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Abstract— This paper presents an introduction to 

Evolving Systems, which are autonomously controlled 

subsystems which self-assemble into a new Evolved 

System with a higher purpose. Evolving Systems of 

aerospace structures often require additional control 

when assembling to maintain stability during the entire 

evolution process. This is the concept of Adaptive Key 

Component Control which operates through one specific 

component to maintain stability during the evolution. In 

addition this control must overcome persistent 

disturbances that occur while the evolution is in 

progress. We present theoretical results for the 

successful operation of Adaptive Key Component 

control in the presence of such disturbances and an 

illustrative example. 

 

Keywords- adaptive control; aerospace systems. 

I. INTRODUCTION  

Evolving Systems [1]-[2] are autonomously controlled 

subsystems which self-assemble into a new Evolved System 

with a higher purpose. Evolving Systems of aerospace 

structures often require additional control when assembling 

to maintain stability during the entire evolution process [3]-

[5]. An adaptive key component controller has been shown 

to restore stability in Evolving Systems that would 

otherwise lose stability during evolution [6]. The adaptive 

key component controller uses a direct adaptation control 

law to restore stability to the Evolving System through a 

subset of the input and output ports on one key component 

of the Evolving System. Much of the detail of Evolving 

Systems appears in the chapter [8]. In this paper, we will 

deal with the situation where persistent disturbances can 

appear in some components and must be mitigated by the 

adaptive key component controller. Such disturbances will 

often be attendant in actively controlled rendezvous and 

docking. 

The control laws used by the adaptive key component 

controller to restore stability in an Evolving System are 

guaranteed to have bounded gains and asymptotic tracking 

if the Evolved System is almost strictly dissipative. Hence, 

it is desirable to know when the dissipativity traits of the 

subsystem components, including the key component, are 

inherited in an Evolving System. We present results 

describing when an Evolving System will inherit the almost 

strict passivity traits of its subsystem components. Then we 

will present an adaptive key component controller that 

restores asymptotic stability with bounded adaptive gains 

and mitigates the effect of persistent disturbances during 

evolution.  

II. MATHEMATICAL FORMULATION OF EVOLVING 

SYSTEMS 

A mathematical formulation of a nonlinear time-invariant 

Evolving System is given here. Consider a system of L 

components of individually, actively controlled subsystems 

which can be described by the following equations for the i
th

 

component: 










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iiii

uxgy

uxfx
 

where Li ,2,1 . The i
th
 component has a Performance 

Cost Function Ji and a Lyapunov Function Vi. These are the 
building blocks of the Evolving System. When these 
individual components are joined to form an Evolved 
System, the new entity becomes: 











),(

),(

uxgy

uxfx
 

with 
T

Lxxx ]...[ 1 , 
T

Lyyy ]...[ 1 , Performance 

Cost Function J, and Lyapunov Function V.. The i
th
 

component in the above Evolved System is given by:  

 10);,,(),(
1

 


ijjjiij

L

j

ijiiii uxxfuxfx   

where ),,( jjiij uxxf  represents the interconnections 

between the i
th
 and j

th
  components. Note that when ,0ij  

the system is in component form and when ,1ij  the 

43

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-134-2



system is fully evolved. As the system evolves, or joins 

together, the ij ’s evolve from 0 to 1. 

The components of the Evolving System are actively 
controlled by means of local control. Local control means 
dependence only on local state or local output information, 
i.e., 



ui  hi (xi) or ui  hi (yi) . In general, the local controller 

on the i
th
 component would have the form: 











),(

),(

iiii

iiii

zylz

 zyhu


 

where iz  is the dynamical part of the control law. Local 

control will be used to keep the components stable and meet 

the individual component performance requirements, iJ .  

Once the system is fully evolved, the i
th
 component in the 

fully evolved system ,1ij  becomes: 

 



L

j

jjiijiiii uxxfuxfx
1

),,(),(  

A state space version of the i
th
 individual component of 

an Evolving System where the components are connected 
through the states can be represented as: 

 0

1

( ) ( )

( , ); (0)

( )

i

i i i i i i

L

ij ij i j i

j

i i i

x A x B x u

A x x x x

y C x


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  


 

 

  

where Li ,2,1 , 
T

1 ][ i

in

i

i xxx  is the 

component state vector, 
T

1 ][ i

im

i

i uuu   is the control 

input vector, 
T

1 ][ i

ip

i

i yyy  is the sensor output vector, 

))(),(),(( iiiiii xCxBxA are vector fields of dimension 

ii nn  x , ii mn  x , and ii np  x , respectively, and the 

connection forces between components are represented in the 

ji nn  x  connection matrix, ijjijiij xxA   with ),( . 

The state space representation of the Evolved System then 
becomes: 











)(

)()(

xCy

uxBxAx
 

which can also be written as ))(),(),(( xCxBxA . 

 

III. INHERITANCE OF SUBSYSTEM TRAITS IN EVOLVING 

SYSTEMS 

We say a subsystem trait, such as stability, is inherited 
when the Evolved System retains the characteristic of the 
trait from the subsystem. Previous papers have examined the 
inheritance of stability and shown that stability is not a 
generally inherited trait [3]-[5] and [8]. Inheritance of almost 
strict passivity of subsystems is desirable in Evolving 
Systems that use an adaptive key component controller to 
restore stability. 

In previous papers, [5]-[6], a key component controller 
has been proposed to restore stability to Evolving Systems 
which would otherwise lose stability during evolution. The 
design approach used by the key component controller is for 
the control and sensing of the components to remain local 
and unaltered except in the case of one key component 
which has additional local control added to stabilize the 
system during evolution. The key component controller 
operates solely through a single set of input-output ports on 
the key component, see Figure 1.  

 
Figure 1.  Key component controller. 

Only the key component of the Evolving System needs 
modification to restore the inheritance of stability. A clear 
advantage of the key component design is that components 
can be reused in many different configurations of Evolving 
Systems without the need for component redesign. The reuse 
of components which are space-qualified, or at least 
previously designed and unit tested, could reduce the overall 
system development and testing time and should result in a 
higher quality system with potentially significant cost 
savings and risk mitigation. 

In many aerospace environments and applications, the 
parameters of a system are poorly known and difficult to 
obtain. Adaptive key component controllers, which make use 
of a direct adaptation control law, are a good design choice 
for restoring stability in Evolving Systems where access to 
precisely known parametric values is limited. The sufficient 
condition for an Evolving System with an adaptive key 
component controller to be guaranteed to have bounded 
gains and to have asymptotic output tracking is that the 
system be almost strictly dissipative. So, we are interested in 
the conditions under which the inheritance of almost strict 
dissipativity can be guaranteed in Evolving Systems. 
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IV. INHERITANCE OF ALMOST STRICT DISSIPATIVITY IN 

EVELOVING SYSTEMS 

Inheritance of almost strict dissipativity of subsystems is 
desirable in Evolving Systems that use an adaptive key 
component controller to restore stability. 

Consider a Nonlinear System of the form: 

 







)(

)()(

xCy

uxBxAx
 

We say this system is Strictly Dissipative when 

( ) 0 0V x x    

such that the Lie derivatives satisfy:  

( ) ( )

( ) ( ); gradient 

A

T

B

L V VA x S x x

L V VB x C x V V

   


   

 

The function 



V (x(t))  is called the Storage Function for (7), 

and the above says that the storage rate is always less than 
the external power. This can be seen from  
 



uyxS

uxCxS

uxBxAVV

T

,)(

)()(

])()([







 

Taking 



u  0, it is easy to see that (9) implies (8a) but 
not necessarily (8b); so (8) implies (9) but not conversely. 
They are only equivalent if (8a) is an equality. (When 
equality holds in (8) and (9), the property is known as Strict 
Passivity.) 

We will say a system  ( , )u y  is Almost Strictly 

Dissipative (ASD) when there is some output feedback, 

* ru G y u  , so that the following is strictly dissipative: 




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


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


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Now if each component is ASD, then we have 
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1
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Due to the interconnection terms, (11) is not necessarily 
Strictly Dissipative. However, in some circumstances, the 
interconnection terms have a special form and ASD is 
inherited when the system evolves.  

Suppose we have a pair of subsystems of the form: 



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
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where 



i 1,2  and both subsystems 



u1

u1
A









,
y1

y1
A



















  and 



u2

u2
A









,
y2

y2
A



















  have storage functions 



Vi . We have the 

following result: 

Theorem 1: If the subsystems 



(u1
A , y1

A )  and 



(u2
A , y2

A )  

are ASD and 





ViBi (xi) Ci
T (xi); i 1,2 

 
then the resulting feedback connection, 



y1  u2  and 



u1  y2 , will leave the composite system 



uA 
u1
A

u2
A









, yA 

y1
A

y2
A























 almost strictly passive. 

Proof: See Appendix.  
In [3]-[4], it was shown that the physical connection of 

components is equivalent to the feedback connection of the 
admittance of one to the impedance of the other. 

Consequently, if 1 1( , )u y  and 2 2( , )u y  are in 

Admittance/Impedance form, then Theorem 1 shows that 
ASD is an inherited property for Nonlinear Evolving 
Systems. 

V. MATHEMATICAL FORMULATION OF ADAPTIVE KEY 

COMPONENT CONTROLLER WITH PERSISTENT DISTURBANCE 

MITIGATION 

Our Key Component is chosen to be Component #1 and 
will be modeled by the following Nonlinear System with an 
External Persistent Disturbance: 

















)(
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)()()()(

111
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11111111111

xCy

xCy

uxuxBuxBxAx

AA

D

AA

 

All vector fields in (14) will have the appropriate 
compatible dimensions and be smooth in their arguments 
with a single equilibrium point at 0 in a neighborhood U. 
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 The persistent disturbance input vector  uD t   is ND-

dimensional and will be thought to come from the following 
Disturbance Generator: 









0)0(; zzzFz

zu

DDD

DD




where the disturbance state  zD t   is ND-dimensional. Such 

descriptions of persistent disturbances were first used in [9] 
to describe signals of known form but unknown amplitude. 
For example, step disturbances yield  1 and F = 0  while 

sinusoidal disturbances can be described by  

  1 0 

F 
0 1

 D
2 0





















where the frequency  D   is known but the amplitudes 

are not. 
We will assume that the Disturbance Generator 

parameter F  is known. In many cases this is not a severe 
restriction, e.g. step disturbances. It turns out that it is better 
to rewrite the above  in the following equivalent form: 


D D

D D

u z

z L

 



 

where D is a vector composed of the known basis 

functions for the solutions of zD t  and ),( L need not be 

known. This can be seen from the following: 

1 2

1

( ) (0)

( ), ( ),..., ( ) (0)

( )

D

D
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N
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D i D

i

z t e z
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z t L

  

 




   

 



Note that L  is directly related to F  via its columns but 

not to   . Some rearrangement of the entries in the columns 

of F is needed to create D . A simple example of the above 

is given by the following: 



1 2

0 1 0 1

0 0 1 1

sin( )

sin( ) cos( )

D

D D

D D

x x u u

u a t b

a t a t



 
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 

  



 

Assume ),(
1

1

1

1

















AA y

y

u

u
is ASD. Also let the Matching 

Condition: 

 ))(())(( 1111 xBRxR A  

which says )()( 11*11* xHxBH A  . 

Component #2 will represent all the rest of the evolving 
system and will be assumed to be strictly dissipative by 
choice of local controllers: 











)(

)()(

222

222222

xCy

uxBxAx 
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The Components are in Admittance-Impedance form so 

when they are joined 1221  and yuyu  . 

The Adaptive Key Component Controller with 
Disturbance Mitigation works through the control input-

output ports ),( 11

AA yu of Component #1: 

















0;)(

0;)(

1

11

11

DD

T

D

A

D

ee

TAA

e

DD

A

e

A

yG

yyG

GyGu









  

 

This produces 
1

2

0
t

x
x

x 

 
  
 

with bounded 

adaptive gains ( , )e DG G as the following convergence 

theorem shows: 
 

Theorem 2: Assume that 1V  and 2V  are positive 

0x   and radially unbounded, and 

 ( ), ( ), ( )A x B x C x  are continuous functions of 



x  

and ( )S x , above, is positive 0x   and has continuous 

partial derivatives in



x . Furthermore, assume: 
 

46

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-134-2



1)  The conditions of Theo.1 are satisfied; so 

that
1 1

1 1

( , )
A A

u y

u y

   
   
   

is Almost Strictly Dissipative 

(ASD) 
2)  The Matching Condition: 

 
))(())(( 1111 xBRxR A

 

3)  D  is bounded (or F has only simple imaginary 
poles and no right half-plane poles) 

 
 
Then the adaptive Controller (6) produces  

1

2

0
t

x
x

x 

 
  
 



with bounded adaptive gains ( , )e DG G when Component 1 

is joined with Component 2 into an Evolved System and the 

outputs ( ) 0i i i t
y C x


  . 

 
Proof: See Appendix. 

It should be noted that the above results might only hold 

on a neighborhood 



N i (0,ri)  xi / xi  ri . However, then 

the stability in Theo. 2 is only locally asymptotic to the 
origin. 

VI. ILLUSTRATIVE EXAMPLE  

Example 1, which follows, is a two component linear 
flexible structure Evolving System. The components of 
Example 1 are stable when they are unconnected 
components, but the Evolving System fails to inherit the 
stability of the components. This example will be used to 
demonstrate the inheritance and lack of inheritance of almost 
strict dissipativity in Evolving Systems. 

 
Figure 2.   Example 1: A two component flexible structure Evolving 

System. 

The dynamical equations for the components of Example 
1 are: 



 

 

 

1 1 1 12 12 1 2

T

1 1 1

2 2 2 12 12 2 1

22 2 3

3 3 3 22 3 2

T

2 2 2

T

3 3 3

( )
component 1: 

,

( )

( )

component 2: ( )

,

,

m q u k q q

y q q

m q u k q q

k q q

m q u k q q

y q q

y q q





  





  

 


  







 

with 301 m , 12 m , 13 m , 4 12 k , 

and 1 22 k . Example 1 has the following controllers: 



 

 

























33

22

11

16.0

5.02.0
1.0

1.09.0

qsu

qs
s

u

qsu

 

When two components join to form an Evolved System, 
at their point of contact, their velocities are equal and the 
forces exerted are equal and opposite. If the two components 

are given by  11,vf  and  22 ,vf , then the contact 

dynamics of the Evolved System can be represented by: 











2211

21

qvqv

ff


 

This connection can be modeled as the admittance of one 
component connected in feedback with the impedance of the 
other component [1]-[3]. When we use this idea of the 
joining of two components of an Evolving System as the 
feedback connection of their admittance and impedance, we 
can apply Theorem 1 from above to determine whether 
almost strict dissipativty is inherited by the Evolved System. 

The subsystem components from Example 1 are stable in 

closed-loop form when they are unconnected, i.e., 012  . 

When 112  , the system is fully evolved and it has a 

closed-loop eigenvalue at 0.17, resulting in an unstable 
Evolved System. 

A Simulink model was created to implement an adaptive 
key component controller for Example 1 as described in the 
previous section. Simulations were run in which the 

connection parameter, 12 , ranged from 0 to 1, allowing the 

system to go from unconnected components to a fully 
Evolved System. The key component controller was able to 
maintain system stability during the entire evolution process 
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when it used the input-output ports on mass 1 of component 
1, see Figure 3. When component 1 was the key component, 

 CBA ,,  is ASPR.  

 

 

Figure 3.   Adaptive key component controller on mass 1. 

When the key component controller was located on 
component 2 and used the input-output ports on mass 3, 
stability was not maintained, see Figure 4. The adaptive key 
component controller was not able to restore stability on 
mass 3 because that system was not ASPR, i.e., it had 
nonminimum phase zeros at 0.00515±0.2009i. 

 
Figure 4. Adaptive key component controller on mass 3. 

 

VII. CONCLUSION 

We have presented a result (Theorem 1) describing when 
an Evolving System will inherit the almost strict dissipativity 
traits of its subsystem components. An example was given of 
successful inheritance of almost strict dissipativity and failed 
inheritance of almost strict dissipativity. This result allows a 
control system designer to determine a sufficient condition 

for an Evolving System to use an adaptive key component 
controller to restore stability. We also presented a 
convergence result (Theorem 2) for an adaptive key 
component controller to restore stability during evolution 
and mitigate persistent disturbances. 
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Appendix 
 
 
Proof of Theorem 1: 
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(u1,y1)  in feedback with 
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(u2, y2) , then 
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Proof of Theorem 2: 
Since the physical connection of Component 1 to 

Component 2 is equivalent to the feedback connection 

1 2u y   and 2 2u y , 

By Theo.1 we have that the closed-loop system 1 1( , )A Au y  
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Combining (A.3) and (A.4) yields: 
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Let 1 2V V V   and we have: 
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This guarantees that all trajectories 
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which is bounded because 
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(x,G) is bounded, 
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continuous partial derivatives and 
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