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Abstract—In this work, a model order reduction (MOR) 
technique for a linear multivariable system is proposed using the 
combined advantage of retaining the dominant poles and the 
error minimization using the particle swarm optimization. The 
state space matrices of the reduced order system are chosen such 
that the dominant eigenvalues of the full order system are 
unchanged.  The other system parameters are chosen using the 
particle swarm optimization with objective function to minimize 
the mean squared errors between the outputs of the full order 
system and the outputs of the reduced order model when the 
inputs are unit step.  The proposed algorithm has been applied 
successfully, a 10th order Multiple-Input_Multiple-Output 
(MIMO)  linear model for a practical power system was reduced 
to a 4th order and an 8th order Single-Input-Single-Output (SISO)  
system was reduced to a 2nd order. 

Keywords-Model Order Reduction;MIMO Systems;Particle Swarm 
Optimization. 

I.  INTRODUCTION 
Many physical systems are translated into mathematical 

model via higher order differential equations.  It is usually 
recommended to reduce the order of this model while keeping 
the dominant behavior of the original system.  This will help 
to better understanding of the physical system, reduce 
computational complexity, reduce hardware complexity and 
simplify the controller design. 

Different techniques for order reduction of linear 
continuous MIMO system in time domain as well as in 
frequency domain are available in the literature [1-4]. For 
model order reduction, there are different scenarios that can be 
performed. One scenario obtains reduced models that are 
completely new and not related to the original models in terms 
of their critical frequencies of either SISO or MIMO systems. 
On the other hand, another scenario obtains reduced models 
that preserve the original system important properties, such as 
dominant frequencies of either SISO or MIMO systems. It is 
to be noted that the later scenario is more preferable, if 
possible, due to its meaningful physical interpretation in 
obtaining similar models and due to minimum changes in the 
original systems [5].  

The MOR problem has been investigated in literature 
extensively. Willcox and Perarie [6] proposed an algorithm to 
reduce the model order using the proper orthogonal 
decomposition (POD) analysis of the primal and dual systems, 
low-rank, reduced-range approximations to the controllability 
and observability gramians. Fujimoto and Scherpen [7] 
proposed a singular perturbation type balanced realization and 
model reduction for discrete non-linear dynamical systems 
based on Hankel singular value analysis, which preserves the 
related controllability and observability properties. Heydari 
and Pedram [3] proposed a spectrally weighted balanced 
truncation technique for tightly coupled integrated circuit (IC) 
interconnects, when the interconnected circuit parameters 
change because of statistical variations in the manufacturing 
process. Rabiei and Pedram [8] proposed a method that uses 
the truncated balanced realization technique as well as the 
Schur decomposition to develop an efficient numerical method 
for the order reduction of linear time invariant (LTI) systems. 
Gugercin et al. [9] proposed an iterative rational Krylov 
approach (IRKA) for optimal H2 model reduction. Their 
approach is concerned with SISO-type systems only and is 
based on minimizing the H2-norm. This minimization leads to 
a non-convex problem that can get stuck at local minima and 
hence optimality will not be achieved [10]. Recently, Parmar 
et al. [4] proposed a reduction method with pole centroid 
retaining in the reduced model. Their method deals with SISO 
systems only. In addition, it works for real poles only. Genetic 
algorithm (GA)-based MOR, on the contrary, has received 
some of the researchers’ attention as well. Recently, Panda et 
al. [11] employed a particle swarm optimization technique to 
obtain a reduced-order model of SISO large-scale linear 
systems. Their technique is based on integral square error 
(ISE). Vishwakarma and Prasad [12] proposed a mixed 
method for reducing the order of large-scale linear systems. 
They have synthesized the denominator of the reduced-order 
transfer function (TF) using modified pole clustering, whereas 
the coefficients of the numerator elements are computed using 
GA. Parmar et al. [13] presented a technique for MOR using 
GA for SISO linear time systems. They have focused on 
obtaining a reduced-order model that maintains stability and 
retains the steady-state value. 

62

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-134-2



 

In this work, the particle swarm optimization (PSO) is 
utilized for MOR of MIMO systems. The rest of the paper is 
organized as follows: Section II is the statement of the 
problem. In section III, the PSO algorithm is stated; section IV 
is designated for results and discussion, and finally, 
conclusions are presented in section V.  

II. PROBLEM STATEMENT 
MOR is investigated both for MIMO and SISO systems, 

for the MIMO systems, the state space representation was 
adopted while for the SISO systems, the transfer function 
model is used. 

A.   MOR for MIMO systems 
 Consider the following nth order LTI system: 

)()()( tuBtxAtx fff +=&                                    (1) 

)()()( tuDtxCty fff +=                                (2) 

where n
fx ℜ∈ is the state vector, pu ℜ∈ , and 

m
fy ℜ∈ are the input and output vectors, respectively. The 

matrices Af, Df, Cf, and Df are the full order system matrices 
with their appropriate dimensions. Let the eigenvalues of the 
above full order system be given as: 

nλλλ −<<−<− L21 . 

On the other hand, consider the reduced order LTI system 
with order r: 

)()()( tuBtxAtx rrrr +=&                                        (3) 

)()()( tuDtxCty rrrr +=                           (4) 

where r
rx ℜ∈ is the state vector of the reduced order 

system, pu ℜ∈ , and m
ry ℜ∈ are the input and output 

vectors,respectively.  The matrices Ar, Br, Cr, and Dr are the 
reduced order system matrices with their appropriate 
dimensions. The eigenvalues of reduced order system are 
chosen to be the dominant eigenvalues of the full order system 
given as: rλλλ −<<−<− L21 . 

The Ar matrix is chosen to be a diagonal matrix with the 
dominant eigenvalues are assigned as the diagonal elements.  
The elements of other matrices are chosen by the PSO. 

B. MOR for SISO Systems 
Consider an nth order SISO LTI system with the following 

transfer function: 
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with the eigenvalues of the system to be 

nλλλ −<<−<− L21 . 

Let the reduced order model be 
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The coefficients of the denominator of Gr(s) are chosen 
such that the eignenvalues of the low order system are the 
dominant roots of the full order system as follows: 

rλλλ −<<−<− L21 , while the coefficients of the 
numerator are chosen by the PSO algorithm. 

III.  THE PSO ALGORITHM  
The PSO is a multiple-agent optimization algorithm 

developed by Kennedy and Eberhart [14] in 1995. The major 
advantage of the PSO over other stochastic optimization 
methods is its simplicity. The standard PSO is implemented by 
assuming a swarm of particles (called trial solutions). Each 
particle moves in the solution space by improving its position 
according to suitable updating equations. This is performed on 
the basis of information on each particle’s previous best 
performance and the best previous performance of its 
neighbors (global best). The updating equations for the PSO 
are sequentially applied at each individual. Unlike other 
stochastic algorithms, the PSO is based upon the cooperation 
among the trial-solutions and not on their competition. In 
order to describe the steps of the PSO algorithm, we will 
define the given parameters and the necessary specifications. 
Hence, two parts can be classified: 

A. Definitions and parameters setting: 
• Set the full order system parameters. 

• Set appropriate level step inputs to the system. 

• Simulate the outputs, yf, of the full order system with   
a suitable sampling time. 

• Choose a suitable order of the reduced order system 
based on the dominant eigenvalues. 

• Set the PSO parameters: 

• The size of the particle, P. 

o The number of particles in the swarm, M. 
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o The counter of iteration (I = 1) and the 
maximum number of iterations, Lmax. 

• Definition of the solution space: A reasonable range 
for the parameters should be chosen.  This requires 
specifications of the minimum and maximum values 
for each parameter.   

• Definition of a fitness function: This step is the link 
between the optimization algorithm and the physical 
problem in hand.  A good fitness function that is well 
representative of the parameters is crucial in the PSO 
algorithm. In this work, the fitness function is defined 
by the weighted-mean-squared error 

∑∑
= =

−=
m

k

N

i
rfk ikyikyw

N
WMSE

1 1

2)],(),([1
                  (7) 

where N is the number of samples, m is the number of 
outputs, wk is a weight used to emphasize the kth error, yf(k,i) is  
the ith sample of the kth output of full order system and   yr(k,i) 
is  the ith sample of the kth output of reduced order system. 

In this paper, the fitness function used in the PSO 
algorithm is the minimization of WMSE  

)min(WMSEfitness =                                                      (8) 

B. The main steps of the PSO algorithm. 
Step 1- Initialization: 

The PSO starts by randomly initializing the position 
matrix, X, the velocity matrix, V, and the personal best matrix, 
P, of each particle in the swarm such that     
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and the velocity matrix is  
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The personal best position can be defined by the matrix 
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The global best solution gbest is the row of personal best 
matrix, P, with the best fitness function given as 

[ ]Pgggfitnessgbest L21i ))(pbestmin( ==         (12) 

In most cases, the initial position is the only location 
encountered by each particle at the start of the algorithm.  
Hence, it will be regarded as the particle’s respective personal 
best.  

Step 2- Particle Updating. 

For each iteration, the particles will be moved into the 
solution space. The algorithm will act on each particle such 
that each particle will move in a direction to improve its 
fitness function.  The following steps summarize the action 
encountered on each particle in the swarm: 

a) Update the Particle’s velocity.  The particle’s 
velocity will be updated according to three vector elements: 
the first is the relative location to its corresponding pbesti; the 
second is its relative location to gbest; and the third vector is a 
scaled factor of the old velocity.  For each particle, the 
velocity update is 

)(22)(11
1 t

ixgbestt
ixt

ipbestt
iv1t

iv −+−+
+

=
+ ηη cctw                     (13) 

The superscript t+1 and t refer to the time index of the 

next and the current iterations.  1η and 2η  are two uniformly 
random numbers in the interval [0,1].  A good choice for c1 
and c2 are both 2.0.  The parameter wt is a number called the 
inertial weight which is a scaling factor of the previous 
velocity of the particles.  It has been demonstrated that PSO 
algorithms converges faster if w is chosen to be linearly 
damped with iterations [14].  A good choice to start with is 
w1=0.9 at the first iteration and linearly decreases to 
wLmax=0.4 with the last iteration. 

b) Movement Updating of the particles: 
Once the velocity of each particle is determined, the position 
will be updated  

t
i

t
i

t
i t vxx Δ+=+1                                       (14) 

For simplicity, tΔ is chosen to be unity. 
 

c) Evaluate   the  fitness function for the new position 
and compare it with the fitness function of the pbest, 
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if fitness( ix ) < fitness (pbesti) then pbesti = ix  

d) Compare the fitness function of the new position with 
the fitness function of gbest  

if fitness( ix ) < fitness (gbest) then gbest = ix  

e) Repeat (a), (b), (c), and (d) for the whole M particles. 
Step 3- Check if maximum iteration reached or a specified 
termination criteria is satisfied. Then, the solution is gbest. 
Otherwise, update w and go to the next iteration. 

IV. RESULTS AND DISCUSSION 
To demonstrate the proposed method of the PSO model 

reduction, we will consider two dynamical examples. The first 
one is 2-input 2-output, 10th order power system represented 
with its state space full order system [15]. The second example 
is a single input single output 8th order transfer function [16]. 

Example 1 

Consider the following 2-input, 2-output, 10th order power 
system with the following state space model: 
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The eigenvalues of the full order system are: 

{-18.9311 ± 2.0250i, -12.1968, -9.6484, -0.2394 ± 3.2350i 

  -0.8972 ± 1.3560i, -2.1313, -0.1001} 

The following eigenvalues were chosen to be in the 
reduced order model 

{-0.2394 ± 3.2350i, -0.8972 ± 1.3560i} 

Hence, the reduced order state space model will be 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−
−−

=

8972.03560.100
3560.18972.000
002394.02350.3
002350.32394.0

rA
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

84

73

62

51

xx
xx
xx
xx

Br

 ⎥
⎦

⎤
⎢
⎣

⎡
=

16151413

1211109

xxxx
xxxx

Cr
 

⎥
⎦

⎤
⎢
⎣

⎡
=

00
00

rD  

The coefficients of the Br and the Cr matrices are evaluated 
using the PSO algorithm as follows: 
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Simulating both models (the full and the reduced) to a step 
input are shown in Figure 1. 
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Fig.1: The two outputs of the system for both the full and 
the low order models caused by a step input for Example 
1.(The full order outputs; solid, the reduced order outputs; 
dashed) 

Example 2 

Consider the 8th order transfer function 

 

403201095841181246728422449453654636
4032018576022208812266436380598251418)( 2345678

234567
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=
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The eigenvalues of the full order system are { -1, -2, -3, -4, 
-5, -6, -7, -8}.  The reduced order model is designed to have 
the following transfer function (TF): 
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Coefficients of the numerator and the denominator are 
evaluated using the PSO. Hence, 

the reduced order system was obtained as 

1514.59722.6
0742.50989.17)( 2 ++

+
=

ss
ssGr  

with poles {-6.1321 and -0.8401}.  Again, simulating the 
full and the reduced order models to a step input produced the 
output shown in Figure 2. 
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Fig.2: The output of the system for both the full and the 
reduced order models caused by a step input for Example 2. 
(The full order output; solid, the reduced order output; dashed) 

V. CONCLUSION AND FUTURE WORK 

Model order reduction has been implemented by using the 
PSO algorithm.  The behavior of the original system was 
preserved in the WMSE sense.  The dominant poles of the full 
order system were kept unchanged in the reduced order model.  
The retaining of the dominant poles will guarantee that the 
overall behavior of the reduced order system will be almost 
the same as the original system.  Based on the results obtained 
by the illustrative examples, it is concluded that the proposed 
method achieved satisfactory results. As for future work, 
implementation of this technique on actual physical systems 
will take place. Systems with very large dimensions will be 
considered to explore the powerfulness of the method.  Also, 
comparison of the PSO algorithm with other evolutionary 
optimization techniques will be investigated.    
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