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Abstract—In this study, we examine Sentinel 1 (S1) Synthetic
Aperture Radar (SAR) time series to detect and assess pest-
induced vegetation anomalies. The S1 time series was anal-
ysed using multiple SAR-based data as vegetation indices. The
analyses were performed on a case study located in Castel
Porziano (central Italy), chosen due to its significant impact
from Toumeyella Parvicornis (TP) in recent years. The area
of Follonica, which is not yet affected by TP, was used as a
comparison. Our goal is to identify patterns associated with
TP in the statistical features of S1 data. The methodology
employed is the well-established Fisher-Shannon analysis, which
characterizes the temporal dynamics of complex time series using
two informational measures: the Fisher Information Measure
(FIM) and the Shannon Entropy Power (SEP). Analysis of the
Receiver Operating Characteristic (ROC) curve indicates that
these two measures are highly effective in distinguishing between
infected and healthy sites.

Index Terms—Sentinel-1; statistics; vegetation; pests

I. INTRODUCTION

Numerous studies have shown that climate change and
anthropogenic activities along with the introduction of exotic
species, have greatly accelerated the spread of pests into new
regions, intensifying their harmful impacts and damage. As
a result, forest disturbances caused by parasites have become
one of the most pressing global challenges [5].

Detection of affected areas is crucial for mitigation, and
satellites offer globally available, systematic datasets, making
them ideal for supporting (near) real-time detection of forest
disturbances [6]. Satellite Remote Sensing technologies are
vital for forest monitoring and identifying vegetation diseases,
aiding in the understanding of their spatial and temporal
distribution and allowing for the estimation of disturbance
rates, severity, and extent [7].

Traditionally, forest cover and change have been monitored
using satellite optical data, which have long been used in forest
mapping and pest disturbance detection. Recently, various
sensors have been tested to assess forest insect disturbances.
A comprehensive review by Stahl et al. [8] found that most

Fig. 1. Study areas.

studies used medium-resolution data (mainly Landsat TM),
followed by coarse-resolution data (primarily MODIS), high-
resolution data (such as HyMap, QuickBird, RapidEye, and
WorldView-2), and very high-resolution data, including Li-
DAR. The review also highlighted that only one study, by Ortiz
et al. [9], combined Synthetic Aperture Radar (SAR) with
optical data. Ortiz used TerraSAR-X paired with RapidEye
data to detect bark beetle infestations at an early stage. Their
results showed that the highest classification accuracy was
achieved by combining TerraSAR-X and RapidEye data.

More recent studies have primarily utilized satellite optical
data to monitor pest spread, with only a few exploring the
potential of SAR. For instance, Huo et al. [10] investigated
detection of forest stress caused by European spruce bark
beetle infestations, using Sentinel-1 and Sentinel-2 imagery
in a test site in southern Sweden. Their findings indicated that
the Sentinel-2 red and SWIR bands offered the best separation
between healthy and stressed vegetation, while Sentinel-1 and
additional Sentinel-2 bands were less effective in Random
Forest classification models.

As with other vegetation studies, SAR remains less utilized
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compared to optical data, largely due to the greater complexity
of processing and interpretation, despite its well-established
advantages. SAR can detect changes in vegetation status
and moisture content, penetrate the canopy to some extent
(depending on frequency), and provide insights into vegetation
structure and density. In recent years, several studies have
explored the potential of SAR to: (i) monitor deforestation and
forest degradation [11], (ii) identify drivers of forest change
[12], (iii) detect and categorize fires and fire severity [13], (iv)
assess damage from extreme events [14] and drought [15],
(v) capture forest seasonality and characterize plant phenology
[16], and (vi) classify vegetation, forest types, and forest loss
[17].

In this paper, we evaluate the potential of Sentinel-1
SAR time series to detect pest-induced vegetation distur-
bances caused by Toumeyella parvicornis (TP), an invasive
hemipteran species from the Americas. Since its introduction
in Italy in 2015, TP has primarily affected Pinus pinea. The
insect produces large amounts of honeydew, giving infested
trees a shiny appearance and promoting the growth of sooty
mold, which covers the pine needles and branches. This
coating reduces photosynthesis, resulting in tree decline and,
in severe cases, death.

The paper is organized as follows. Section II describes
the Fisher-Shannon method and the ROC analysis used for
the investigation of our series. Section III presents the data
and study area. Section IV discusses the results obtained
from the analysis, highlighting key findings. Finally, Section
V summarizes the conclusions drawn from our study and
suggests potential directions for future research.

II. METHODS

To investigate the potential of Sentinel-1 SAR time series in
detecting TP-induced vegetation disturbances, we will apply
the Fisher-Shannon informational method. To assess the per-
formance of discriminating between infected and uninfected
pixels, we will utilize ROC analysis.

A. The Fisher-Shannon method
The informational properties of a time series can be anal-

ysed by the Fisher Information Measure (FIM) and the Shan-
non entropy (SE) that quantify respectively the local and global
smoothness of the distribution of a series. The FIM and SE can
be utilized for characterizing the complexity of non-stationary
time series described in terms of order and organization. The
FIM measures the order and organization of the series, and the
SE its uncertainty or disorder. The FIM and SE are defined
by the following formulae:

FIM =

∫ ∞

−∞

1

f(x)

(
∂f(x)

∂x

)2

dx (1)

SE = −
∫ ∞

−∞
f(x) log f(x) dx (2)

where f(x) is the distribution of the series x. Instead of SE,
it is generally used the Shannon entropy power (SEP) NX ,
defined as positive:

NX = exp

(
2

∫ ∞

−∞
f(x) log f(x) dx

)
(3)

FIM and NX are not independent of each other due to the
isoperimetric inequality:

FIM ·NX ≥ D (4)

where D is the dimension of the space (1 for time series).
FIM and NX depend on f(x), whose accurate estimation is
crucial to obtain reliable values of informational quantities.
For calculating FIM and NX , we applied the kernel-based
approach that is better than the discrete-based approach in
estimating the probability density function [18].

Due to the isoperimetric inequality, the Fisher-Shannon
Information Plane (FSIP), which has the NX as the x-axis and
FIM as the y-axis, represents a very useful tool to investigate
the complexity of time dynamics of signals. For scalar signals,
the curve FIM · NX = 1 separates the FSIP into two parts,
and each signal can be represented by a point located only in
the space FIM ·NX > 1.

B. The ROC Analysis

Receiver Operating Characteristics (ROC) analysis is uti-
lized to evaluate the performance of classifiers. In binary clas-
sification scenarios, instances are classified as either ”positive”
or ”negative,” and a classifier assigns these instances to pre-
dicted classes. When assessing a classifier with respect to an
instance, four potential outcomes can occur. The categorization
of the instance is as follows: True Positive (TP) if it is positive
and correctly classified as positive, False Negative (FN) if it
is positive but incorrectly classified as negative, True Negative
(TN) if it is negative and correctly classified as negative, False
Positive (FP) if it is negative but erroneously classified as
positive [19]. We can define the following ratios, the True
Positive rate (TPr) and the False Positive rate (FPr):

TPr =
Number of TP
Total positives

(5)

FPr =
Number of FP
Total negatives

(6)

A ROC curve is a graphical representation with TPr plotted
on the y-axis and FPr on the x-axis, depending on a threshold.
In ROC space, the point (0, 1) signifies perfect classification,
and one point is considered superior to another if it lies to the
northwest of the first point. The diagonal line, represented by
the equation y = x, corresponds to random classification. Each
point on the ROC curve corresponds to a tradeoff between TPr
and FPr associated with a threshold. Typically, to optimize this
tradeoff, the point on the ROC curve closest to (0, 1) is chosen,
and the corresponding threshold is utilized for classification.
Also, the Area Under the ROC Curve (AUC) is frequently
employed to quantify the classifier’s performance.
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Fig. 2. Example of time series.

III. DATA AND STUDY AREA

Castel Porziano (CP) is a Presidential Estate near Rome,
spanning 6,039 hectares. This historically and environmentally
significant site is located in Lazio along the coast. CP was
selected as a case study due to the severe impact of TP,
which caused widespread desiccation and, in many cases, tree
mortality in subsequent years. To evaluate the discrimination
capability of SAR data, Follonica (FL) was chosen as a control
site. Situated near Castel Porziano, it shares the same Pinus
pinea L. species but had no documented TP infestation as of
2023 (Figure 1). FL and CP are geographically similar. Both
sites are coastal pine forests located along the same coastline,
approximately 200 km apart. In addition to having the same
dominant vegetation and coastal exposure, they fall within the
same Köppen climate classification (Cs—temperate climate
with dry summers). This climate type, which characterizes the
Tyrrhenian coastal strip from Liguria to Calabria, as well as
the southern Adriatic and Ionian coasts of Italy, is a key factor
in defining the environmental context of the study [20].

The investigation was based on Sentinel-1 VV and VH
time series (2015–2022), accessible through Google Earth
Engine (GEE). The sampling interval is 12 days. For the
CP, 150 pixels representing the infected areas were selected,
while 150 pixels were similarly chosen for the FL site. These
150 points were randomly selected within the pine forest
area, as indicated by Corine Land Cover. For both sites, the
primary Sentinel-1 bands (VV and VH) from both ascending
and descending orbits were downloaded. Then, five SAR-
based indices (Table I) were calculated by using the following
formulae:

TABLE I. SAR-INDICES.

Name Index [Reference]

Polarimetric ration 1 PR1 [1]
Polarimetric ration 2 PR2 [2]

Normalized Ration Procedure between Bands NRPB [3]
Dual Pol. SAR Vegetation Index, modified DPSVIm [4]

Dual Pol. SAR Vegetation Index, normalized DPSVIn [4]

PR1 =
VV
VH

(7)

PR2 =
VH
VV

(8)

NRPB =
VH-VV
VH+VV

(9)

DPSVIm =
max(V V )− (V V + V H)

1.414213562373095×
(

(V V+V H)
V V

)
× V H

(10)

DPSVIn = V H ×
(
V V 2 + (V V + V H)

1.414213562373095

)
(11)

Cross-polarization ratio indices (i.e., PR1 and PR2) are
highly sensitive to variations in vegetation structure and
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moisture content, allowing them to effectively capture subtle
temporal dynamics. This sensitivity renders them particularly
valuable for detecting seasonal changes and vegetation stress.
In contrast, NRPB quantifies differences in scattering mech-
anisms between the VV and VH channels. It is especially
responsive in regions characterized by sparse vegetation or
lower canopy density, where soil moisture and surface scatter-
ing predominate. The Dual-Polarized SAR Vegetation Index
(Normalized) (DPSVIn) exhibits a high sensitivity to volume
scattering effects that are characteristic of dense vegetation and
canopy structures, while effectively mitigating the influence of
absolute backscatter variations. This dual functionality renders
DPSVIn particularly well-suited for comparative analyses of
vegetation structure across diverse environmental settings and
sensor configurations. Similarly, the modified DPSVIm repre-
sents a further refinement of the DPSVIn, integrating advanced
corrections to enhance vegetation discrimination, particularly
under challenging environmental conditions.

IV. RESULTS

We analyzed 150 pixel time series from CP and FOL sites,
spanning from 2015 to 2023 with a 12-day sampling interval.
Both ascendent and descendent orbits were considered, and for
each pixel, we calculated the five vegetation indices defined
in Section III. Figure 2 presents these indices as examples for
two pixels in the CP and FOL sites across both orbit types.

Subsequently, we applied FS analysis to compute the FIM
and NX for each vegetation index across all 150 pixels in
both sites. Figure 3 displays the boxplots of NX and FIM for
the five vegetation indices in ascendent and descendent orbits.
On average, TP-infected sites exhibit a higher NX and lower
FIM than healthy sites in descendent orbits for most indices.
Conversely, in ascendent orbits, the trend is generally reversed,
except for DPSVIn.

To quantitatively evaluate the discrimination performance
of the five vegetation indices between infected and uninfected
sites, we applied ROC analysis. The results are shown in
Tables II, III, IV, and V.

Considering NX for the descendent orbit, PR1 and DPSVIn
demonstrate good performance, with AUC values of 0.75 and
0.79, and TPRs of 71% and 68%, respectively. For NX in
the descendent orbit, all indices except DPSVIn show optimal
performance, with large AUC (from 0.82 to 0.90) and TPR
(from 73% to 82%) values and low FPR (from 12% to 21%).

For FIM in the ascendent orbit, PR1 and DPSVIn also show
good performance, similar to NX in the ascendent orbit. AUC
values range from 0.70 to 0.79, with TPRs around 65%-71%.

In the descendent orbit, all indices except DPSVIn exhibit
optimal discrimination performance for FIM, with AUC values
ranging from 0.81 to 0.89, TPRs varying between 70% and
79%, and FPRs between 9% and 23%.

The observed difference in Fisher-Shannon response be-
tween infected and uninfected trees may be associated with
variations in the photosynthetic activity. The Pinus pinea
canopy in healthy conditions exhibits a well-defined seasonal
pattern, which is effectively captured by SAR signal, reflecting

order and organization within the time series. In contrast,
TP infestation reduces photosynthetic activity, leading to
widespread tree desiccation and a loss of phenological cycles.
This results in a diminished seasonality and increased disor-
der in the SAR signal. The two adopted metrics effectively
highlight both healthy and unhealthy vegetation conditions.
Therefore, the classification of FIM and SE metrics within the
SAR time series enhances the ability to discriminate alterations
in vegetation structure and moisture content induced by insect
infestations or diseases

V. CONCLUSION AND FUTURE WORKS

This study investigates the potential of using Sentinel-1
(S1) data to monitor and detect forest vegetation infestations
and insect-related diseases, with a focus on two test sites
in Italy: Castel Porziano, which is affected by Toumeyella
parvicornis, and Follonica, which remains unaffected. The
primary difference in vegetation health between the two sites
is the presence of the parasite. The findings reveal a significant
influence of the parasite on the S1 SAR signal, which corre-
lates directly with vegetation changes caused by: (i) canopy
drying and reduced humidity, and (ii) a gradual decline in
canopy density due to the suppression of new needle growth.
This effect is clearly visible through the statistical methods
employed in this study. The application of ROC analysis to
the Fisher-Shannon-based metrics allowed for the evaluation
of the performance of S1 vegetation indices across two orbit
types (Ascending and Descending). The highest discrimination
performance was observed with NX of PR2 and with FIM
of NRPB both in the descending orbit. Our results clearly
show that S1 data can effectively detect changes in vegetation
structure and moisture content linked to insect infestations or
diseases, improving the identification of backscattering signal
alterations and recognizing deviations from typical patterns.
This capability facilitates a clear distinction between healthy
and unhealthy areas. Descending acquisitions generally yield
superior results compared to ascending acquisitions when
monitoring vegetation with SAR. This advantage is primarily
attributable to differences in illumination geometry, shadow-
ing, as well as moisture content and dielectric properties.
In descending mode, SAR satellites typically acquire images
in the afternoon when the sun is at a higher angle. This
configuration minimizes terrain shadowing and promotes a
more consistent backscatter response from vegetation. Con-
versely, ascending acquisitions, usually obtained in the early
morning, are more prone to pronounced shadow effects due
to lower sun angles, which can diminish the visibility of
certain features. Furthermore, vegetation generally exhibits
higher moisture content during early morning hours (when
ascending passes occur) due to dew formation and overnight
cooling. The increased moisture enhances signal absorption
and reduces backscatter, complicating the discrimination of
vegetation structures. During descending passes, vegetation
tends to dry slightly due to daytime heating, resulting in a
more stable and consistent radar response. Both illumination
geometry and moisture content contribute to a more stable and
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Fig. 3. Boxplots of NX and FIM of the five vegetation indices for the ascendent and descendent orbits.
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TABLE II. RESULTS OF THE ROC ANALYSIS FOR NX FOR THE ASCENDENT TYPE OF ORBIT. (THE * REFERS TO THE VALUE
OF TPR AND FPR CORRESPONDING TO THE OPTIMAL THRESHOLD)

PR1 PR2 NRPB DPSVIm DPSVIn

AUC 0.75 0.55 0.66 0.65 0.79
Optimal threshold 2.6 · 10−2 1.3 · 10−1 1.3 · 10−2 9 · 10−3 1.8 · 105

TPr* 0.71 0.45 0.54 0.59 0.68
FPr* 0.34 0.33 0.31 0.31 0.15

TABLE III. RESULTS OF THE ROC ANALYSIS FOR NX FOR THE DESCENDENT TYPE OF ORBIT. (THE * REFERS TO THE
VALUE OF TPR AND FPR CORRESPONDING TO THE OPTIMAL THRESHOLD)

PR1 PR2 NRPB DPSVIm DPSVIn

AUC 0.82 0.90 0.89 0.84 0.53
Optimal threshold 2.3 · 10−2 9.3 · 10−2 1.1 · 10−2 7.5 · 10−3 3.2 · 105

TPr* 0.73 0.8 0.82 0.81 0.66
FPr* 0.21 0.12 0.13 0.21 0.54

TABLE IV. RESULTS OF THE ROC ANALYSIS FOR FIM FOR THE ASCENDENT TYPE OF ORBIT. (THE * REFERS TO THE
VALUE OF TPR AND FPR CORRESPONDING TO THE OPTIMAL THRESHOLD)

PR1 PR2 NRPB DPSVIm DPSVIn

AUC 0.70 0.56 0.64 0.6 0.79
Optimal threshold 43.34 10.25 82.86 136.4 7.8 · 10−6

TPr* 0.65 0.54 0.5 0.59 0.71
FPr* 0.34 0.43 0.29 0.39 0.19

TABLE V. RESULTS OF THE ROC ANALYSIS FOR FIM FOR THE DESCENDENT TYPE OF ORBIT. (THE * REFERS TO THE
VALUE OF TPR AND FPR CORRESPONDING TO THE OPTIMAL THRESHOLD)

PR1 PR2 NRPB DPSVIm DPSVIn

AUC 0.81 0.87 0.89 0.83 0.51
Optimal threshold 50.91 14.07 104.35 159.75 4.8 · 10−6

TPr* 0.7 0.75 0.79 0.78 0.53
FPr* 0.19 0.09 0.17 0.23 0.47

interpretable radar response during descending passes. Nev-
ertheless, the optimal acquisition mode depends on specific
environmental conditions, sensor characteristics, and research
objectives. Further investigations will be carried out to explore
in greater depth the potential and limitations of Sentinel-1 data.
Nevertheless, the value of these preliminary findings lies in
demonstrating that early detection of infestations is crucial
for developing mitigation strategies and effectively preventing
their rapid spread.
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[17] M. Lechner, A. Dostálová, M. Hollaus, C. Atzberger, and M. Immitzer,
”Combination of Sentinel-1 and Sentinel-2 Data for Tree Species Clas-
sification in a Central European Biosphere Reserve,” Remote Sensing,
vol. 14, pp. 2687, 2022. doi:10.3390/rs14112687

[18] L. Telesca and M. Lovallo, ”On the Performance of Fisher Informa-
tion Measure and Shannon Entropy Estimators,” Physica A: Statistical
Mechanics and Its Applications, vol. 484, pp. 569–576, 2017.

[19] T. Fawcett, ”An Introduction to ROC Analysis,” Pattern Recognition
Letters, vol. 27, pp. 861–874, 2006.

[20] H. E. Beck, N. E. Zimmermann, T. R. McVicar, N. Vergopolan, A.
Berg, and E. F. Wood, ”Present and Future Köppen-Geiger Climate
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