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Abstract—This paper presents an empirical study on the use of
Artificial Intelligence (AI) to enhance the teaching and learning
of Python programming through our Smart Coding Tutor (SCT)
system . Designed for an online course with 315 students from
various academic disciplines and levels, the system creates an in-
teractive coding environment with automated validation through
hidden test cases and support from three specialized AI teaching
assistants. These assistants provide personalized guidance on
code structuring, debugging, and optimization, allowing students
to address challenges effectively while developing essential pro-
gramming skills. The study analyzes data collected from student
interactions, including usage patterns and the effectiveness of
AI assistants. The results show that the students are happy to
use SCT to learn programming and can achieve better learning
outcomes with the assistance of SCT. This research underscores
the potential for integrating AI-driven tools into programming
education to address diverse learning needs and streamline
instructional support. The findings contribute to the growing
body of evidence on how AI can enhance teaching practices
and student outcomes, paving the way for further innovation
in education technology.

Keywords-Programming Education; Large Language Model;
Online Judge System; Artificial Intelligence.

I. INTRODUCTION

Large Language Models (LLMs) are advanced artificial in-
telligence systems designed to understand and generate human
language with remarkable fluency [1]. Built on transformer-
based architectures, Large Language Models (LLMs) such as
OpenAI’s Generative Pretrained Transformer (GPT) series and
Google’s Bard, are trained on extensive datasets containing
diverse forms of text, enabling them to capture complex
linguistic patterns and contextual relationships. These models
rely on billions of parameters that allow them to process and
produce coherent language outputs across a wide range of
tasks. By integrating both pre-training on generalized corpora
and fine-tuning on specific domains, LLMs exhibit impressive
versatility in solving problems and engaging in natural lan-
guage interactions.

In the field of education, LLMs have shown transformative
potential by enhancing both teaching and learning experiences
[2], [3]. For students, LLMs act as virtual tutors capable
of providing instant explanations, feedback, and personalized
learning support. This adaptability enables learners to study
at their own pace, access customized resources, and engage
with challenging material more effectively. LLMs also play
a crucial role in language learning by offering conversational

practice, correcting grammar, and translating content, making
them especially valuable for individuals who want to improve
their proficiency in a new language.

Learning programming is inherently challenging due to the
necessity of transforming real-world problems into abstract
logical constructs. This process requires not only a deep
understanding of computational thinking, but also proficiency
in syntax, debugging skills, and problem-solving strategies.
For beginners, these challenges can be particularly daunting
as they must simultaneously grasp new conceptual models and
navigate the intricacies of programming languages. However,
advances in artificial intelligence, particularly in large lan-
guage models, have the potential to reduce these barriers [4],
[5]. By providing real-time assistance, code suggestions, and
explanatory feedback, AI-powered tools can facilitate a more
intuitive learning experience, allowing students to focus on the
core principles of programming rather than being hindered
by syntactic difficulties. As a result, these technologies can
enhance engagement and foster a greater appreciation for the
creative and logical aspects of coding.

Online judge systems are widely used in programming
education [6]. Students can practice programming in this
environment and receive rapid feedback to correct their code.
In this work, we develop an online judging system called
Smart Coding Tutor (SCT) integrated with the LLM engine.
Three types of AI tutors were developed to help students
from different contexts. They may use AI to guide their first
step, debug, or improve their code. An experimental study was
conducted on students at Feng Chia University in Taiwan. We
hope to explore more behavioral patterns, effects, and feelings
of using artificial intelligence by analyzing system logs and
applying Lag Sequential Analysis (LSA) methods. Such an
analysis helps us develop better learning tools. Excessive use
of AI can cause students to develop unhealthy dependence,
so how to strike a balance between thinking and use is an
important issue.

The paper is organized as follows. Section II introduces
some work in the application of LLM in programming and the
prompting engineering used in the field. Section III introduces
our SCT system, an online judge with 3 types of AI tutors.
Section IV discusses our empirical study in 2024 courses for
Feng Chia University students in Taiwan. In Section V, we
discuss what we learned in the study and future work.
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II. RELATED WORK

A. Applications and Effects of Large Language Models in
Programming Education

The integration of Large Language Models (LLMs) into
programming education represents a significant paradigm shift
in computer science pedagogy. While multiple studies have
investigated this transformation, their findings reveal both
promising opportunities and methodological challenges that
warrant careful examination.

Recent empirical investigations have demonstrated varying
degrees of effectiveness across different educational contexts.
Becker et al. [4] and Kazemitabaar et al. [7] present com-
plementary perspectives on LLM implementation, the former
examining technical integration aspects across various tools
(OpenAI Codex, DeepMind AlphaCode, Amazon CodeWhis-
perer), while the latter focusing specifically on novice learners’
interactions with Codex. Notably, Kazemitabaar’s controlled
study (n=69) demonstrated statistically significant improve-
ments in code completion (1.15× increase) and correctness
(1.8× higher scores).

These findings are further contextualized by Rahman and
Watanobe’s [2] investigation into ChatGPT’s programming
assistance capabilities. Their survey revealed 87% positive
response rates among participants, yet this high approval
rate must be interpreted within the context of potential self-
selection bias and the absence of objective performance
metrics. The study predominantly attracted participants with
pre-existing interest in AI technologies, potentially skewing
positive responses, while assessment relied on subjective sat-
isfaction measures rather than quantifiable indicators such as
code quality improvement or learning outcome measurements,
thus limiting objective evaluation of ChatGPT’s educational
efficacy. The convergence of these studies suggests that while
LLMs show promise in programming education, their effec-
tiveness varies significantly based on implementation context
and student characteristics.

B. Design of AI-Assisted Strategies Based on Prompt Engi-
neering

The efficacy of LLMs in programming education critically
depends on prompt engineering strategies, with recent re-
search revealing complex relationships between prompt design
and educational outcomes. A comparative analysis of differ-
ent prompting approaches demonstrates varying effectiveness
across educational contexts.

Denny et al.’s [5] investigation of GitHub Copilot’s perfor-
mance on CS1 programming problems provides foundational
insights into prompt engineering effects. Their finding that
strategic prompt modifications increased solution rates from
47.6% to 79% demonstrates the significance of prompt design.
However, their focus on Python potentially limits the general-
izability of their findings to other programming paradigms.
This limitation intersects with Ta et al.’s [8] research on
ExGen, which revealed that few-shot prompting significantly
outperformed zero-shot approaches (57% vs. 31% success rate

for elementary exercises). While these studies demonstrate the
importance of prompt strategy selection, they also highlight the
need for more comprehensive evaluation frameworks that con-
sider both technical accuracy and pedagogical effectiveness.

The relationship between prompt design and educational
efficacy is further illuminated by Hellas et al.’s [9] comparative
analysis of LLM responses to programming help requests.
Their finding that GPT-3.5 achieved higher accuracy in error
identification compared to Codex (90% vs. 70% for single
errors, 57% vs. 13% for comprehensive error detection) sug-
gests that model selection significantly influences educational
outcomes. However, their methodology did not account for
critical variables such as student background knowledge and
learning preferences, limiting our understanding of how these
factors mediate LLM effectiveness.

III. SMART CODING TUTOR

A. System Introduction

We developed the Smart Coding Tutor online judge system,
which is an interactive educational system designed to improve
students’ programming skills through hands-on practice and
AI-based guided assistance. Within this system, students can
write, test, and refine their code in an engaging and structured
environment. Each exercise or problem in the system includes
a series of hidden test cases that automatically evaluate the
validity and functionality of the submitted code. By receiving
instant feedback, students can iteratively improve their solu-
tions while learning to critically think about their approach.
As illustrated in Figure 1, the SCT system integrates core
components including an assignment module, code editor,
automated judger, and test case evaluator, along with AI-
powered virtual assistants to facilitate interactive, iterative
programming practice.

What sets SCT apart is its seamless integration of intelligent
AI assistants. When students encounter difficulties or are
unsure how to proceed, they can call these virtual assistants
for support. Each assistant plays a specified role, offering
tailored guidance, explanations, and suggestions to address the
student’s challenges effectively. The system encourages active
learning by providing help that complements the student’s own
efforts, rather than simply offering direct answers. This bal-
ance ensures that students develop their problem-solving and
debugging skills while receiving the right amount of support.
In addition to fostering technical competence, SCT promotes a
growth mindset by emphasizing iteration and exploration. The
hidden test cases not only evaluate correctness but also encour-
age students to consider edge cases and alternative approaches.
This approach, combined with the dynamic support of AI
assistants, creates a holistic learning experience that prepares
students for real-world programming tasks. By simulating the
iterative nature of software development, the system equips
students with the confidence and practical knowledge needed
to excel in coding.

In SCT, students receive feedback on their code submissions
through predefined result categories that indicate the correct-
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Figure 1. Design of the Smart Coding Tutor.

ness and execution status of their solutions. These results
typically include the following.

• Accepted (AC), which signifies that the submission meets
all problem constraints and passes all test cases success-
fully;

• Partially Accepted (PA), which indicates that the submis-
sion passes only a subset of the test cases;

• Runtime Error (RE), which occurs when the code en-
counters execution failures such as division by zero, out-
of-bounds errors, or memory violations. Additional result
categories may include:

• Wrong Answer (WA), indicating incorrect outputs;
• Time Limit Exceeded (TLE), where the solution does not

complete within the allowed time;
• Compilation Error (CE), which denotes issues preventing

successful code compilation.

B. Types of Tutors

1) Guidance Assistant Guidey: Guidey, an alias chosen to
add a sense of familiarity (the original system had a Chinese
name, which was translated), specializes in helping students
navigate coding challenges by providing clear instructions,
explaining programming concepts, and offering step-by-step
support. Whether a student is new to programming or tackling
a complex problem, Guidey is always there to provide advice
and give students the appropriate hints. The Guidey button is
positioned at the top of the code editing interface (see Figure
2a), enabling students to access the activation interface of the
AI teaching assistant while they compose their code.

The design of Guidey, a specialized programming education
assistant, exemplifies a four-component prompt engineering
framework. Through precise Role Definition, Guidey adopts
the persona of an approachable programming mentor. Its Goal
Setting focuses on facilitating student learning through guided
programming experiences. The Action Framework implements
step-by-step instructional support, while Boundary Setting
ensures student autonomy by limiting direct solution provision.
The prompt is designed as follows:

You are an excellent programming educator who provides
clear guidance and encourages independent thinking. As a
Python teaching assistant, you focus on guiding students

through problem-solving. Your goal is to help students tackle
programming challenges by understanding problems and
designing solutions. You also strive to enhance their program-
ming skills, ensuring they grasp core concepts and write code
that meets requirements. Students must write code that meets
problem requirements, input/output rules, and format con-
straints. Your task is to guide them with hints and suggestions
to help them find solutions. You may provide pseudo-code,
but not executable solutions. You must not provide executable
Python code to prevent direct copying. Avoid greetings to
maintain focus. Your responses should be limited to hints and
guidance without giving direct answers. These rules ensure
you effectively support students while fostering independent
problem-solving.

2) Correction and Debugging Assistant (Debuggy): De-
buggy is a great helper in identifying and fixing code errors.
Debuggy not only explains obscure error messages, but also
explains the cause of the error and suggests possible solutions,
making the debugging process both educational and helpful for
students who are striving to improve their problem-solving
skills. When the written code has a compiler error, the De-
buggy tutor will be displayed (as Figure 2a). Students can
press the button to ask for help.

The prompt design is similar to Guidey, with four-
components to illustrate: role definition, goal setting, action
framework, and boundary setting. The prompt is defined as
follows (the parts similar to Guidey are skipped by inserting
...):

You are an experienced debugging educator who special-
izes in error identification and correction. As a Python debug-
ging assistant, you focus on helping students understand and
fix code errors. Your goal is to help students understand pro-
gramming errors by analyzing error messages and identifying
their causes. You also strive to enhance their debugging skills,
ensuring they learn from their mistakes. ... Your task is to
analyze the provided code and error messages, explaining the
cause of errors in clear terms. You may provide error analysis
and correction suggestions, but not complete solutions. You
must not provide executable Python code for fixes. ...

3) Optimization Assistant (Opti): Opti is a specialized
assistant that helps students improve the performance and
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(a) The right upper and the bottom is Guidey tutor and Debuggy tutor. (b) The Opti button is positioned beneath the "AI Assistant" text.

Figure 2. Screenshots of Smart Coding Tutor.

quality of their code. Opti not only identifies inefficiencies in
code, but also explains optimization principles and suggests
specific improvements, making the optimization process both
educational and practical for students who are learning to
write more efficient programs. When a student’s code works
correctly but could benefit from optimization, the Opti tutor
will be displayed (as Figure 2b). Students can press the button
to receive optimization guidance. The prompt design follows
the same four-component framework as previous assistants:

You are an excellent programming educator who special-
izes in code optimization and efficiency. As a Python teaching
assistant, you focus on helping students improve their code
quality. ... Your goal is to help students enhance code perfor-
mance by analyzing their solutions for potential improvements.
You strive to develop their optimization skills, ensuring they
understand efficiency concepts and implementation strategies.
Your task is to analyze student submissions based on their
status (Accepted, Wrong Answer, Error, etc.), identify all po-
tential optimization areas and error causes. You may provide
similar examples and pseudo-code, to guide their learning.
You must not provide executable Python code as solutions. ...
All responses must be in Chinese. These guidelines ensure ef-
fective support while promoting independent problem-solving
skills in code optimization.

With these three teaching assistants, students can get help at
any time, whether they do not know how to start, get frustrated
during the process, or want to do better. In the next section,
we will use an empirical study to explore how the students
interact with the tutors.

IV. EMPIRICAL STUDY

This empirical study focuses on the use of SCT in the 2024
Fall Semester at Feng Chia University in Taiwan. Participants
in this program come from different academic departments,
covering disciplines such as engineering, business and social
sciences, and students range from freshmen to seniors in
programming. A total of 315 students from different courses
participated. In addition to watching videos to learn, SCT

provided a total of 86 programming exercises or homework
(different courses provided different questions). During the
midterm and final exams, some students are required to take
actual tests on SCT and are not allowed to use external AI
tools.

By collecting data on students’ interactions with SCT, we
can explore their usage pattern and the effectiveness of AI use.

1) Usage pattern:
• In our analysis of 4,982 instances of student submissions,

we found that 26.4% of students sought assistance from
AI tools. Among them, 67.4% sought the help of more
than one AI tutor. Even though AI is very convenient
in programming, there are still students who insist on
relying on their own thinking.

• Among the data that involved AI tutors, 58.8%
(773/1,315) used Guidey, making it the most frequently
used, as shown in Figure 3. This was followed by
Debuggy, which was used in 47.7% of the cases. Opti
was used in 30.6% of the cases. Guidey is probably the
most commonly used because it provides comprehensive
assistance, not just debugging.

Figure 3. Usage of different types of tutors.

• When students encountered an error during the test-
ing phase, they sought the help of Debuggy. 37.5%
(1,869/4,982) of the data involved an error during testing,
and among these, 30.2% (564/1,869) used Debuggy to
help fix errors. Some students want to debug on their own
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and improve their debugging skills, while others give up
when they encounter frustration.

• We apply Lag Sequential Analysis (LSA) for analyzing
the usage behavior. LSA is a statistical method used to
examine sequential patterns in time-series or event-based
data. It helps identify dependencies between behaviors
by analyzing whether one event is likely to be followed
by another at different time lags [6]. Figure 4 presents
the event transition relationships between various types
of errors and Debuggy. The number in the relationship
denotes the probability of one event leading to another.
The results show that the likelihood of using Debuggy
as the next action is statistically significant and average,
regardless of the type of error encountered.

Figure 4. Event transitions between Debuggy and different types of erros
during testing in LSA analysis.

• Among all student data, 32.4% (1614/4982) encountered
a submission error upon resubmission, while 12.3%
(615/4982) experienced runtime errors. Of these, 23.1%
(373/1614) and 24.4% (150/615) sought help from Opti,
respectively. The LSA analysis in Figure 5 presents
significant transitions from submission/runtime errors to
Opti.

Figure 5. Event transitions between Opti, AC and errors in LSA analysis.

• In addition to providing suggestions on how to modify
the code to meet the requirements of the problem, we
expected students to continue to interact with Opti after

achieving an AC to learn how to further optimize their
code. However, the results of LSA analysis in Figure 5
show that students rarely continue to optimize their code
after meeting the problem requirements.

2) Effectiveness analysis:
• Among students who encountered errors during testing

and sought help from Debuggy tutor, 76.1% (429/564) ul-
timately achieved AC, while only 2.5% (14/564) remained
in CE/RE. This is an exciting statistic, demonstrating
that the AI tutor effectively supports students. However,
further analysis reveals that 76.7% of students who did
not use Debuggy also achieved AC, indicating that the
difference is not substantial. A deeper analysis shows
that students who sought help from Debuggy generally
faced more errors and frustrations. As shown in Table
I, they encountered an average of 7.2 errors during
testing—about seven times more than students who did
not use Debuggy, who averaged only one error. After
submission, these students received an average of 3.3
submission errors and 0.8 runtime rrrors, which were 3.1
times and 3.0 times higher, respectively, than those who
did not seek help. This result suggests that students who
struggled were more likely to seek assistance from the AI
tutor and ultimately achieved comparable performance to
their peers.

TABLE I. NUMBER OF ERRORS FOR USING AND NOT USING Debuggy IN
DIFFERENT PHASES

With Debuggy Without Debuggy
#Error in testing 7.2 1.0
#Error in submission 3.3 1.1
#Error in run time 0.8 0.3

• Expanding the scope to include all AI tutors, not just
Debuggy, 73.9% (972/1315) of students who used AI
tutors ultimately achieved AC. The majority of the re-
maining students received PA (12.6%), with a smaller
portion ending with WA (3.3%) and RE (2.7%). Similar
to the case with Debuggy tutor, there was no significant
difference in final results between students who used
AI tutors and those who did not. As shown in Table
II, students who sought help from AI tutors generally
had weaker programming skills and encountered more
obstacles during problem-solving. On average, they ex-
perienced 4.5 errors during testing (with a maximum of
99 errors). After submission, they received an average of
3.3 Submission Errors (maximum 68) and 0.7 Runtime
Errors (maximum 20). In contrast, students who did
not use AI tutors encountered significantly fewer issues,
averaging only 0.8 errors during testing, 0.6 submission
errors, and 0.2 runtime errors. The error frequencies for
those seeking AI tutor assistance were 5.7, 5.1, and
3.7 times higher, respectively. Despite these challenges,
interaction with AI tutors still helped 73.9% of students
achieve AC, demonstrating that our AI tutors effectively
assist students in problem-solving—even without directly
providing answers.
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TABLE II. NUMBER OF ERRORS FOR USING AND NOT USING AI TUTORS
IN DIFFERENT PHASES

With AI tutor Without AI tutor
#Error in test 4.5 0.8
#Error in submission 3.3 0.6
#Error in runtime 0.7 0.2

• In general, among the data that involved AI tutors, a
significant 73.9% (972/1,315) ultimately achieved an AC
result. Most of the remaining cases received a PA result
(12. 6%), while only a small percentage ended with WA
(3.3%) or RE (2.7%). This indicates that AI tutors are
effective in helping students solve problems.

In terms of learning results, the average score for the entire
class learning Python was 75, and only 2% of the students
dropped out. In the past, the class average was about 55, and
dropouts were close to 10%. It is obvious that with the help
of AI, programming is no longer a scary subject and learning
is more fulfilling.

V. CONCLUSION AND FUTURE WORK

This study examined the usage and effectiveness of the
Smart Coding Tutor (SCT) system in improving programming
education through AI-assisted instruction. Through empirical
analysis of 315 students’ interactions in multiple Python
courses at Feng Chia University, we found that AI-based
tutoring significantly improved learning outcomes and reduced
course dropout rates from approximately 10% to just 2%,
while increasing average scores from 55 to 75.

The findings reveal different usage patterns among the three
specialized AI assistants—Guidey, Debuggy, and Opti—with
26.4% of student submissions involving AI assistance. Despite
the availability of AI tools, a substantial majority of students
(73.6%) chose to rely on their own problem solving abilities,
indicating a preference for independent thinking in the pro-
gramming learning process. Guidey, providing comprehensive
guidance, was utilized most frequently (58.8%), followed by
Debuggy (47.7%) for error correction, and Opti (30.6%) for
code optimization. Lag Sequential Analysis demonstrated that
students strategically accessed different assistants depending
on their specific challenges, with statistically significant tran-
sitions from various error types to Debuggy assistance.

Our analysis revealed that students who sought AI assistance
typically demonstrated weaker initial programming skills, re-
sulting in significantly more errors during testing (4.5 vs. 0.8),
submission (3.3 vs. 0.6), and runtime (0.7 vs. 0.2) compared
to those who did not use AI support. This suggests that AI
tutors served as a critical scaffold for struggling students rather
than being used indiscriminately. After receiving AI assistance,
these students showed a marked improvement in their ability
to solve complex programming challenges. Despite their initial
difficulties, 73.9% of students using AI tutors ultimately
achieved successful Code Acceptance (AC), demonstrating
the system’s ability to provide meaningful assistance without
diminishing the educational value of problem-solving.

Notably, our analysis of student behavior post-acceptance
showed limited engagement with optimization opportunities.

Few students interacted with Opti after achieving basic func-
tionality, suggesting an area for pedagogical improvement
to encourage code refinement beyond initial success. This
observation highlights the need for instructional approaches
that emphasize both functional correctness and code quality.

Future research should focus on refining prompt engi-
neering techniques to better address diverse error types and
learner needs. Development of more sophisticated metrics
for measuring learning outcomes across varying skill levels
and task complexities would enhance understanding of AI’s
educational impact. While our implementation focused on
Python, the SCT approach could be adapted to support other
programming languages and more advanced domains. Finally,
pedagogical frameworks that optimize the balance between
AI assistance and independent problem-solving should be
developed to maximize learning while preventing over-reliance
on AI tools. Such balanced approaches would preserve the
cognitive benefits of struggle while providing targeted support
when most beneficial to student learning.
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