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Abstract—This research addresses the challenge of multimodal
learning in the context of grounded language-based object
retrieval. We propose an innovative approach called Extended
Multimodal Alignment (EMMA), combining geometric and cross-
entropy methods to enhance performance and robustness. Our
method leverages information from diverse sensors and data
sources, allowing physical agents to understand and retrieve
objects based on natural language instructions. Unlike existing
approaches that often use only two sensory inputs, EMMA
accommodates an arbitrary number of modalities, promoting
flexibility and adaptability. On the GoLD benchmark EMMA
reaches 0.93 mean-reciprocal rank and 78.2% top-1 recall,
outperforming the strongest baseline by +7.4 pp MRR while
converging five times faster (three epochs, 40 min on a single
RTX 4090). When any single modality is withheld at test
time, EMMA retains 88% of its full-modality accuracy, whereas
competing methods drop below 65%. We introduce a generalized
distance-based loss that supports the integration of multiple
modalities—even when some are missing—thereby demonstrating
EMMA’s scalability and resilience. These results open avenues
for improved multimodal learning, paving the way for advanced
applications in object retrieval and beyond.

Keywords-Multimodal learning; Object retrieval; Sensor fusion;
Contrastive loss; Grounded language

I. INTRODUCTION

Inspired by the multimodal nature of human interaction with
the world, it is intuitive that agents learning about the world,
upon encountering new concepts and new objects, should
form a model that incorporates information from all available
sensors and data sources. The benefits of integrating multiple
modalities are twofold: first, complementary information can
be extracted from different modalities that can help with
understanding the world, and second, additional modalities can
help in the cases when one or more sources of data about the
world become unavailable. Grounded language understanding,
in which natural language is used as a query against objects in
a physical environment, allows a real-world, intuitive mech-
anism by which users can instruct physical agents to engage
in tasks such as object retrieval. Visuolinguistic approaches to
such object inference tasks typically involve training on large
pools of image/text pairs and then using language to subselect
elements of the sensed environment [1][2].

Although physical agents, such as robots typically have
access to sensory and interactive modalities beyond vision, and
learning from multiple modalities can improve performance on
downstream tasks, most approaches use at most two sensory
inputs (e.g., visual data such as RGB plus depth images) with
single labels, such as those provided by textual natural lan-
guage. Simultaneously using additional inputs from different

modalities is an underexplored area, in part due to the domain-
specific nature of such n-ary learning approaches. With the
modern proliferation of audio and text-based communication
and home agents (e.g., Alexa/Google Home), there is a grow-
ing need to handle more modalities and simultaneously their
potential failures.

One difficulty with working with complex multimodal data
is the increased likelihood that one or more modalities may
have missing information. Hardware can become damaged or
defective, sensors can get blocked or obstructed, and various
adverse but not uncommon conditions can remove a modality
from use. Current multimodal approaches are typically not
robust to the loss of one or more modalities at test time, as may
happen if, for example, a physical agent fails to retrieve data
from a particular sensor. In order to fully leverage multimodal
training data while being robust to missing information, we
propose a generalized distance-based loss function that can be
extended to learn retrieval models that incorporate an arbitrary
number of modalities.

We consider the domain of grounded language-based object
retrieval [3][4], in which objects in an environment must be
identified based on linguistic instructions. This can be consid-
ered a special case of image retrieval [5]–[8] in which objects
are identified using visual inputs in combination with other
sensor modalities. Approaches to acquiring grounded language
have explored various combinations of sensor inputs such as
depth and RGB with labels provided by textual language or
speech [9]. However, despite object retrieval’s multisensory
nature, much of the existing work has not previously been
extended to include an arbitrary number of modalities.

To this end we introduce Extended Multimodal Alignment
(EMMA), a retrieval framework that fuses a geometric dis-
tance objective with a cross-entropy based supervised con-
trastive loss function [10]. EMMA (i) accommodates an
arbitrary number of sensory and linguistic modalities, (ii) con-
verges approximately five times faster than strong SupCon [11]
and SimCLR [10] baselines while matching or exceeding their
accuracy, and (iii) remains robust when one or more modalities
are ablated at test time-achieving a mean-recall improvement
of 7.4 pp on the GoLD benchmark. Treating speech and text
as first-class input modalities further demonstrates that label
information can be leveraged even when explicit annotations
are sparse.

Paper organization. Section II reviews related multimodal
and contrastive learning work. Section III formalizes the
EMMA objective. Section IV details the end-to-end retrieval
pipeline, and Section V describes datasets, implementation,
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and training protocol. Experimental results and ablations are
presented in Section VI, followed by a discussion of limita-
tions and broader impact. Section VII concludes the paper and
outlines future directions.

II. RELATED WORK

A. Image–Text Retrieval

Retrieval systems that align free-form language with im-
ages range from fashion matching [12][13], sketch search
[5], and large-scale photo datasets [1][6][7], to compositional
language-vision models [8]. Extensions that ground queries in
external knowledge [14][15] remain limited to two modalities,
motivating our focus on robust multimodal grounding.

B. Multimodal Datasets and Fusion

New corpora highlight the need for techniques that cope
with more than vision & text. CMU-MOSEI combines video,
speech, and text for sentiment analysis [16]; GoLD pairs
household objects with RGB, depth, spoken and written
language [17][18]. Baltrušaitis et al. catalogue five core
challenges (representation, translation, alignment, fusion, co-
learning) in multimodal learning [19]; our work tackles the
alignment problem when any subset of sensors may be absent.

C. Instance- vs Class-Level Retrieval

Multi-modal retrievers such as [20][21] treat objects with
the same class label as interchangeable. For grounded robotics
we instead require instance discrimination: the agent must
find that red mug, not any red mug. We therefore adopt
an instance-level objective and explicitly test robustness to
missing modalities, an aspect ignored in prior class-level
systems.

D. Alignment Losses and Robustness

Contrastive learning methods cluster into two families:
classification/cross-entropy objectives [10][11] and geomet-
ric/metric losses [22]–[24]. Hybrid approaches are rare.
Alayrac et al. align video, audio, and text with a dual-space
loss [25], and Nguyen et al. use cosine similarity for image-
language retrieval [26]; neither scales beyond three modalities
nor handles sensor drop-out. Triplet-based works [4][27] often
rely on costly hard-negative mining [28]–[35], which we avoid.

E. Higher-Order Multimodal Models

Efforts to fuse more than two modalities include three-
way tensor products for images, hashtags, and users [36],
quadruplet losses for sketch-image matching [37][38], and
co-attention for image, sketch, and edgemap retrieval [39].
Emotion recognition combines face, speech, and text via CCA
[40]; deception detection merges language, physiology, and
thermal data [41]; heterogeneous transfer predicts a third
modality from two inputs [42]. All scale poorly as modalities
grow or assume every sensor is present. Our EMMA loss
unifies an arbitrary number of modalities and demonstrates
graceful degradation across nine missing-modality scenarios.

Figure 1. Multimodal object-retrieval setup (RGB, depth, speech, text).

III. PROBLEM DESCRIPTION

Given a language command—either text or speech—that
describes an object, we want our model to retrieve the correct
object from a set of objects. This problem is an exemplar task
in grounded language learning within the fields of robotics
and natural language processing. Intuitively, the goal is to
accept unconstrained natural-language queries and select the
appropriate object by leveraging the complete set of sensor
inputs available to the agent. We demonstrate a domain
containing four modalities, each referring to objects in the
environment: spoken language, written text, RGB images, and
depth images. Figure 1 illustrates our object-retrieval task: the
spoken query “A white textbook titled algorithms” is provided
to our contrastive model, which identifies the item outlined in
red in Figure 1 as the most likely object referred to by the
query.

More formally, given a spoken-language command xs, a
textual command xt, a set of RGB images Xr = {x(1..n)

r }, and
a set of depth images Xd = {x(1..n)

d }, the task is to retrieve
the correct object by choosing the index with the minimum
distance to either language command across all modalities.
Depending on which modalities are or are not ablated, we
consider up to four distance vectors: sr, distances between
xs and all RGB images in Xr; sd, distances between xs

and all depth images in Xd; tr, distances between xt and
all RGB images in Xr; and td, distances between xt and
all depth images in Xd. To select the correct object, we first
compute a component-wise average of the relevant modality-
pair distances for the available modalities, then choose the
object with the minimum of this averaged vector (i.e., we take
the argmin).

Depending on which sensors are available at test time, any
combination of these four distance vectors may be present.
For example, if no written instructions are available—a salient
setting because, although large bodies of text may exist during
training, a user interacting with a physical agent might provide
only spoken commands—we average sr and sd and select the
object whose entry yields the lowest average distance. This
method allows us to extend our model to arbitrary modality
sets while remaining robust when some modalities are missing
or incomplete.
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IV. APPROACH

In keeping with previous work on the closely related
problem of image retrieval, we focus on contrastive-loss
approaches, where the goal is to learn an embedding in which
similar samples—in our case, instances of the same object
class—lie close together, while dissimilar samples are farther
apart. We develop a novel geometric loss function, GEOMET-
RIC ALIGNMENT, that simultaneously minimizes intra-class
distances and maximizes inter-class distances across every pair
of modalities, yielding a model that is effective at the retrieval
task defined above and robust to modality drop-outs at test
time. We further combine this GEOMETRIC ALIGNMENT loss
with a classification-based cross-entropy term, producing a
superior model relative to either loss alone; we refer to this
combination as Extended Multimodal Alignment (EMMA).

A. Core concepts.

The methods described in this section share terminology
but differ in what they incorporate. Three terms recur: anchor,
positive, and negative. The anchor is the reference data point;
positives are samples similar to the anchor, and negatives
are dissimilar. For example, to learn the concept “book,” the
anchor might be an RGB image of a book; the corresponding
text description and depth image form the positive set, whereas
the description and RGB image of an apple belong to the
negative set. The methods below vary in how they choose
these sets and in the objective functions they employ.

B. Baselines

We compare both EMMA and GEOMETRIC ALIGNMENT
with the contrastive learning method of Chen et al. [11] and
with supervised contrastive learning [10], hereafter SUPCON.
We treat SUPCON as the principal baseline, as it generalizes
several contrastive objectives, including triplet loss, the classic
self-supervised contrastive loss [11], and N-pair loss [43].

1) Contrastive Loss: We re-implement the contrastive
method of Chen et al. [11], which employs the normalized
temperature-scaled cross-entropy loss (NT-Xent). Following
SimCLR, we use cosine similarity; an unnormalized inner
product [10] is numerically unstable because it is unbounded,
but a normalized inner product is equivalent to cosine simi-
larity. The loss is formulated in Equation (1).

−
∑
i∈I

log
exp(sim(zi, zj(i))/τ)∑

a∈A(i) exp(sim(zi, za)/τ)
(1)

where i is the index of the anchor, j(i) is the index of the
positive item with respect to the anchor zi and is not the same
as an anchor, A(i) is the set of all negatives and the one
positive indices excluding anchor, and z = f(x).

We can treat different modalities of the same instance as
additional input that augments the available information and
consider them positive points for the anchor. Equation (1) can
be rewritten with the sum over more than one positive item as
formulated in Equation (2):

−
∑
i∈I

∑
p∈P (i)

log
exp(sim(zi, zp)/τ)∑

a∈A(i) exp(sim(zi, za)/τ)
(2)

where I is a batch consisting of one or more instances,
each with a set of all its modalities, and P (i) is the set
of modalities/augmentations of the anchor i excluding itself
(e.g., RGB image, depth image, speech, text) and z = f(x).
Therefore, if we have four modalities and the batch size is
64, the size of I is 256, the size of P (i) is M − 1 = 3
where M is the number of modalities, and the size of A(i) is
256− 1 = 255.

2) Supervised Contrastive Learning: [10] extend the con-
trastive learning method (NT-Xent) and propose a supervised
way of performing contrastive learning to treat not only
augmentations of the anchor but also every item that shares
the same label with the anchor as positives. This loss function
is shown in Equation (3).

∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(3)

Although this loss function does not use cosine similarity,
embeddings are normalized before performing the dot product,
which is equivalent to cosine similarity.

The main difference between the contrastive loss baseline
in Section IV-B1 and SUPCON is that there is no notion
of meaningful negative points in the contrastive loss, and
everything in the batch that is not the anchor or one of
the positive views is considered to be negative. In SUPCON,
however, all elements in the batch that have the same label
as the anchor are also considered positives, in addition to
different views of the same instance. While the denominators
of Equations (2) and (3) stay the same, this subtle difference
affects the numerator and includes more positive examples,
which prevents the unintended use of actual positives as
negative examples.

While this model is a strong baseline, the authors applied
it to a unimodal dataset. In this paper, we extend the baseline
to multimodal data and show that it learns more slowly than
EMMA and performs worse when all modalities are available
at test time.

Since SUPCON considers all pairwise distances within a
batch, with M modalities and a batch size B, each batch
contains B ×M items, and the computation involves (BM)2

pairwise-distance terms, which depend on batch size. By
contrast, the computations in our GEOMETRIC ALIGNMENT
approach are agnostic to batch size, making it more scalable.

As originally proposed, the SUPCON baseline was applied
to unimodal datasets such as ImageNet [44], CIFAR-10 [45],
and CIFAR-100 [45]. We demonstrate both that it can be used
with multimodal datasets and that augmenting it with geo-
metric components improves training speed and performance
when modalities are dropped.
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C. EMMA: Extended Multimodal Alignment

Our proposed multimodal method comprises two com-
plementary parts. The first is a geometric loss based on
latent-space distances; the second is a supervised contrastive
loss based on cross-entropy (SUPCON). The geometric loss
converges faster, whereas the cross-entropy loss aligns more
closely with the downstream retrieval task. We therefore
combine them to obtain Extended Multimodal Alignment
(EMMA).

a) Geometric Alignment Loss: We define a distance-
based loss function applicable to an arbitrary number of
modalities. Our method is inspired by the well-known
similarity-based triplet loss [4][23] and, under certain settings,
resembles contrastive loss [10][11]. Triplet-loss learning forces
similar concepts from different domains together in a shared
embedding space while pushing dissimilar concepts apart.
The name derives from the three data points it relies on:
an anchor, a positive, and a negative. Standard triplet loss,
however, cannot be applied to more than two modalities.

To address this limitation, we optimize pairwise distances
for all data points, enabling use with an arbitrary number of
modalities. In contrast, prior work that employs triplet loss
[4][17] concatenates RGB and depth into a single “vision”
vector, preventing robust handling of RGB or depth ablation
at test time. Our method also avoids the need for hard-negative
mining.

During training, we sample two object instances and gather
their representations from every modality, producing a positive
set (one object) and a negative set (a different object), as shown
in Figure 2. Unlike some earlier triplet-loss methods [4][17],
the anchor is not randomly chosen per batch. Instead, every
item in the positive set becomes an anchor once; we minimize
its distance to the other positive items while maximizing its
distance to all negative items. Thus, our formulation is one-
to-many rather than one-to-two.

To clarify our terminology:

• Positive (Instance) — embeddings of a single object
(e.g., RGB image, depth image, text, and speech for an
apple), shown in green in Figure 2.

• Negative (Instance) — embeddings of a different object
(e.g., the same four modalities for a mug), shown in
orange.

• Anchor (Modality) — each modality within the positive
set is treated as an anchor once. In Figure 2, all four
modalities serve in turn as anchors, forming the basis for
distance learning.

The objective is to (i) minimize the distance between
each pair of positive points from different modalities and
(ii) maximize the distance between each positive and every
negative point across all modalities.

We refer to this approach as GEOMETRIC ALIGNMENT,
formulated in Equation (4); an illustration appears in Figure 2.

Modality 1:
Text

Modality 3: 
Depth

Modality 2:
RGB

A coffee 
mug.

“A Gala apple.” “Black and gold mug.”Modality 4: 
Speech

This is a red 
apple.

BERT

BERT

ResNet152

ResNet152

BERT

BERT

ResNet152

ResNet152

3 FC layers

3 FC layers

3 FC layers

3 FC layers

3 FC layers

3 FC layers

3 FC layers

3 FC layers

Figure 2. EMMA overview and GEOMETRIC ALIGNMENT loss (four
modalities). Gray arrows = frozen encoders; black arrows = 3-layer FC +
ReLU projectors. Green = positive, orange = negative embeddings; dashed

lines maximize, dotted lines minimize distances.

L =

M∑
m1=1

[
M∑

m2=1

[
−max

(
dist(z+m1

, z−m2
) + α, 0

)]
+

M∑
m3=m1+1

[
min

(
dist(z+m1

, z+m3
), 0

)]] (4)

In Equation (4), M is the number of modalities, the su-
perscripts + and − represent positive and negative objects,
α represents the enforced margin between each positive and
negative point, which we set to 0.4 for all modalities without
tuning, and z is the embedding we get by applying a mapping
function f , which in our case is a neural network on our input
data. In other words, zm = fm(xm), where each modality m
has a specific model fm that is different from the models for
other modalities. These models do not share their weights.

Cosine similarity is the opposite of distance, and we need to
reverse the logic for maximization and minimization. There are
different options for measuring distance in embedded space.
We use cosine similarity between pairs of embeddings, i.e., we
measure the cosine of the angle between embeddings. Cosine
similarity is a good choice for high-dimensional data as it
is bounded between -1 and 1. Other distance metrics, such
as Euclidean distance, grow in value with respect to their
dimensionality, resulting in very large distances for data points.

Here, the generic dist function is replaced with the specific
cos(·), and we omit the max notation for clarity by defining
Equation (5):

g(x, y) = max(cos(x, y)− 1 + α, 0)

h(x, y) = min(1− cos(x, y), 0).
(5)

The first portion of the following equation maximizes all
unique pairwise distances between modalities of positive and
negative instances. The second portion minimizes the unique
pairwise distances among the modalities of positive cases.

L =

M∑
m1=1

M∑
m2=1

g(z+m1
, z−m2

)︸ ︷︷ ︸
push negatives away

+

M∑
m1=1

M∑
m3=m1+1

h(z+m1
, z+m3

)︸ ︷︷ ︸
pull positives together

(6)
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Our proposed GEOMETRIC ALIGNMENT loss function in
Equation (6) can be rewritten as shown in Equation (7) by
fully specifying the summations to understand better how our
objective function can be reduced to well-known losses such
as triplet loss and pairwise loss.

L =

M−1∑
i=1

M∑
j=i+1

h(z+i , z
+
j )

+ g(z+i , z
−
j ) + g(z−i , z+j )

+

M∑
i=1

g(z+i , z
−
i ).

(7)

If M = 2, which means the number of modalities is 2, and
we ignore the last two terms in the derived objective function,
it results in the triplet loss method. If M = 2, then our objec-
tive function reduces to the quadruplet loss method [37][38]
if we multiply the first term by 2, ignore the third term, and
change the last summation to be up to M − 1 (which results
in a single term). If M = 1, only the last term remains in the
loss function, which is exactly the pairwise distance-based loss
function. This loss function can be seen as a contrastive loss
usually used in the domain of self-supervised learning [11].
However, our proposed loss function has two advantages over
the traditional contrastive loss expressed in Equation (1). The
first advantage is that our loss function does not loop over
multiple positives and negatives in a large batch. Instead,
we sample only two objects (positive and negative), each of
which has M modalities, which gives us 2M datapoints (or
embeddings). Hence, our model can be trained using smaller
batch sizes, which reduces the number of negative samples
we need. The second advantage is that this loss function can
be used in a multimodal setting with an arbitrary number
of modalities and is not limited to a single data type (e.g.,
RGB images), which is the most common usage of contrastive
loss. Although our GEOMETRIC ALIGNMENT is technically
quadratic in terms of a number of modalities, we observe
that experimentally, training time increases only by 10 about
minutes with each additional modality.

Altogether, our proposed GEOMETRIC ALIGNMENT func-
tion contains 3M2 − M/2 terms: M(M − 1)/2 anchor-to-
positive distance minimizations and M2 anchor-to-negative
distance maximizations. It is noteworthy that our training pro-
cedure does not perform any stochastic dropout of modalities
to obtain test-time robustness to missing modalities. Moreover,
our approach does not need to compute the distance between
all items in the batch, as opposed to SUPCON.

b) Combining Geometric Loss and Cross-Entropy-Based
SUPCON Loss: The main difference between GEOMETRIC
ALIGNMENT and SUPCON is that GEOMETRIC ALIGNMENT
focuses on a geometric notion of similarity using cosine
distance, whereas SUPCON employs cosine distance inside
a classification objective akin to cross-entropy. Each method
has advantages the other lacks. GEOMETRIC ALIGNMENT
offers an intuitive distance-based objective, interpretable em-

beddings, and faster convergence. SUPCON benefits from a
classification loss naturally aligned with the downstream task.

Let A(i,m) denote all items in the batch except zi,m itself,
and let P (i,m) include all modalities of all instances with the
same label as instance i, excluding zi,m. Formally,

P (i,m) =
{⋃

r ̸=m
zi,r

}
∪
{⋃

l ̸=i, yl=yi

⋃M

r=1
zl,r

}
.

Both the geometric and cross-entropy components of
EMMA avoid anchoring on a specific modality; instead, they
consider all available modalities. This contrasts with earlier
triplet-loss approaches. For example, in Figure 2, treating the
apple (left) as instance I , the dotted lines between the ap-
ple’s modalities minimize intra-instance distances via h(x, y),
whereas the dashed lines to the mug maximize inter-instance
distances via g(x, y)—all possible pairs are considered.

Although SUPCON and GEOMETRIC ALIGNMENT both
bring similar objects together and push dissimilar ones apart,
SUPCON imposes a normalized ranking, whereas GEOMETRIC
ALIGNMENT allows distances to vary arbitrarily. Furthermore,
SUPCON typically treats different augmentations of an RGB
image as positives, all drawn from the same distribution. By
contrast, we treat distinct modalities—drawn from different
distributions—as positives. To our knowledge, this is the first
use of supervised contrastive learning in such a multimodal
setting, where additional language and sensor inputs provide
richer supervision than single-sensor augmentations.

Combining the two losses accelerates convergence and
yields slightly higher performance when all modalities are
present, while preserving the gains GEOMETRIC ALIGNMENT
provides when modalities are missing. Detailed results appear
in Section VI.

D. Network Architecture

Transformers have become the de facto architecture in
natural language processing and have achieved strong perfor-
mance across numerous tasks. Following [17], we use BERT
embeddings from the FLAIR library [47][48] to featurize
textual input and wav2vec2 [49] to extract audio embeddings
from speech. Both encoders output a 3 072-dimensional vector
obtained by concatenating the last four hidden layers of each
network. FLAIR has been applied to tasks such as named
entity recognition (NER) and part-of-speech (PoS) tagging,
while wav2vec2 supports various audio-processing tasks, most
notably automatic speech recognition. Both BERT [46] and
wav2vec2 [49] are self-supervised transformer models [50].

For images, we use ResNet-152 [51] for both RGB and
depth inputs, producing 2048-dimensional embeddings; depth
images are colorized before being passed to the network.

Each modality’s embedding is then projected into a shared
1024-dimensional space by a dedicated multi-layer perceptron
(MLP) comprising three fully connected layers with ReLU
activations [52]. These MLPs are modality-specific and do not
share weights.
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V. EXPERIMENTS

In this section, we evaluate the quality of object retrieval
models learned using the EMMA loss function. We first
describe the dataset we use, then define the metrics by which
we assess performance, the setup of the experiments, and the
baselines against which we compare. We end by presenting
and analyzing the results.

A. Data

We demonstrate the effectiveness of our approach on a
recent publicly available multimodal dataset called GoLD [17],
which contains RGB images, depth images, written text de-
scriptions, speech descriptions, and transcribed speech descrip-
tions for 207 object instances across 47 object classes (see
Figure 2). There are a total of 16,500 spoken and 16,500
textual descriptions. The original GoLD paper uses raw RGB
and depth images in which other objects are present in the
background. We use a masked version of the photos where the
background is deleted (this masked version converges faster.
However, masked and unmasked versions of the GoLD data
converge to the same performance). Speech is converted to 16
Hz to match the wav2vec2 speech model.

B. Setup

To evaluate our model, we measure different performance
metrics on a retrieval task in which the model has to select
an object from a set of objects given a language description.
Only one of the objects corresponds to the description, and
the rest are from different object classes.

Similar to [10], we use a stochastic gradient descent (SGD)
optimizer with momentum [53] with a flexible learning rate
starting at 0.05.

All models are trained for 200 epochs with a batch size of
64 on a Quadro RTX 8000 GPU. We used a temperature of
0.1 for training the contrastive learning method described in
Section IV-B1, and a temperature of 0.07 for training SUPCON
as described in Section IV-B2.

To evaluate the performance, we compute the distance be-
tween the given natural language description and five randomly
selected objects (1 of which corresponds to the description,
with the others from different object classes). We compute the
distance between the language embedding and all available
sensory modalities of all candidates as described in Sec-
tion V-D. In case we have RGB and depth, we compute
the distance between language embedding and all candidate
RGB embeddings, and we compute the distance between the
same language embedding and all candidate depth embeddings
corresponding to the RGB embeddings. We then take an
average of these two distance matrices. Instead of choosing an
empirical threshold beyond which objects are considered to be
‘referred to,’ we choose the closest image embedding (average
distance of RGB and depth from language) as the prediction.
In order to use cosine distance, we have to subtract the
cosine of the angle between two embeddings (which represents
similarity) from 1: that is, we compute 1− cos(e1, e2).

C. Metrics

The best metric to capture the performance in such a
scenario is mean reciprocal rank (MRR, Equation (8) for Q
queries). For each query, we predict the rank of all objects
based on their distance from the language command, and
then the inverse rank of the desired objects in all queries are
averaged. For example, if the model predicts the desired object
as the first rank, then MRR = 1

1 = 1, which means a perfect
score, and if it predicts the correct object as the fourth rank
among five objects, then MRR = 1

4 = 0.25.

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(8)

While MRR is more meaningful when it comes to ranking
in retrieval tasks, in real-world scenarios where a robot is
asked to hand over an object if it fails, it does not matter
whether the correct object was ranked second or last; the whole
system would be considered a failure. Accuracy and micro
F1 score are the same in this task, since for each prediction,
we either have a true positive and no false positives and no
false negatives, or we have no true positives, one false positive
and one false negative. MRR is a more informative metric
because it captures the idea that having the correct object as
the second choice should be considered better than having it as
a last choice, while in accuracy, the score is ”all or nothing”,
either 0 or 1. Because our approach is designed to be robust
to missing information across modalities, we also report MRR
and accuracy for different combinations of modality dropouts.

D. Modality Ablation

We train on four modalities—RGB, depth, speech, and
written language—without altering the loss function beyond
setting M in Equation (4) to the number of available modal-
ities. Our downstream goal is non-trivial: identify the object
referenced by arbitrary language given only a few examples.

When training with text, RGB, and depth, we treat written
language as the query modality, compute its distances to RGB
and depth, and then average those distances. Adding speech
introduces a fourth sensory modality and three design choices:

1. Compute distances from both text and speech to RGB
and depth (four distance matrices) and average them. 2. Treat
speech like RGB and depth: compute distances from text to
RGB, depth, and speech, then average the three. 3. As in
option 1, but also include the distance between text and speech,
averaging five matrices.

The first option is most appropriate for robust multimodal
alignment. Options 2 and 3 are feasible during training, but
in real-world retrieval people rarely both speak and type
instructions. At test time, depending on available modalities,
we use speech, text, or both to compute distances to RGB and
depth and then average.

Nine dropout cases arise. Let t = text, s = speech, r = RGB,
d = depth, and let K denote the final distance (a matrix for
multiple queries, a vector for one).
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(a) Mean Reciprocal Rank (MRR) on the
held-out test set when all modalities are

available.

(b) Mean Reciprocal Rank (MRR) on the
held-out test set when the text modality is

ablated.

(c) Mean Reciprocal Rank (MRR) on the
held-out test set when speech and depth

modalities are ablated.

(d) Mean Reciprocal Rank (MRR) on the
held-out test set when speech and RGB

modalities are dropped.

Figure 3. MRR on GoLD (avg 5 runs). Colors: red = self-sup CL, orange =
sup CL, blue =GEOMETRIC ALIGNMENT, green =EMMA. Panels—(a) All
inputs, (b) –Text, (c) –Speech–Depth, (d) –Speech–RGB. Higher is Better.

We train all models for 200 epochs.

With two modalities we compute a single distance: Ktr

(speech and depth missing), Ksr (text and depth missing),
Ktd (speech and RGB missing), Ksd (text and RGB missing).

With three modalities we average two distances: Ktrd =
Ktr+Ktd

2 when speech is missing, Ksrd = Ksr+Ksd

2 when text
is missing, and so on.

With all four modalities we average four distances:
Ktsrd = Ktr+Ktd+Ksr+Ksd

4 .
Figure 3 shows the relative performance of EMMA and

GEOMETRIC ALIGNMENT against state-of-the-art methods
when different modalities are ablated.

VI. RESULTS AND DISCUSSION

We evaluate on the GoLD test split using mean reciprocal
rank (MRR) and top-1 accuracy (Acc).

Table I reports the average ± standard deviation over
five random seeds; all models use SGD (batch 64). For five
candidate objects, random guessing yields MRR = 0.33 and
Acc = 0.50. EMMA matches or exceeds the strongest baseline
in every modality setting.

To interpret MRR, note that a system that always ranks the
correct object second would score 1/2 = 0.5.

Figure 3a Shows that EMMA learns faster and results in a
better performance compared to both SUPCON and contrastive
learning [11] when trained using all modalities and with all
modalities available during test. We observe that not only
does contrastive loss learn more slowly, but it is prone to
overfitting; while this can be addressed with careful tuning

of the learning process, an approach that is innately robust to
overfitting without tuning is preferable.

When we drop the text modality (Figure 3b), we can see
that the performance decreases from about 0.93 to about
0.82, showing that speech cannot completely replace text. In
Figure 4, the alignment of shared embeddings for a randomly
sampled set of classes is visualized for all four modalities
under consideration, suggesting that the speech modality is
not aligned as well as the text modality. For this reason,
when we drop text and use speech as the main query, the
performance decreases. This supports our hypothesis that a
geometric alignment of the latent space is crucial to good
performance in object retrieval and multimodal understanding.

In Figure 3b, we observe that when speech is used as
the query, and the text modality is ablated, the SUPCON
baseline works slightly better than EMMA, although EMMA
still learns faster. The reason is that SUPCON optimizes
for the classification task, and since the speech modality is
less well aligned, using GEOMETRIC ALIGNMENT makes the
downstream task more difficult by trying to pull and push
similar and dissimilar data points, respectively. Future research
will consider strategies to align more chaotic modalities.

There is very little gap in performance when depth or RGB
are dropped in Figures 3c and 3d compared to when we have
all modalities in Figure 3a, showing that our model is robust
when RGB or depth sensors fail. Also, when depth is dropped
in Figure 3c, performance decreases less compared to when
RGB is dropped in Figure 3d. This suggests that depth is less
informative when compared to RGB, which is consistent with
existing vision research results.

Our time analysis shows that EMMA takes almost 8 epochs
to converge, and each epoch takes roughly 0.7 minutes,
which makes it 5.6 minutes until convergence. In comparison,
SUPCON takes about 36 epochs to converge, and each epoch
takes 0.52 minutes, which amounts to 18.72 minutes. That is
when we use all four modalities for training. When we ablate
one or two modalities, the training takes less time.

Qualitative Results: In order to help visualize the perfor-
mance of learned embeddings, we consider projections of a
randomly selected subset of classes of the high-dimensional
learned embeddings into a 3-dimensional space using t-
SNE [54], a dimensionality reduction technique to visualize
high-dimensional data. T-SNE creates a probability distribu-
tion over pairs of high-dimensional data where similar pairs
have a higher probability, and dissimilar pairs have a lower
probability. A similar probability distribution is also defined
over pairs of data in the lower dimension (either 2D or 3D),
and T-SNE minimizes the KL divergence between these two
probability distributions.

Figure 4 shows the projection onto 3D space to give a
better view of the location of embeddings. Although these
projections are not perfect, combined with the quantitative
results, they demonstrate that our model is learning to map
instances of the same class closer to each other regardless of
their modalities. Interestingly, toothbrush and toothpaste are
mapped almost on top of each other in the text modality,
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TABLE I. AVERAGE AND STANDARD DEVIATION OF MEAN RECIPROCAL RANK (MRR) AND ACCURACY (ACC) ( HIGHER IS
BETTER, BOLD = BEST).

Methods speech/depth speech/RGB text/depth text/RGB text/speech/
depth

text/speech/
RGB

speech/RGB/
depth

text/RGB/
depth

all

Geometric 76.82±0.34 78.34±0.29 89.64±0.38 91.13±0.73 89.21±0.45 90.95±0.83 79.37±0.29 92.29±0.51 92.14±0.45
SupCon 78.18±0.58 79.69±0.54 89.04±0.88 90.56±0.74 88.75±0.66 90.5±0.69 81.2±0.39 91.96±0.42 92.03±0.7
EMMA 77.63±0.29 78.66±0.64 89.87±0.5 91.26±0.86 89.66±0.36 90.97±0.66 80.32±0.45 92.71±0.5 92.72±0.47
Contrastive 71.74±0.73 73.37±0.39 89.72±0.54 90.82±0.37 89.13±0.61 90.26±0.58 74.96±0.44 91.92±0.41 91.72±0.53

(a) AVERAGE AND STANDARD DEVIATION OF MRR ( HIGHER IS BETTER, BOLD = BEST).

Methods speech/depth speech/RGB text/depth text/RGB text/speech/
depth

text/speech/
RGB

speech/RGB/
depth

text/RGB/
depth

all

Geometric 61.95±0.55 64.34±0.53 82.03±0.57 84.6±1.1 81.08±0.81 84.0±1.4 65.84±0.63 86.41±0.83 85.94±0.74
SupCon 64.17±0.92 66.52±1.07 81.05±1.22 83.65±1.4 80.58±1.12 83.54±1.23 68.7±0.66 86.06±1.21 85.82±1.29
EMMA 63.54±0.53 65.07±1.01 82.78±0.97 85.07±1.42 82.16±0.64 84.37±1.23 67.69±0.81 87.38±0.71 87.15±0.72
Contrastive 54.82±1.4 57.27±0.64 82.88±0.88 84.35±1.01 81.55±0.93 83.26±1.02 59.38±0.6 86.31±0.67 85.75±0.87

(b) AVERAGE AND STANDARD DEVIATION OF ACC ACROSS 5 RANDOM SEEDS ON THE HELD-OUT TEST SET; COLUMN HEADERS
SHOW MODALITIES PRESENT AT QUERY TIME ( HIGHER IS BETTER, BOLD = BEST).

Figure 4. 3-D t-SNE of EMMA embeddings for 10 random object classes. RGB, depth, speech, and text appear as separate point clouds; dense language
points reflect multiple descriptions. Tight cross-modal clusters reveal a shared manifold for reliable retrieval.

showing similar semantic and syntax. However, in the RGB
and depth modality, they are close but not on top of each other
since they do not look the same. Also, we can see that apple
and lemon are mapped close to each other in all modalities,
which suggests that our proposed EMMA learns some notion
of the concept of fruits. These qualitative results show that
our propose GEOMETRIC ALIGNMENT and EMMA have an
interpretable latent space.

An example of the need to consider multiple modalities
jointly is shown in Figure 5, showing how EMMA is able
to correctly select an object instance from several similarly
shaped and describable objects.

Figure 5. Qualitative retrieval: EMMA ranks the target first, whereas
SUPCON mis-ranks a “light bulb” due to phrase similarity.

Our proposed model performs well and learns fast, has been
demonstrated to handle four modalities of shared information
effectively, and is robust to test-time situations where informa-
tion from one or more modalities is missing. The bottleneck
for agents in different settings may differ, and training speed
may not be critical in offline learning scenarios. However,
since we usually need to finetune models for other tasks
when it comes to transfer learning, the training speed becomes
relevant.

There remains room for improvement. Specifically, the
speech modality is harder to handle. Figure 4 shows that
although the relative position of instances are correct in the
speech space, the distinction and clustering of different objects
are not as good as the other three modalities.

The text seems to be the best-clustered modality, and that
makes sense because the variation in written text is much
smaller than the other three modalities. Variation in speech is
higher because there are a number of factors affecting speech
understanding, including different accents, native language,
gender, and age [18]. Variation in RGB and depth is higher
than in text due to variations in lighting conditions, an object’s
texture and shape, the angle of the camera, and other factors.
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VII. CONCLUSION

In this work, we have demonstrated the effectiveness of a
novel approach to learning from high-dimensional multimodal
information even when one or more modalities are unavailable
at test time. Our approach performs well on an object retrieval
task from a testbed that contains four separate modalities,
consistent with the information that might be available to
a physical agent, and outperforms state-of-the-art contrastive
learning approaches. Our proposed method is general enough
to be applied to a variety of multimodal retrieval problems and
is not limited to purely language-based image retrieval.

In the future, this work will be extended to solve less clearly
delineated problems, such as differentiating among members
of a class and across classes. However, this work represents
a significant step towards handling such retrieval problems
while not arbitrarily limiting the number of sensors and other
modalities that can be incorporated.
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