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Abstract—Catastrophic forgetting remains a major challenge
in continuous learning, particularly for architectures not ex-
plicitly designed for knowledge retention. This paper explores
Kolmogorov–Arnold networks as an alternative to multilayer
perceptrons in such settings. We introduce two freezing strate-
gies: tensor-level spline freezing and point-level control freezing,
that exploit the spline-based structure of Kolmogorov–Arnold
networks to preserve knowledge from earlier tasks. Experiments
on Modified National Institute of Standards and Technology
(MNIST) handwritten digit dataset show that both methods yield
modest but consistent improvements when paired with replay
techniques. The best configurations improve total accuracy by
up to 2.2% and reduce forgetting by 5.4% over the no-freeze
baseline. These findings reveal a new direction for mitigating
forgetting through the selective control of spline parameters
specific for the Kolmogorov-Arnold networks. Future work will
explore a deeper integration with regularization and expansion
methods to further enhance knowledge retention in continual
learning.

Keywords-Continual Learning; Catastrophic Forgetting; Kol-
mogorov–Arnold Networks; KAN; Spline Freezing; Memory Re-
tention; Experience Replay; Progressive Freezing.

I. INTRODUCTION

Continual learning remains a central challenge in mod-
ern Machine Learning (ML), particularly in contexts where
models must incrementally adapt to new information without
catastrophic degradation of previously acquired knowledge [1].
Traditional deep learning models, including Multi-Layer Per-
ceptrons (MLPs), often suffer from catastrophic forgetting [2],
where performance on earlier tasks deteriorates as new data is
introduced. While various techniques such as regularization,
dynamic expansion, and rehearsal have been proposed to
address this problem [3]–[6], the search for architectures that
naturally lend themselves to incremental learning continues.

Kolmogorov–Arnold Networks (KANs), a recent innovation
based on the Kolmogorov–Arnold representation theorem [7],
have been proposed as interpretable and adaptable neural
networks that may address some limitations of fixed-activation
architectures. In KANs, traditional scalar weights are replaced
by univariate, learnable activation functions (typically splines),
enabling fine-grained, input-dependent transformations. Each
spline activation has its own parameter set, so during se-
quential training, only the splines relevant to a new task

are updated while the others remain fixed, thus naturally
preserving previously acquired knowledge.

In this paper, we evaluate the suitability of KAN for
continual learning by comparing their retention capabilities
to MLPs under task-incremental training scenarios. Specifi-
cally, we adopt the Split-MNIST protocol [8] which partitions
the MNIST [9] (Modified National Institute of Standards
and Technology) handwritten-digit dataset into two sequential
training tasks on digits 0–4 and 5–9.

Building on our previous analysis of KANs under adver-
sarial threats [11], [12], this study extends the evaluation
to continual learning scenarios, introducing a broader set of
robustness indicators. We compare results across architectures
and freezing strategies, focusing on metrics of accuracy,
retention, and forgetting. Notably, we observe that freezing
improves knowledge retention in settings with conventional
replay but does not provide consistent benefits when replay is
class-balanced. These findings highlight the nuanced interac-
tions between architecture, training dynamics, and memory re-
tention, opening new directions for lifelong learning research.
Main Contributions:

• A comprehensive comparison of KANs and MLP in
continual learning using the Split-MNIST benchmark.

• Systematic testing of replay and balanced replay buffer
strategies for mitigating forgetting in both model types,
using such methods as experience replay (random sam-
pling) and stratified (class-balanced) replay respectively.

• Introduction and evaluation of two novel KAN-specific
freezing techniques, targeting spline control points and
entire spline tensors.

• Empirical findings showing that KANs benefit from
freezing strategies primarily when used in conjunction
with naive replay mechanisms.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work on continual learning and memory
retention in neural networks. Section III details the experimen-
tal design, including dataset splits, architecture configurations,
and freezing protocols. Section IV presents the results of
our evaluations, with a comparative analysis of accuracy and
forgetting. Section V discusses conclusions and future work
directions.
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II. RELATED WORK

A. Continual and Lifelong Learning

Continual learning, also referred to as lifelong or incre-
mental learning [1], focuses on enabling models to learn
from a stream of tasks without suffering from catastrophic
forgetting. This challenge arises when models trained on
new data overwrite previously learned information, leading to
severe performance drops on older tasks [2], [3]. To system-
atically evaluate continual learning capabilities, benchmarks
such as Split-MNIST [8], [9], [13] are widely adopted. These
benchmarks divide a dataset into separate subsets of classes
forcing the model to incrementally adapt without access to
previous task data during training.

While much of the foundational work in this area has
focused on regularization-based methods (e.g., Elastic Weight
Consolidation [14]) and architectural adaptation (e.g, dy-
namically growing networks [15]), rehearsal-based strategies
have recently gained prominence for their effectiveness and
simplicity. However, many of these techniques are designed
around conventional neural architectures, such as MLPs, and
their applicability to novel, more interpretable models remains
largely unexplored. This paper contributes to bridging this gap
by evaluating continual learning in KANs.

B. Replay and Balanced Replay

Replay mechanism attempt to alleviate forgetting by in-
troducing a rehearsal buffer that store and replays a subset
of previously encountered samples. The simplest approach,
experience replay, samples examples uniformly at random
from a memory buffer [16], while balanced replay aims to
ensure class-wise uniformity, especially critical when data
from previous tasks are imbalanced or limited [6], [10]. These
methods are often paired with online learning or streaming
data scenarios, where maintaining compact yet representative
memory is crucial.

Despite their widespread adoption in conventional deep
learning, replay-based techniques have not been systematically
evaluated in emerging network paradigms such as KANs.
Given KANs’ fundamentally different parameterization, where
edge functions are learnable instead of weights alone, it is not
immediately clear, whether replay would behave similarly. Our
study investigates this open question and quantifies the impact
of replay versus balanced replay in KAN training regimes.

C. Kolmogorov-Arnold Networks and Interpretability

KANs [7] represent a significant shift in neural network
architecture. Originally proposed by Andrey Kolmogorov in
1957 and later extended by Vladimir Arnold in 1963, the Kol-
mogorov–Arnold Representation Theorem, also known as the
superposition theorem, states that any continuous multivariate
function f(x1, ...., xn) defined on a bounded domain can be
expressed as a finite composition of continuous univariate
functions, typically formulated as:

f(x) = f(x1, . . . , xn) =

2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(xp)

)
(1)

In (1) ϕq,p : [0, 1] → R are continuous inner functions, and
Φq : R → R represent continuous outer functions.

Inspired by the Kolmogorov–Arnold representation theo-
rem, KANs replace scalar edge weights with univariate, learn-
able spline functions. In KANs each connection from neuron p
to q now applies its own spline function ϕq,p(xp) to the incom-
ing activation xp, rather than simply multiplying by a constant
weight as in MLPs. This change enables each connection to
perform a data-driven, nonlinear transformation, offering both
functional richness and a degree of interpretability rarely found
in traditional models. Rather than stacking fixed nonlinearities
at the nodes as in MLPs, KANs achieve expressivity through
these adaptable spline-based edge functions.

Although KANs are relatively new, their potential has
already sparked interest across many domains. Prior studies
have explored their application to time series [17], [18],
robustness under adversarial attacks [11], [12], [19], [20], and
noise resilience [21], [22]. For instance, [7] demonstrated that
KANs can approximate complex mappings with far fewer
parameters while retaining interpretability via their control-
point structures. However, continual learning in KANs remains
underexplored. No prior work has directly evaluated their
memory retention across tasks or how spline parameterization
interacts with long-term adaptation.

Our study positions itself as one of the first to investigate
KANs in a continual learning context, motivated by their
spline-based design, which naturally partitions the model into
independent, learnable components, and by the opportunity
this provides for targeted freezing mechanisms. Figures 1
and 2 highlight the architectural distinction between KAN and
MLP, which motivates the design of two freezing strategies:
control point-level freezing and tensor-level spline freezing.
These mechanisms exploit the hierarchical structure of spline
parameters and enable selective locking of the model’s knowl-
edge, a novel direction for lifelong learning research.

D. Freezing Mechanisms in Incremental Learning

Weight freezing has been used historically to preserve
important parameters while learning new tasks. Techniques
like Learning without Forgetting (LwF) [23] and PackNet [24]
selectively retain task-specific neurons or weights to reduce in-
terference. More recently, methods such as Progressive Neural
Networks [25] have explored architectural partitioning where
frozen components are reused or extended.

In the context of KANs, we introduce two distinct types
of freezing. First, control point-level freezing targets high-
importance spline parameters based on magnitude or gradi-
ent scores. Second, tensor-level spline freezing locks entire
univariate transformation functions. These techniques take
advantage of the KAN flexible design, where splines are
modular and easy to adjust in a detailed way. Our experiments
demonstrated that spline-level freezing in KANs offers a new
dimension of control not available in traditional ML models,
and its interaction with replay dynamics presents novel trade-
offs between plasticity and stability.
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III. METHODOLOGY

A. Architectures

To compare robustness under continual learning, we con-
sider two types of models: a standard MLP and a KAN.
The MLP serves as a baseline, while the KAN explores
the performance of spline-based representations in a task-
incremental settings.

The MLP consists of two linear layers with a Rectified
Linear Unit (ReLU) activation in between. The first linear
layer maps a flattened 28×28 MNIST image (784-dimensional
input) to a 128-dimensional hidden layer. The second (output)
layer produces a 10-dimensional output corresponding to the
MNIST class logits. Figure 1 demonstrates the MLP architec-
ture used in the experiments.

Figure 1. MLP Architecture.

The KAN has a similar structure, with a linear layer
projecting inputs to a 128-dimensional hidden space, followed
by another linear layer to predict class logits. However, be-
tween the input and hidden layers, KAN includes a matrix
of learnable spline control weights (128 × 784), which are
not used for direct computation but are integrated into the
computation graph. These spline weights can be interpreted
as representing local functional transformations and can be
subjected to regularization or freezing. KAN architecture is
shown in Figure 2.

B. Continual Learning Setup

To simulate continual learning under the Split-MNIST pro-
tocol [8], [9], we split the MNIST dataset into two tasks:
Task A, containing digits 0 through 4, and Task B, containing
digits 5 through 9. The model is first trained on Task A
for three epochs, then trained on Task B for three more
epochs. Catastrophic forgetting is quantified as the drop in
Task A accuracy after Task B training. All experiments use the
AdamW optimizer with learning rate 1× 10−3, cross-entropy
loss, and batch size of 64 images per mini-batch.

C. Replay and Balanced Replay

To mitigate forgetting, we implement two forms of experi-
ence replay. In both, we store a subset of Task A examples
and mix them into the mini-batches during Task B training.

Figure 2. KAN Architecture.

In the first variant, replay, we randomly sample a buffer of
Task A examples. In the second, balanced replay, we sample
the replay buffer in a stratified fashion to ensure class balance
across the five Task A classes. To avoid confusion with Task
B and for brevity, we will refer to balanced replay as stratified
replay (s-replay) throughout the paper.

We tested replay buffer sizes of 50, 100, and 500, where the
buffer size denotes the number of data samples retained for the
next training round. We chose buffer sizes to represent low,
medium, and high replay capacities, so we could observe how
freezing performs under different conditions. As expected,
larger buffers led to better retention. Replay with 50 examples
provided moderate improvements, while 500 nearly eliminated
forgetting. However, our objective is to explore whether spline
freezing can further improve retention. Thus, we selected
buffer size 100 for all subsequent experiments. This setting
provides a middle ground. It significantly improves perfor-
mance over the baseline, but leaves room for further gains.
Using 50 samples could underestimate the impact of freezing,
while 500 would saturate the model’s retention capacity,
potentially masking the effects of freezing mechanisms.

D. Spline Freezing Strategies

A unique feature of KANs is the presence of interpretable
and modular spline parameters. Building on parameter-
isolation and architectural-partitioning approaches [24], [25],
we evaluate two types of freezing techniques to investigate
their effect on continual learning:

(1) Tensor-level (entire spline) freezing: In this strategy,
we compute a score for each of the 128 spline rows (or
neurons) and freeze the top k% rows. Three scoring methods
are evaluated using such approaches as :

• weight: mean absolute value of the weights in each row
• grad: mean absolute gradient magnitude per row (re-

quires a gradient pass)
• weight grad: a combination of both (with α = 0.5)
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(2) Point-level (individual control point) freezing: Here,
the same scoring methods are applied to individual elements
(control points) in the spline weight matrix. The top k% of
all elements are then frozen, regardless of their row or neuron
association.

For both strategies, we test k ∈ {0.05, 0.1, 0.25, 0.5, 0.75},
spanning from minimal to aggressive freezing intensities. This
range lets us assess how varying degrees of parameter k affect
retention under both replay=100 and s replay=100, yielding
30 experiments per technique. These strategies are visualized
in Figure 3. In each case, frozen parameters are excluded
from optimization updates by masking their gradients before
applying the optimizer step.

Figure 3. Tensor-level (left) and Point-level (right) freezing strategy.

E. Experimental Pipeline

Each experiment proceeds as follows. The model is initial-
ized and trained on Task A. After evaluating and recording the
initial accuracy, the freezing mechanism (if any) is applied
using a single gradient pass (when necessary). The model
is then trained on Task B, incorporating replayed samples
into each batch, as specified. After training, we compute and
report the accuracy on Task B (new task), accuracy on Task
A (after forgetting), and total accuracy across both tasks. We
also compute forgetting as the drop in Task A accuracy before
and after Task B training.

The following section presents the experimental results. We
first validate the replay strategies across different buffer size
and architectures, then evaluate the impact of spline freezing
techniques. The aim is to determine whether freezing entire
spline or individual components can improve retention in
continual learning settings, and whether the choice of scoring
strategy or replay method impacts this effect.

IV. RESULTS

A. Baseline Performance and Forgetting

Figure 4 and Table I summarize the performance of MLP
and KAN under different training scenarios. The clean set-
ting refers to training on all MNIST classes simultaneously,
serving as an upper-bound reference. Both models achieve
high accuracy on the full MNIST task (88.8% and 88.6%,
respectively), but suffer from severe catastrophic forgetting
when trained sequentially on separated tasks. The baseline

reflects continual training without any mitigation, revealing the
severity of catastrophic forgetting and establishing a compari-
son point for subsequent interventions. Figure 4 also shows the
improvements achieved through replay and s-replay (stratified
replay) before any spline or tensor freezing techniques are
applied. Table I additionally reports the forgetting metric,
which quantifies the reduction in accuracy on Task A after
training on Task B. The reported accuracy corresponds to the
model’s total accuracy after both training phases. For example,
in the baseline scenario, Task A accuracy drops by nearly
96%, resulting in an overall accuracy of just 43.4% for MLP
and 43.3% for KAN, underscoring the impact of forgetting in
continual learning.

Figure 4. Baseline accuracy and replay effectiveness for MLP and KAN.

TABLE I
BASELINE ACCURACY AND FORGETTING FOR MLP AND KAN.

Scenario MLP Acc. KAN Acc. MLP Forget. KAN Forget.
Clean 0.888 0.886 - -
Baseline 0.434 0.433 0.958 0.964
Replay 50 0.758 0.779 0.322 0.275
Replay 100 0.835 0.845 0.149 0.137
Replay 500 0.859 0.864 0.075 0.071
s-Replay 50 0.782 0.767 0.261 0.305
s-Replay 100 0.832 0.821 0.147 0.187
s-Replay 500 0.863 0.855 0.068 0.077

B. Replay and Stratified (Balanced) Replay

We evaluated replay-based strategies with varying buffer
sizes. Standard replay (random) and s-replay both improve
accuracy and retention, as seen in Figure 4. With replay buffer
size 100, MLP and KAN reach 83.5% and 84.5% accuracy,
respectively, while s-replay achieves 83.2% for MLP and
82.1% for KAN.

These configurations reduce forgetting substantially, as seen
in Table I. The choice of buffer size 100 offers a middle
ground between replay 50, which yielded lower gains, and
replay 500, which almost eliminated forgetting. We selected
100 for subsequent experiments, as it maintained measurable
room for improvement while ensuring sufficient retention to
validate the impact of freezing methods.
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C. Point-Level Freezing

Point-Freezing (pf) methods, shown in Figure 5, Table II,
and Table III, freeze the top-k% of control points us-
ing heuristics based on weights (w), gradients (g), or a
weighted average (wg). For s-replay, the best configuration is
pf_g_s-replay100 at k = 25%, which achieved 84.3%
accuracy and reduced forgetting to 0.133, outperforming the
no-freeze baseline of 82.1% (+2.2%) accuracy and 18.7% (-
5.4%) forgetting. In the replay setup, the best pf result was
pf_wg_replay100 at k = 25%, with 84.2% accuracy and
0.133 forgetting.

Across all experiments, s-replay consistently outperformed
standard replay in both baseline accuracy and forgetting,
even before freezing was applied. Moreover, pf under s-
replay remained effective across multiple k values, with most
configurations improving over the no-freeze baseline.

These results suggest that s-replay provides a stronger
foundation for knowledge retention, likely due to its class-
balanced sampling, which ensures more uniform coverage of
prior task classes during rehearsal. When combined with pf,
this structure appears to help selectively consolidate important
spline parameters, leading to synergistic gains in both accuracy
and forgetting. The consistent effectiveness of point-level
freezing under s-replay highlights its value as a complementary
mechanism for continual learning with KANs. Despite these
gains, the best s-replay + pf configuration still incurs a 13.3%
forgetting rate, underscoring the need to explore additional
forgetting mitigation strategies in future work.

Figure 5. Best KAN scenario with Point-Level Freezing (pf).

D. Tensor-Level Freezing

Tensor-Level Freezing (tf), shown in Figure 6, Table II,
and Table III, disables entire spline rows and can yield
strong improvements, though it introduces more variance
compared to point-level freezing. The best replay configuration
is tf_wg_replay100 at k = 75%, which achieved 85.2%
accuracy (+0.7%) and reduced forgetting to 0.101 (-3.6%). For
s-replay, the best result is tf_g_s-replay100 at k = 75%,
with 84.3% accuracy and 0.127 forgetting.

Although some configurations (e.g., k = 10% for tf_w_
replay100) resulted in noticeable performance drops, the

TABLE II
KAN ACCURACY UNDER REPLAY AND S-REPLAY FOR TENSOR (TF) AND

POINT (PF) FREEZING.

Method no freeze k5% k10% k25% k50% k75%
pf w replay100 0.845 0.817 0.841 0.830 0.837 0.816
pf g replay100 0.845 0.833 0.835 0.822 0.845 0.824
pf wg replay100 0.845 0.838 0.832 0.842 0.824 0.844
pf w s-replay100 0.821 0.816 0.828 0.831 0.833 0.829
pf g s-replay100 0.821 0.834 0.839 0.843 0.839 0.827
pf wg s-replay100 0.821 0.825 0.838 0.840 0.838 0.829
tf w replay100 0.845 0.851 0.813 0.834 0.844 0.821
tf g replay100 0.845 0.840 0.846 0.830 0.834 0.843
tf wg replay100 0.845 0.818 0.834 0.833 0.832 0.852
tf w s-replay100 0.821 0.837 0.826 0.826 0.835 0.829
tf g s-replay100 0.821 0.831 0.832 0.834 0.842 0.843
tf wg s-replay100 0.821 0.851 0.841 0.841 0.841 0.837

top-performing setups confirm that tensor-freezing can outper-
form point-freezing in certain cases when appropriately tuned.
These gains are most evident at higher freezing thresholds
(k = 50%–75%), suggesting that the disabling of larger sets
of spline transformations can help stabilize representations
after task shifts, particularly when combined with structured
replay. However, the broader range of outcomes highlights that
tensor freezing is more sensitive to the choice of k and scoring
strategy, reinforcing the need for careful calibration.

Figure 6. Best KAN scenario with tensor-level freezing (tf).

TABLE III
KAN FORGETTING UNDER REPLAY AND S-REPLAY FOR TENSOR (TF) AND

POINT (PF) FREEZING.

Method no freeze k5% k10% k25% k50% k75%
pf w replay100 0.137 0.185 0.133 0.154 0.137 0.178
pf g replay100 0.137 0.166 0.153 0.178 0.123 0.157
pf wg replay100 0.137 0.141 0.144 0.133 0.166 0.112
pf w s-replay100 0.187 0.182 0.166 0.160 0.155 0.157
pf g s-replay100 0.187 0.162 0.135 0.133 0.143 0.155
pf wg s-replay100 0.187 0.173 0.135 0.148 0.130 0.152
tf w replay100 0.137 0.116 0.200 0.153 0.133 0.163
tf g replay100 0.137 0.121 0.133 0.165 0.158 0.116
tf wg replay100 0.137 0.197 0.151 0.155 0.149 0.101
tf w s-replay100 0.187 0.141 0.168 0.174 0.130 0.152
tf g s-replay100 0.187 0.143 0.164 0.152 0.137 0.127
tf wg s-replay100 0.187 0.123 0.134 0.132 0.137 0.136
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E. Freezing Strategies: Comparative Effectiveness

Our evaluation of spline freezing strategies shows that both
tf and pf methods improve continual learning when paired
with replay mechanisms. While both enhance accuracy and
retention, their effectiveness depends on the configuration.

pf offers consistent gains, especially under s-replay. Most
k values outperform the no-freeze baseline, with the best
configuration (pf_g_s-replay100 at k = 25%) improving
accuracy by +2.2% and reducing forgetting by 5.4%. This
suggests that fine-grained control over spline weights helps
preserve prior task knowledge without impairing new learning.

tf, which locks full spline rows, shows greater vari-
ability but also higher potential. The best configuration
(tf_wg_replay100 at k = 75%) yielded the top accuracy
overall (+1.0% vs no-freeze) and reduced forgetting by 3.6%.
However, tf performance is more sensitive to k and the scoring
strategy, and can degrade if freezing is too aggressive.

Figures 5 and 6 summarize the top-performing pf and tf
setups. While pf freezing is more robust across scenarios, tf
freezing offers a higher ceiling when properly tuned. These
complementary traits highlight the adaptability of KANs for
continual learning applications.

V. CONCLUSION AND FUTURE WORK

This paper investigated KANs in continual learning, demon-
strating that both tensor-level and point-level spline freezing
consistently improve retention in Split-MNIST when paired
with simple replay (up to +2.2 % overall accuracy and a 5.4
% reduction in forgetting). While the absolute improvements
are moderate, these KAN-specific freezing strategies leverage
the spline structure to preserve prior task knowledge without
impeding new learning, opening a promising direction for
more targeted retention strategies.

Future work will explore freezing in deeper KANs, integra-
tion with regularization and dynamic expansion methods, and
testing on more complex benchmarks beyond MNIST. Addi-
tionally, we aim to develop adaptive freezing and unfreezing
strategies, drawing inspiration from biological learning and
synaptic plasticity. With these enhancements, we expect to
achieve higher retention and greater robustness in continual
learning tasks, further unlocking the potential of KANs for
long-term knowledge consolidation.
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