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Abstract— This study explores the impact of various signal 

processing techniques on neural network performance for 

activity recognition using smartwatch sensor data. Four 

common Activities of Daily Living (ADLs) including drinking, 

tumbling, teeth brushing, and walking, are evaluated. Signal 

processing methods, Gaussian filtering, Principal Component 

Analysis (PCA), Fourier Transform (FT), Empirical Mode 

Decomposition (EMD), and Hilbert-Huang Transform (HHT), 

are systematically assessed for their effectiveness in improving 

neural network classification accuracy. Multiple deep learning 

architectures, including Recurrent Neural Networks (RNN), 

Long Short-Term Memory (LSTM), Gated Recurrent Units 

(GRU), and Convolutional Neural Networks (CNN), are 

implemented and compared. Results reveal that signal 

processing techniques significantly enhance the performance of 

RNN models, whereas other architectures (LSTM, GRU, CNN) 

achieve high accuracy (>99%) without additional signal 

preprocessing. Additionally, a hybrid CNN-LSTM model was 

successfully deployed on a Samsung Galaxy Watch 6, to 

classify ADLs within a smartwatch. However, practical 

implementation challenges, such as battery consumption and 

the necessity for on-device learning capabilities, are identified. 

This research provides valuable insights into optimizing neural 

network performance for wearable computing in resource-

constrained environments. 

Keywords— Activity Recognition; Signal Processing; Neural 

Networks; Wearable Computing; Smartwatch Sensors. 

 

I. INTRODUCTION 

Germany is undergoing a pronounced demographic 
transition marked by an increasingly elderly population and 
persistently low birth rates [1]. By 2049, estimates suggest 
Germany will require between 280 000 and 690 000 
additional care professionals to meet the needs of its aging 
citizens [2]. To bridge this gap, healthcare systems must turn 
to technological innovations that streamline patient 
monitoring and support clinical decision-making. 

In this context, wearable devices, most notably 
smartwatches, have shown considerable promise. Equipped 
with accelerometers, gyroscopes and heart-rate sensors, they 
offer continuous, non-invasive tracking of Activities of Daily 
Living (ADLs), potentially enhancing diagnostic anamnesis 
and enabling rapid emergency response to events such as 
falls or acute cardiac episodes [3]-[5]. 

Yet, deploying advanced neural-network models directly 
on smartwatches introduces significant challenges: limited 
processing power, constrained memory, and the need to 

preserve battery life [6]-[9]. Effective real-time classification 
of complex movements therefore hinges on balancing model 
accuracy with resource efficiency. 

     This study investigates whether neural networks trained 

on raw smartwatch sensor data can accurately distinguish 

between a wide range of human movements, whether 

incorporating signal-processing techniques such as Fourier 

or wavelet transforms can boost classification performance, 

and how different time-series encoding methods affect the 

classification accuracy of these models in multi-class 

activity recognition. 

      The rest of the paper is structured as follows. Section II 

presents the related work. Section III describes the 

methodology, and Section IV the results. We conclude the 

work in Section V. 
 

 

II. RELATED WORK 
 

Time series classification represents one of ten 
challenging problems in data mining research [10]. The noise 
in time series data poses a particular challenge that requires 
sophisticated approaches to address effectively. Previous 
research by Waldhör and Lutze has successfully 
demonstrated the real-time recognition of drinking activities 
using smartwatches [11][12], establishing the feasibility of 
ADL detection in wearable devices. 

The development of RNNs can be traced back to the 
early 1980s with Hopfield networks [13], designed as 
content-addressable memory systems. Significant progress 
was achieved in the 1990s with the introduction of fully 
connected RNN architectures by researchers like Jeffrey 
Elman and Michael I. Jordan [14]. However, these networks 
struggled with the vanishing gradient problem, formally 
analyzed by Hochreiter [15] and later by Bengio et al. [16]. 

LSTM networks, introduced by Hochreiter and 
Schmidhuber [17], addressed these limitations through their 
innovative cell state architecture. GRU networks, proposed 
by Cho et al. [18], later offered a simplified alternative to 
LSTM. CNNs, originally conceived by Kunihiko Fukushima 
as the Neocognitron [19], have evolved to become powerful 
tools for pattern recognition and feature extraction. 

       Recent studies have highlighted the importance of 

sensor data quality and processing in wearable applications. 

The integration of smartwatches into Internet of Things 

(IoT) frameworks, as discussed by Takiddeen and 

Zualkernan [7], presents both opportunities and challenges 

for real-time monitoring systems. However, as noted by 
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Lane et al. [9], deploying deep learning models on mobile 

and embedded devices remains challenging due to 

computational and power constraints. 

III. METHODOLOGY 

A. Data Collection and Processing 

Initial training data was sourced from previous research 

[20][21], providing a foundation for model development. 

This was supplemented with new data collected using a 

Samsung Galaxy Watch 6 equipped with an LSM6DSO 6-

axis IMU sensor. Following the methodology established by 

Windler et al. [22], a consistent sampling rate of 10 Hz is 

maintained across all data sources to ensure compatibility 

between training and deployment environments. 

Signal quality was enhanced through multiple 

preprocessing steps: 

• Nearest neighbor interpolation for consistent 

sampling, addressing the challenge of variable 

sensor sampling rates identified in [23] 

• DC offset removal by subtracting the average value 

of each axis over time. 

• Gaussian filtering for noise reduction, implemented 

using one dimensional gaussian filter provided 

within the SciPy python package, with default 

sigma values [24] 

• Standard scaling for normalization, ensuring 

consistent feature ranges ( ) across 

different sensor axes. 

To address demographic variations in movement 

patterns, we incorporated data gathered from [25] regarding 

the simulation of older adult movement patterns during data 

collection. This approach helps ensure the model's 

applicability across different age groups. 

B. Signal Processing Techniques 

To extract and enhance salient features from the raw 

sensor data, different Signal Processing techniques are 

applied, each of the following.  

Principal Component Analysis (PCA) was implemented 

following the methodology described by Wold et al. [26], 

aiming to reduce dimensionality while retaining maximum 

variability within the data. This method is notably effective 

for handling correlated variables [27]. 

The Fourier Transform (FT) was implemented using the 

Fast Fourier Transform algorithm to leverage computational 

efficiency. FT enables frequency-domain analysis of periodic 

signals [28], making it especially suitable for the 

identification of repetitive activities such as walking. 

Empirical Mode Decomposition (EMD) was executed 

according to the original procedure by Huang et al. [29]. 

EMD decomposes complex signals into Intrinsic Mode 

Functions (IMFs), which facilitates the analysis of non-linear 

and non-stationary signals [30]. 

The Hilbert-Huang Transform (HHT) integrates 

Empirical Mode Decomposition with the Hilbert spectral 

analysis, providing detailed time-frequency representation of 

signals [31]. This technique effectively captures dynamic and 

varying characteristics in signal behavior [31]. 

Each transformation method can be sequentially 

evaluated for its effectiveness in extracting meaningful 

features, improving classification accuracy, and maintaining 

computational efficiency, reflecting considerations critical 

due to resource limitations inherent in smartwatch 

deployments [9]. 

C. Neural Network Architectures 

To benchmark model families under truly comparable 

conditions, we wrapped every network in an agent class that 

exposes the same fit-evaluate-save interface and inherits a 

common training configuration: 100-step sequences, batch 

size 64, Adam (lr = 1 × 10⁻³), categorical cross-entropy, and 

early stopping with a patience of 10–20 epochs. The five 

agents differ only in the layers that transform the input 

stream. 

 

• RNN agent: three SimpleRNN layers (256 → 512 

→ 256 units, tanh, 0.3 dropout) capture temporal 

context, followed by two dense layers (128 → 64, 

tanh) and a soft-max output. 

 

• LSTM agent: identical topology but with LSTM 

cells (128 → 256 → 128 units) that retain long-

range dependencies while mitigating vanishing 

gradients. 

 

• GRU agent: a lighter three-layer GRU stack (64 → 

128 → 64 units, 0.2 dropout) with dense layers (32 

→ 16, tanh), trading a smaller footprint for faster 

convergence. 

 

• CNN agent: three Conv2D blocks (32, 64, 128 

filters; 3 × 3 kernels; ReLU) each followed by 2 × 

1 max-pooling compress the spectro-temporal 

representation; a 128-unit dense layer and soft-max 

complete the classifier. 

 

• CNN–LSTM agent: convolutional features are 

flattened via TimeDistributed and streamed into 

two LSTM layers (64 →  32 units, 0.3 dropout) 

before a 32-unit dense layer and soft-max. This 

hybrid marries local pattern extraction with 

sequence modelling. 

 

Because all hyper-parameters outside the feature 

extractor are shared, performance differences can be 

attributed purely to the architectures themselves rather than 

to training-regime artefacts. 
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IV. RESULTS 

A. Model Performance 

All architectures except RNN achieved high accuracy 
When evaluated on raw inertial signals (Table 1), the 
convolutional (CNN), long short-term memory (LSTM), 
gated recurrent unit (GRU), and hybrid CNN–LSTM 
architectures all achieved near-perfect classification 
accuracies (0.9998–0.9999), whereas the vanilla recurrent 
network (RNN) yielded a markedly lower accuracy of 
0.5747. Applying principal component analysis (PCA) 
produced only marginal improvement for the RNN, while 
elevating the CNN to perfect performance and slightly 
enhancing the hybrid model. Empirical Mode Decomposition 
(EMD) had the most uniformly positive effect on the RNN, 
boosting its accuracy to 0.9783, and it maintained or slightly 
improved the performance of all other models (CNN = 
0.9999; LSTM/GRU = 1.0000; CNN–LSTM = 0.9998). The 
Hilbert–Huang Transform (HHT) exhibited a similar pattern: 
the RNN rose to 0.9617, the CNN slightly decreased to 
0.9988. These results underscore that while empirical 
decompositions (EMD, HHT) effectively condition data for 
recurrent architectures, pure spectral filtering (Fourier) may 
inadvertently disrupt the feature hierarchies learned by 
convolutional and hybrid models (see Table 1).  

TABLE I.  MODEL PERFORMANCE  

Transfor

-mation 

Tested model 

Evaluation 

Metrics 
CNN RNN LSTM GRU 

CNN-

LSTM 

Raw 

Accuracy 0.9999 0.5747 0.9999 0.9999 0.9998 

Precision 0.9999 0.5255 0.9999 0.9999 0.9998 

Recall 0.9999 0.5747 0.9999 0.9999 0.9998 

PCA 

Accuracy 1.0000 0.6008 0.9999 0.9999 0.9999 

Precision 1.0000 0.5361 0.9999 0.9999 0.9999 

Recall 1.0000 0.6008 0.9999 0.9999 0.9999 

Fourier 

Accuracy 0.9661 0.5497 0.9977 0.9999 0.5497 

Precision 0.9490 0.3022 0.9977 0.9999 0.3022 

Recall 0.9661 0.5497 0.9977 0.9999 0.5497 

EMD 

Accuracy 0.9999 0.9783 1.0000 1.0000 0.9998 

Precision 0.9999 0.9781 1.0000 1.0000 0.9998 

Recall 0.9999 0.9783 1.0000 1.0000 0.9998 

HHT 

Accuracy 0.9988 0.9617 1.0000 1.0000 0.5497 

Precision 0.9988 0.9626 1.0000 1.0000 0.3022 

Recall 0.9988 0.9617 1.0000 1.0000 0.5497 

a.  

B. Smartwatch Application 

     An Android Wear application, developed in Kotlin, 

continuously acquires tri-axial accelerometer and gyroscope 

signals to enable on-device, real-time activity classification. 

As shown in Figure 1, the user interface displays a dynamic 

bar chart of model-predicted confidence scores and 

incorporates an opt-in toggle for asynchronous data 

streaming to a remote server. To meet the stringent CPU, 

memory, and power budgets of a smartwatch, we convert 

our neural network to a TensorFlow Lite (TFLite) format, 

achieving a significant reduction in binary size and 

inference latency without compromising classification 

accuracy. This architecture demonstrates that sophisticated 

convolutional–recurrent pipelines can be effectively 

deployed on resource-limited wearable platforms, paving 

the way for continuous, unobtrusive monitoring of activities 

of daily living. 

 

 

Figure 1.  Smartwatch application interface for real-time activity 

recognition, displaying the predicted activity, confidence scores, and data 

transfer toggle. 

C. Discussion 

The deployment of the developed machine learning 
models on smartwatches highlighted several critical 
challenges that must be addressed to facilitate effective and 
continuous real-world use. Key challenges encountered 
during deployment included battery optimization, real-time 
processing constraints, the necessity for personalization, and 
variability in sensor data quality. Specifically, battery 
optimization emerged as a significant issue, as continuous 
model inference and sensor activity led to accelerated battery 
depletion, limiting the device's operational duration. Real-
time processing constraints were observed due to the limited 
computational resources inherent to smartwatches, impacting 
the responsiveness and efficiency of the classification tasks. 
The need for personalization became apparent as 
performance variations were observed across different users 
and devices, highlighting that static, pre-trained models may 
not generalize well across diverse real-world conditions. 
Additionally, variable sensor data quality introduced 
inconsistencies, influencing the model's accuracy and 
reliability. 
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To overcome these limitations and enhance the 
deployment feasibility of activity classification models on 
wearable devices, several avenues for future research are 
recommended, as follows. 

1) Development of efficient on-device learning 
mechanisms: Research should focus on 
implementing lightweight and computationally 
efficient on-device learning algorithms capable of 
continuous adaptation to individual user patterns, 
thereby enhancing personalization and mitigating 
performance degradation. 

2) Battery consumption optimization: Further research 
is needed into advanced power management 
strategies, sensor management optimizations, and 
computational reductions (e.g., pruning, 
quantization) to extend battery life without 
compromising model accuracy. 

3) Investigation of transfer learning approaches: 
Exploring transfer learning could facilitate more 
rapid personalization by leveraging pre-trained 
models adapted efficiently to new users with 
minimal data collection, addressing variability in 
user behavior and sensor conditions. 

4) Integration with eldercare systems: Future studies 
should consider the integration of activity 
recognition systems with broader eldercare 
management platforms to improve the practicality 
and applicability of these models in monitoring daily 
activities, supporting elderly users, and enhancing 
their overall quality of life. 

A pivotal evolutionary step to address the observed high 
variance in individual movement patterns would be to train 
user-specific models directly on the smartwatch. This 
approach would significantly enhance the adaptability and 
precision of activity recognition systems, thus improving 
their robustness and reliability in personalized, real-world 
scenarios. 

V. CONCLUSION 

This study confirms the viability of accurate human 
activity recognition using smartwatch sensor data and deep 
learning models. While advanced neural network 
architectures such as CNNs and LSTMs achieve high 
performance with minimal benefit from traditional signal 
processing techniques, these methods still hold value in 
enhancing simpler models or improving model efficiency. 
Importantly, the work underscores the practical constraints of 
deploying such models on resource-constrained wearable 
devices. Future research should prioritize energy-efficient 
inference, explore lightweight architectures, and investigate 
on-device learning strategies to enable adaptive, real-time 
activity recognition within the limited computational and 
power budgets of smartwatches. 
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