and virtual mediation appliances (VMA)
offer transparent access to multiple data sources via a global
virtual schema. The virtual schema of a VMA provides an
integrated, global view of the underlying local data sources.
Virtual mediation appliances translate queries with respect
to the global schema into local queries, manage the access
to the local data sources, and integrate results from local
queries according to the global schema. Different, tailor-
made views of distributed data sources may be provided for
specific usage-scenarios, by setting up different variants of
virtual mediation appliances.

84

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

Virtual mediation appliances can be composed recursively,
i.e., a VMA can act as a local data source to another
virtual mediation appliance, resulting in a tree-structured
data integration scenario. In order to optimize complex data
integration scenarios, virtual mediation appliances may be
configured to support distributed query processing. For dis-
tributed query processing, the data mediation engine relies
on OGSA-DQP, which has been integrated to coordinate
the distributed execution of queries to local data sources
utilizing a set of additional virtual evaluation nodes, as
specified by the service provider.

Virtual data and mediation appliances are based on a
virtual images and encapsulate a VCE service provisioning
installation providing access to the underlying data source.
A fully configured system installation is provided as a virtual
machine, including preconfigured system components such
as Apache, Tomcat and SSL configuration. This allows
simple deployment for test and production use in Cloud
computing infrastructures. Virtual data appliances includes
a preconfigured data access service providing a Web service
interface to a preinstalled MySQL database. Virtual media-
tion appliances include a preconfigured installation of a data
mediation service with OGSA-DQP support. The service
provider has to provide the mediation schema to the virtual
appliance to configure the service. Both virtual appliances
are available for VMWare and Eucalyptus and are based on
CentOS.

V. VIRTUAL WORKFLOW APPLIANCES

Support for virtual workflow appliances has been imple-
mented in the context of the CPAMMS project. A major
challenge in this project is the provisioning of seamless
integrated support for scientific workflows in the domain
of computational molecular modeling, which access HPC
applications and are deployed on globally distributed com-
puting resources. These scientific workflows are typically
long running, deal with huge files, and have a need for
dynamic execution control mechanisms. We offer support for
scientific workflows in the VCE by seamlessly integrating
the Ubuntu Cloud infrastructure supporting the scheduling
of dynamic and partitioned workflows deployed on virtual
workflow appliances. In [16], [7] we described virtual work-
flow appliances in detail and a case study workflow for com-
puting photodynamics of biologically relevant molecules.

Due to the dynamic characteristics and because of the
unpredictable runtime and resource requirements of this
workflow, we implemented a framework for the provision-
ing of scientific workflows as virtual workflow appliances
in the Cloud, where resources can be made available on
demand. We integrated a workflow enactment engine into
the VCE and prepared the middleware for hosting workflow
services transparently in the Cloud. Following the Cloud
and Web service paradigms, a virtual workflow appliance
for hosting scientific workflows exposed as Web service has

been developed. The virtual workflow appliance includes
all required software packages allowing an easy deployment
of new scientific workflows as Web services by leveraging
Cloud technologies. Scientific workflows usually include
many potentially long running scientific codes, each of
them exposed as a VCE service, which may be invoked
many times during a specific workflow. To make use of
the dynamic resource allocation possibilities in the Cloud,
our virtual workflow appliances are able to delegate these
requests to basic service invocation appliances. This leads
to a decentralized execution of the workflow in the cloud
environment and allows to schedule the different service
invocations to different instances of the appliance.

The basic service invocation workflow encapsulates the
life cycle of accessing a VCE appliance and is deployed
as WEEP workflow [8] in the basic service invocation
appliance. A simple interface is provided by the service
invocation workflow, which can be used by workflow de-
signers during the workflow development process. The basic
workflow constitutes an additional abstraction layer hiding
the details of accessing and querying a specific VCE ap-
pliance from the workflow designer. Multiple instances of
the basic service invocation appliance are hosted in the
Cloud environment and can be used to realize a distributed
execution of different service invocations.

The virtual workflow appliance can be used to deploy
scientific workflows as VCE services without the need
of additional software installation. The virtual workflow
appliance is configured with a VCE service provisioning
environment. The service provisioning environment includes
a preconfigured VCE workflow service definition, which
allows the deployment of a workflow service simply by
the provisioning of a WEEP Grid workflow archive (gwa)
including the BPEL process definition. Using the VCE
deployment tool, the VCE workflow service can be deployed
automatically by providing the reference to the used gwa.
The deployed VCE service comprises a workflow service
component, virtualizing a workflow behind the generic VCE
interface, and a streaming service enabling direct file trans-
fers between services based on a push/pull mechanism.
The workflow service automatically deploys the provided
gwa in a local WEEP Engine installation accessible via a
JMX interface. A WEEP template service is instantiated
for the gwa, and a engine service is created, when the
workflow is started. It is possible to host several VCE
workflow services in one virtual workflow appliance. The
VCE workflow appliance is configured with an advanced
WebPortal allowing live logging, online user management,
and a push/pull mechanism supporting large data transfers
directly between services.

VI. VIRTUAL MAPREDUCE APPLIANCES

Virtual MapReduce appliances [9] enhance the VCE with
support for data-intensive applications based on the Apache

85

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

Hadoop framework. Virtual MapReduce appliances include
an installation of the VCE service provisioning environment
and expose a VCE MapReduce service via a Web service
interface. VCE MapReduce services use an integrated self-
configuring and adaptive framework for optimizing the con-
figuration of data-intensive applications at three abstraction
layers: the application layer, the MapReduce layer, and the
resource layer. For each layer generic descriptors, describing
the evolving parameter set, are introduced. At the application
layer the framework is able to configure the execution of
parameter studies, which results in different resource needs
of the application. The Hadoop framework provides a huge
set of configuration parameters and the installation has to
be optimized for the actual set of resources [17]. Using a
MapReduce descriptor, the framework is able to automati-
cally determine an optimized setting of Hadoop parameters,
as for example the number of map and reduce tasks, on a
per job basis. Leveraging a scheduler, in our implementation
the Sun Grid Engine (SGE), allows describing and selecting
the available computing resources by taking into account the
actual resource needs for a job.

The adaptive framework evaluates the arising parameter
set and self-configures all layers on a per job basis. It is
based on the MAPE-K loop [18][19], which is a well-
known concept from autonomic computing, and a utility
function [20]. In recent work [9], we evaluate the possible
configurations based on a history based performance model
and a utility function. By adapting the utility function,
the system allows to specify the main optimization goal,
optimizing resource usage or optimizing the runtime of a
job.

Virtual MapReduce appliances rely internally on a
scheduling system for the execution of MapReduce ap-
plications on remote resources. In [9], we leverage the
OGE to schedule applications on local cluster systems, but
we additionally provide MapReduce appliances to enable
dynamic hosting in Cloud environments.

VII. RELATED WORK

Over the last years, the scientific community has under-
taken a lot of effort for enabling the utilization of Clouds
for science and for the provisioning of scientific Clouds.
Some institutions provide access to their scientific Clouds
at ScienceClouds.org [21]. They provide compute
and storage capability to all scientists wanting to run their
applications in the Cloud. On the other hand, there is a lot
of effort in the creation of open source Cloud computing
toolkits. These Cloud computing toolkits can be utilized by
institutions for setting up private, public, or hybrid Clouds
which can be utilized by domain scientists. The OpenNebula
project [22] developed a software stack for the provisioning
of Infrastructure as a Service (IaaS) Clouds. The VCE, can
be utilized on top of IaaS Clouds, and provides an easy and
generic way for Cloud-enabling scientific applications, data

sources, and workflows as Cloud services following the SaaS
concept. In [23], a discussion of benefits and issues regarding
to science Clouds is provided. Identified as main benefits
are the virtual ownership of resources as well as the ease of
deployment, while some open issues include performance
management, interoperability, and execution models.

The industry provides different Cloud computing solu-
tions, most often on a pay per use basis. The Amazon
EC2 Cloud [24] provides IaaS services to their customers
based on different instance types. They support special-
ized services for HPC computing including Amazon Elastic
MapReduce and Public Data Sets. Microsoft provides with
Windows Azure [25] services for hosting and scaling of
Web applications on their data centers. Google follows
the PaaS approach by providing a high-level and scalable
programming API to their users (Google App Engine [26]).
Many more commercial service providers are supporting
different aspects of the SaaS/PaaS/IaaS stack.

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented the Vienna Cloud Environment,
a generic Cloud infrastructure for virtualizing HPC applica-
tions, data sources, scientific workflows, and MapReduce
applications as virtual appliances in the Cloud. Virtual
appliances hide the details of the underlying software and
hardware infrastructure and can be easily distributed and
deployed. VCE application appliances virtualize HPC appli-
cations running on clusters by providing common operations
for transparently managing the execution of application
jobs. Virtual data and mediation appliances address the
complex problems associated with access to and integration
of distributed heterogeneous data sources. Virtual work-
flow appliances add support for distributed execution of
complex long running scientific workflows. They include a
preinstalled workflow engine and allow the deployment and
execution of composed workflows written in BPEL. A basic
adaptive execution framework for MapReduce applications
has been realized for virtual MapReduce appliances. By
utilizing virtual appliances, scientists are enabled to run their
applications on virtually infinite resources in the Cloud and
to easily access them via a Web service interface.

Our future work will focus on improved adaptive execu-
tion mechanisms based on autonomic computing concepts
addressing the trade-offs between execution time, resource
requirements/costs for Cloud-based scientific applications.

REFERENCES

[1] “Everything as a Service,” March 2011,
http://www.hp.com/hpinfo/execteam/articles/robison/08eaas.html.

[2] J. Dean and S. Ghemawat, “Mapreduce: simplified
data processing on large clusters,” Commun. ACM,
vol. 51, pp. 107–113, January 2008. [Online]. Available:
http://doi.acm.org/10.1145/1327452.1327492

86

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

[3] S. Benkner, I. Brandic, G. Engelbrecht, and R. Schmidt,
“VGE - A Service-Oriented Grid Environment for On-
Demand Supercomputing,” in Proceedings of the Fifth
IEEE/ACM International Workshop on Grid Computing (Grid
2004), November 2004.

[4] S. Benkner, G. Engelbrecht, M. Koehler, and A. Woehrer,
“Virtualizing scientific applications and data sources as grid
services,” in Cyberinfrastructure Technologies and Applica-
tions, J. Cao, Ed. Nova Science Publishers, 2009.

[5] G. Engelbrecht and S. Benkner, “A service-oriented Grid
environment with on-demand QoS support,” in ICWS-2009
- 7th IEEE Int. Conference on Web Services, Los Angeles,
CA, USA, 7 2009.

[6] M. Koehler and S. Benkner, “A service oriented
approach for distributed data mediation on the grid,”
in Grid and Cooperative Computing, 2009. GCC ’09.
Eighth International Conference on, Lanzhou, Gansu,
China, August 2009, pp. 401–408. [Online]. Available:
http://dx.doi.org/10.1109/GCC.2009.35

[7] M. Koehler, M. Ruckenbauer, I. Janciak, S. Benkner, H. Lis-
chka, and W. N. Gansterer, “A grid services cloud for molec-
ular modelling workflows,” International Journal of Web and
Grid Services (IJWGS), vol. 6, no. 2, pp. 176 – 195, 2010.

[8] I. Janciak, C. Kloner, and P. Brezany, “Workflow Enactment
Engine for WSRF-Compliant Services Orchestration,” in In
The 9th IEEE/ACM International Conference on Grid Com-
puting, 2008.

[9] M. Koehler, Y. Kaniovskyi, and S. Benkner, “An adaptive
framework for the execution of data-intensive MapReduce
applications in the Cloud,” in DataCloud2011 - 1st Int. Work-
shop on Data Intensive Computing in the Clouds, Anchorage,
Alaska, USA, 5 2011.

[10] S. Benkner, G. Berti, G. Engelbrecht, J. Fingberg, G. Kohring,
S. Middleton, , and R. Schmidt, “Gemss: Grid-infrastructure
for medical service provision,” in Proceedings of HealthGRID
2004, January 2004.

[11] H. Rajasekaran, P. Hasselmeyer, L. L. Iacono, J. Fing-
berg, P. Summers, S. Benkner, G. Engelbrecht, A. Arbona,
A. Chiarini, C. Friedrich, M. Hofmann-Apitius, B. Moore,
P. Bijlenga, J. Iavindrasana, H. Müller, R. Hose, R. Dunlop,
A. Frangi, and K. Kumpf, “@neurIST - Towards a System
Architecture for Advanced Disease Managment through In-
tegration of Heterogeneous Data, Computing, and Complex
Processing Services,” in IEEE International Symposium on
Computer-Based Medical Systems. Jyväskylä, Finland: IEEE
Computer Society Press, June 2008, copyright (C) IEEE
Computer Society.

[12] S. Benkner, A. Arbona, G. Berti, A. Chiarini, R. Dunlop,
G. Engelbrecht, A. F. Frangi, C. M. Friedrich, S. Hanser,
P. Hasselmeyer, R. D. Hose, J. Iavindrasana, M. Köhler, L. L.
Iacono, G. Lonsdale, R. Meyer, B. Moore, H. Rajasekaran,
P. E. Summers, A. Wöhrer, and S. Wood, “@neurist: Infras-
tructure for advanced disease management through integration
of heterogeneous data, computing, and complex process-
ing services,” Information Technology in Biomedicine, IEEE
Transactions on, vol. 14, no. 6, pp. 1365–1377, November
2010.

[13] A. Wöhrer, P. Brezany, and A. M. Tjoa, “Novel mediator ar-
chitectures for grid information systems,” Future Generation
Computer Systems, vol. 21, no. 1, pp. 107 – 114, 2005.

[14] M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, C. Hong,
P. Neil, B. Collins, N. Hardman, A. C. Hume, A. Knox,
M. Jackson, A. Krause, S. Laws, J. Magowan, N. W. Pa-
ton, D. Pearson, T. Sugden, P. Watson, and M. Westhead,
“The design and implementation of grid database services in
ogsa-dai: Research articles,” Concurrency and Computation :
Practice and Experience, vol. 17, no. 2-4, pp. 357–376, 2005.

[15] M. N. Alpdemir, A. Mukherjee, A. Gounaris, N. W. Paton,
P. Watson, A. A. Fernandes, and D. J. Fitzgerald, “Ogsa-
dqp: A service for distributed querying on the grid,” in
Advances in Database Technology - EDBT 2004, ser. Lecture
Notes in Computer Science, E. Bertino, S. Christodoulakis,
D. Plexousakis, V. Christophides, M. Koubarakis, K. Böhm,
and E. Ferrari, Eds. Springer Berlin / Heidelberg, 2004, vol.
2992, pp. 3923–3923, 10.1007/978-3-540-24741-8 58.

[16] M. Ruckenbauer, I. Brandic, S. Benkner, W. Gansterer,
O. Gervasi, M. Barbatti, and H. Lischka, “Nonadiabatic
Ab Initio Surface-Hopping Dynamics Calculation in a Grid
Environment - First Experiences,” in Proceeedings of the 2007
International Conference on Computational Science and Its
Applications (ICCSA 2007), ser. LNCS, vol. 4705. Kuala
Lumpur, Malaysia: Springer Verlag, 2007, pp. 281–294.

[17] Impetus, “Whitepaper: Deriving intelligence from large data
using hadoop and applying analytics,” March 2011.

[18] J. Kephart and D. Chess, “The vision of autonomic comput-
ing,” Computer, vol. 36, no. 1, pp. 41 – 50, Jan. 2003.

[19] M. C. Huebscher and J. A. McCann, “A survey of autonomic
computing - degrees, models, and applications,” ACM
Comput. Surv., vol. 40, pp. 7:1–7:28, August 2008. [Online].
Available: http://doi.acm.org/10.1145/1380584.1380585

[20] W. Walsh, G. Tesauro, J. Kephart, and R. Das, “Utility
functions in autonomic systems,” in Autonomic Computing,
2004. Proceedings. International Conference on, May 2004,
pp. 70 – 77.

[21] “ScienceCloud,” March 2011, http://scienceclouds.org.

[22] “OpenNebula,” March 2011, http://opennebula.org.

[23] C. A. Lee, “A perspective on scientific cloud computing,” in
Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, ser. HPDC ’10.
New York, NY, USA: ACM, 2010, pp. 451–459. [Online].
Available: http://doi.acm.org/10.1145/1851476.1851542

[24] “Amazon elastic compute cloud (amazon ec2),” March 2011,
http://aws.amazon.com/ec2.

[25] “Windows Azure - Microsoft’s Cloud Services Platform,”
March 2011, http://www.microsoft.com/windowsazure/.

[26] “Google AppEngine,” March 2011,
http://code.google.com/appengine/.

87

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

